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Abstract. Unsupervised video segmentation plays an important role in a wide

variety of applications from object identification to compression. However, to

date, fast motion, motion blur and occlusions pose significant challenges. To ad-

dress these challenges for unsupervised video segmentation, we develop a novel

saliency estimation technique as well as a novel neighborhood graph, based on

optical flow and edge cues. Our approach leads to significantly better initial

foreground-background estimates and their robust as well as accurate diffusion

across time. We evaluate our proposed algorithm on the challenging DAVIS,

SegTrack v2 and FBMS-59 datasets. Despite the usage of only a standard edge

detector trained on 200 images, our method achieves state-of-the-art results out-

performing deep learning based methods in the unsupervised setting. We even

demonstrate competitive results comparable to deep learning based methods in

the semi-supervised setting on the DAVIS dataset.

1 Introduction

Unsupervised foreground-background video object segmentation of complex scenes is a

challenging problem which has many applications in areas such as object identification,

security, and video compression. It is therefore not surprising that many efforts have

been devoted to developing efficient techniques that are able to effectively separate

foreground from background, even in complex videos.

In complex videos, cluttered backgrounds, deforming shapes, and fast motion are

major challenges. In addition, in the unsupervised setting, algorithms have to auto-

matically discover foreground regions in the video. To this end, classical video ob-

ject segmentation techniques [6, 9, 11, 18, 23, 46, 22, 50, 58] often assume rigid back-

ground motion models and incorporate a scene prior, two assumptions which are re-

strictive in practice. Trajectory based methods, such as [8, 12, 45, 5, 15], require selec-

tion of clusters or a matrix rank, which may not be intuitive. Graphical model based ap-

proaches [24, 2, 16, 51, 54, 52] estimate the foreground regions using a probabilistic for-

mulation. However, for computational efficiency, the constructed graph usually contains

only local connections, both spatially and temporally, reducing the ability to consider

long-term spatial and temporal coherence patterns. To address this concern, diffusion

based methods [35], e.g., [13, 55], propagate an initial foreground-background estimate

more globally. While promising results are shown, diffusion based formulations rely



2 Y.-T. Hu, J.-B. Huang, and A. G. Schwing

Fig. 1: Video object segmentation in challenging scenarios. Given an input video, our

algorithm produces accurate segmentation of the foreground object without any manual

annotations. Our method is capable of handling unconstrained videos that span a wide

variety of situations including occlusion (BUS), non-ridge deformation (DANCE-JUMP),

and dynamic background (KITE-SURF).

heavily on the initialization as well as an accurate neighborhood graph encoding the

semantic distance between pixels or superpixels.

Therefore, in this paper, we develop (1) a new initialization technique and (2) a

more robust neighborhood graph. Our initialization technique is based on the intuition

that the optical flow on the boundary of an image differs significantly from the moving

direction of the object of interest. Our robust neighborhood graph is built upon accurate

edge detection and flow cues.

We highlight the performance of our proposed approach in Figure 1 using three

challenging video sequences. Note the fine details that our approach is able to seg-

ment despite the fact that our method is unsupervised. Due to accurate initial esti-

mates and a more consistent neighborhood graph, we found our method to be robust to

different parameter choices. Quantitatively, our initialization technique and neighbor-

hood graph result in significant improvements for unsupervised foreground-background

video segmentation when compared to the current state-of-the-art. On the recently re-

leased DAVIS dataset [42], our unsupervised non-deep learning based segmentation

technique outperforms current state-of-the-art methods by more than 1.3% in the un-

supervised setting. Our method also achieves competitive performance compared with

deep net based techniques in the semi-supervised setting.
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2 Related Work

The past decade has seen the rapid development in video object segmentation [51, 33,

38, 44, 32, 31, 40, 57, 17, 52, 25, 19, 20]. Given different degrees of human interaction,

these methods model inter- and intra-frame relationship of the pixels or superpixels

to determine the foreground-background labeling of the observed scene. Subsequently,

we classify the literature into four areas based on the degree of human involvement and

discuss the relationship between video object and video motion segmentation.

Unsupervised video object segmentation: Fully automatic approaches for video ob-

ject segmentation have been explored recently [7, 31, 59, 40, 39, 13, 57, 30], and no man-

ual annotation is required in this setting. Unsupervised foreground segmentation dis-

covery can be achieved by motion analysis [40, 13], trajectory clustering [39], or object

proposal ranking [31, 57]. Our approach computes motion saliency in a given video

based on boundary similarity of motion cues. In contrast, Faktor and Irani [13] find

motion salient regions by extracting dominant motion. Subsequently they obtain the

saliency scores by computing the motion difference with respect to the detected domi-

nant motion. Papazoglou and Ferrari [40] identify salient regions by finding the motion

boundary based on optical flow and computing inside-outside maps to detect the object

of interest.

Recently, deep learning based methods [25, 49, 48] were also used to address unsu-

pervised video segmentation. Although these methods do not require the ground truth

of the first frame of the video (unsupervised as opposed to semi-supervised), they need

a sufficient amount of labeled data to train the models. In contrast, our approach works

effectively in the unsupervised setting and does not require training data beyond the one

used to obtain an accurate edge detector.

Tracking-based video object segmentation: In this setting, the user annotation is re-

duced to only one mask for the first frame of the video [4, 17, 51, 24, 52, 36, 41]. These

approaches track the foreground object and propagate the segmentation results to suc-

cessive frames by incorporating cues such as motion [51, 52] and supervoxel consis-

tency [24]. Again, our approach differs in that we don’t consider any human labels.

Interactive video object segmentation: Interactive video object segmentation allows

users to annotate the foreground segments in key frames to generate impressive re-

sults by propagating the user-specified masks across the entire video [44, 14, 38, 34,

24]. Price et al. [44] further combine multiple features, of which the weights are auto-

matically selected and learned from user inputs. Fan et al. [14] tackle interactive seg-

mentation by enabling bi-directional propagation of the masks between non-successive

frames. Our approach differs in that the proposed method does not require any human

interaction.

Video motion segmentation: Video motion segmentation [5] aims to segment a video

based on motion cues, while video object segmentation aims at segmenting the fore-

ground based on objects. The objective function differs: for motion segmentation, clus-

tering based methods [5, 39, 29, 32] are predominant and group point trajectories. In

contrast, for video object segmentation, a binary labeling formulation is typically ap-

plied as we show next by describing our approach.
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Fig. 2: Motion saliency estimation. Given an input video, we compute the flow field

for each frame. We detect the saliency score based on the flow vector by calculating a

boundary dissimilarity map u(0) and a distance map u(1) indicating the distance of each

pixel to the boundaries. We use minimum barrier distance to measure the distance. The

motion saliency estimation is computed by averaging the boundary dissimilarity map

and the distance map.

3 Unsupervised Video Object Segmentation

The two most important ingredients for unsupervised video object segmentation are the

initial saliency estimate as well as a good assessment of the neighborhood relation of

pixels or superpixels. For initial saliency prediction in unsupervised video object seg-

mentation we describe a novel method comparing the motion at a pixel to the boundary

motion. Intuitively, boundary pixels largely correspond to background and pixels with a

similar motion are likely background too. To construct a meaningful neighborhood re-

lation between pixels we assess flow and appearance cues. We provide details for both

contributions after describing an overview of our unsupervised video object segmenta-

tion approach.

Method overview: Our method uses a diffusion mechanism for unsupervised video

segmentation. Hence, the approach distributes an initial foreground saliency estimate

over the F frames xi, i ∈ {1, . . . ,F}, of a video x = (x1, . . . ,xF). To this end, we partition

each frame into a set of nodes using superpixels, and estimate and encode their semantic

relationship within and across frames using a global neighborhood graph. Specifically,

we represent the global neighborhood graph by a weighted row-stochastic adjacency

matrix G ∈ R
N×N , where N is the total number of nodes in the video. Diffusion of the

initial foreground saliency estimates v0 ∈ R
N for each node is performed by repeated

matrix multiplication of the current node estimate with the adjacency matrix G, i.e., for

the t-th diffusion step vt = Gvt−1.

With the adjacency matrix G and initialization v0 being the only inputs to the algo-

rithm, it is obvious that they are of crucial importance for diffusion based unsupervised

video segmentation. We focus on both points in the following and develop first a new

saliency estimation of v0 before discussing construction of the neighborhood graph G.

3.1 Saliency estimation

For unsupervised video object segmentation, we propose to estimate the motion saliency

by leveraging a boundary condition. Since we are dealing with video, motion is one

of the most important cues for identifying moving foreground objects. In general, the
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motion of the foreground object differs from background motion. But importantly, the

background region is often connected to the boundary of the image. While the latter as-

sumption is commonly employed for image saliency detection, it has not been exploited

for motion saliency estimation. To obtain the initial saliency estimate v0 defined over

superpixels, we average the pixelwise motion saliency results u over the spatial support

of each superpixel. We subsequently describe our developed procedure for foreground

saliency estimation, taking advantage of the boundary condition. The proposed motion

saliency detection is summarized in Figure 2.

Conventional motion saliency estimation techniques for video object segmentation

are based on either background subtraction [6], trajectory clustering [5], or motion sepa-

ration [13]. Background subtraction techniques typically assume a static camera, which

is not applicable for complex videos. Trajectory clustering groups points with similar

trajectories, which is sensitive to non-rigid transformation. Motion separation detects

background by finding the dominant motion and subsequently calculates the difference

in magnitude and/or orientation between the motion at each pixel, and the dominant

motion. The larger the difference, the more likely the pixel to be foreground. Again,

complex motion poses challenges, making it hard to separate foreground from back-

ground.

In contrast, we propose to use the boundary condition that is commonly used for im-

age saliency detection [56, 53] to support motion saliency estimation for unsupervised

video segmentation. Our approach is based on the intuition that the background region

is connected to image boundaries in some way. Therefore we calculate a distance metric

for every pixel to the boundary. Compared to the aforementioned techniques, we will

show that our method can better deal with complex, non-rigid motion.

We use u to denote the foreground motion saliency of the video. Moreover, ui and

ui(pi) denote the foreground saliency for frame i and for pixel pi in frame i respec-

tively. To compute the motion saliency estimate, we treat every frame xi, i ∈ {1, . . . ,F}
independently. Given a frame xi, let xi(pi) refer to the intensity values of pixel pi, and

let fi(pi) ∈ R
2 denote the optical flow vector measuring the motion of the object illus-

trated at pixel pi between frame i and frame i+1. In addition, let Bi denote the set of

boundary pixels of frame i.

We compute the foreground motion saliency ui of frame i based on two terms u
(0)
i

and u
(1)
i , each of which measures a distance between any pixel pi of the i-th frame and

the boundary Bi. For the first distance u
(0)
i , we compute the smallest flow direction

difference observed between a pixel pi and common flow directions on the boundary.

For the second distance u
(1)
i , we measure the smallest barrier distance between pixel

pi and boundary pixels. Both of the terms capture the similarity between the motion

at pixel pi and the background motion. Subsequently, we explain both terms in greater

detail.

Computing flow direction difference: More formally, to compute u
(0)
i (pi), the flow

direction difference between pixel pi in frame i and common flow directions on the

boundary Bi of frame i, we first cluster the boundary flow directions into a set of K
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clusters k ∈ {1, . . . ,K} using k-means. We subsume the cluster centers in the set

Ki=

{

µi,k : µi,k =argmin
µ̂i,k

min
r∈{0,1}|Bi |K

1

2
∑

pi∈Bi,k

rpi,k‖ fi(pi)− µ̂i,k‖
2
2

}

. (1)

Hereby, rpi,k ∈ {0,1} is an indicator variable which assigns pixel pi to cluster k, and r is

the concatenation of all those indicator variables. We update Ki to only contain centers

with more than 1/6 of the boundary pixels assigned. Given those cluster centers, we

then obtain a first distance measure capturing the difference of flow between pixel pi in

frame i and the major flow directions observed at the boundary of frame i via

u
(0)
i (pi) = min

µi,k∈Ki

‖ fi(pi)−µi,k‖
2
2. (2)

Computing smallest barrier distance: When computing the smallest barrier distance

Dbd,i between pixel pi in frame i and boundary pixels, i.e., to obtain

u
(1)
i (pi) = min

s∈Bi

Dbd,i(pi,s), (3)

we use the following barrier distance:

Dbd,i(pi,s) = max
e∈Πi,pi ,s

wi(e)− min
e∈Πi,pi ,s

wi(e). (4)

Hereby, Πi,pi,s denotes the path, i.e., a set of edges connecting pixel pi to boundary

pixel s ∈ Bi, obtained by computing a minimum spanning tree on frame i. The edge

weights wi(e), which are used to compute both the minimum spanning tree as well as the

barrier distance given in Eq. (4), are obtained as the maximum flow direction difference

between two neighboring pixels, i.e., wi(e) = max{ fi(pi)− fi(qi)} ∈ R where the max

is taken across the two components of fi(pi)− fi(qi) ∈ R
2. Note that e = (pi,qi) refers

to an edge connecting the two pixels pi and qi. To compute the minimum spanning

tree we use the classical 4-connected neighborhood. Intuitively, we compute the barrier

distance between 2 points as the difference between the maximum edge weight and

minimum edge weight on the path of the minimum spanning tree between the 2 points.

We then compute the smallest barrier distance of a point as the minimum of the barrier

distances between the point and any point on the boundary.

Computing foreground motion saliency: We obtain the pixelwise foreground motion

saliency ui of frame i when adding the two distance metrics u
(0)
i and u

(1)
i after having

normalized each of them to a range of [0,1] by subtracting the minimum entry in u
(·)
i

and dividing by the difference between the maximum and minimum entry. Examples

for u
(0)
i , u

(1)
i and the combined motion saliency are visualized in Figure 2.

We found the proposed changes to result in significant improvements for saliency

estimation of video data. We present a careful assessment in Section 4.

3.2 Neighborhood construction

The second important term for diffusion based video segmentation beyond initial esti-

mates is the neighborhood graph G. Classical techniques construct the adjacency matrix
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Fig. 3: Graph construnction. In our method, we construct a graph for diffusing the ini-

tial motion saliency estimation. Our graph contains 1) edge-aware spatial connections

(intra-frame connections), 2) flow-based temporal connections (inter-frame connections

and 3) non-local long range connections. We show the initial motion saliency and the

diffused saliency map using the constructed graph. We found these three types of con-

nections to help propagate the initial saliency estimation effectively.

using local information, such as connecting a node with its spatial and temporal neigh-

bors, and non-local connections. These methods establish a connection between two

nodes as long as their visual appearance is similar.

In contrast, we compute the neighborhood graph, i.e., the adjacency matrix for graph

diffusion, G = T ×E ×V as the product of three components, based on inter-frame in-

formation T , intra-frame signals E, and long-range components V , as shown in Figure 3,

and use a variety of cues for robustness. We formally discuss each of the components

in the following.

Inter-frame temporal information is extracted from optical flow cues. We connect

superpixels between adjacent frames following flow vectors while checking the for-

ward/backward consistency in order to prevent inaccurate flow estimation at motion

boundaries.

More formally, to compute the flow adjacency matrix T , consider two successive

video frames xi and xi+1 each containing pixel pi and pi+1, respectively. We compute a

forward flow field fi(pi) and a backward flow field bi+1(pi+1) densely for every pixel

p using [21]. Using those flow fields, we define the forward confidence score cF
i (pi) at

pixel pi of frame xi via

cF
i (pi) = exp

(

−‖− fi(pi)−bi+1(pi + fi(pi))‖
2
2

σ2

)

, (5)

and the backward confidence score cB
i (pi) at pixel pi of frame xi via

cB
i (pi) = exp

(

−‖−bi(pi)− fi−1(pi +bi(pi))‖
2
2

σ2

)

, (6)

where σ2 is a hyper-parameter. Intuitively, this confidence score measures the distance

between the pixel pi and the result obtained after following the flow field into frame

xi+1 via pi+ fi(pi) and back into frame xi via pi+ fi(pi)+bi+1(pi+ fi(pi)). Taking the

difference between pixel pi and the obtained reprojection results in the term given in

Eq. (5) and Eq. (6). We use the confidence scores to compute the connection strength
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between two superpixels si,k and si+1,m in frame i and i+1 via

T (si,k,si+1,m)= ∑
p∈si,k

δ (p+ fi(p) ∈ si+1,m)c
F
i (p)

|si,k|+ |si+1,m|
+ ∑

p′∈si+1,m

δ (p′+bi+1(p′) ∈ si,k)c
B
i+1(p′)

|si,k|+ |si+1,m|
. (7)

Hereby δ (·) denotes the indicator function and |si,k| and |si+1,m| represent the number

of pixels in si,k and si+1,m, respectively. Intuitively, the first term compares the strength

of the connections that start in superpixel si,k and end up in superpixel si+1,m with the

total amount of strength originating from both si,k and si+1,m. Similarly for the second

term.

Intra-frame spatial information prevents diffusion across visual edges within a frame,

while allowing information to be propagated between adjacent superpixels in the same

frame if they aren’t separated by a strong edge.

More formally, to find the edge aware spatial connections E, we first detect the edge

responses frame-by-frame using the training based method discussed in [10]. Given

edge responses, we calculate the confidence scores A(s) for all superpixel s by summing

over the decay function, i.e.,

A(s) =
1

|s| ∑
p∈s

1

1+ exp(σw · (G(p)− ε))
. (8)

Hereby, G(p) ∈ [0,1] is the edge response at pixel p. σw and ε are hyper-parameters,

which we fix at σw = 50 and ε = 0.05 for all our experiments.

We calculate the edge-aware adjacency matrix E by exploiting the above edge in-

formation. Specifically,

E(si,k,si,m) =
1

2

(

A(si,k)+A(si,m)
)

, (9)

if si,k is spatially close to si,m, i.e., if the distance between the centers of the two super-

pixels is less than 1.5 times the square root of the size of the superpixel.

Long range connections based on visual similarity allow propagating information be-

tween superpixels that are far away either temporally or spatially as long as the two

are visually similar. These long-range connections enable the information to propagate

more efficiently through the neighborhood graph.

More formally, to compute the visual similarity matrix V , we find those superpixels

that are most closely related to a superpixel si,m. To this end, we first perform a k nearest

neighbor search. More specifically, for each superpixel si,m we find its k nearest neigh-

bors that are within a range of r frames temporally. To compute the distance between

two superpixels we use the Euclidean distance in the feature space.

We compute features f (s) of a superpixel s by concatenating the LAB and RGB

histograms computed over the pixels within a superpixel. We also include the HOG

feature, and the x and y coordinate of the center of the superpixel.

Let the k nearest neighbors of the superpixel si,m be referred to via N(si,m). The

visual similarity matrix is then defined via

V (si,m,s) = exp

(

−‖ f (si,m)− f (s)‖2
2

σ

)

∀s ∈ N(si,m), (10)
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where σ is a hyper-parameter and f (s) denotes the feature representation of the super-

pixel s. Note that we use the same features to find k nearest neighbors and to compute

the visual similarity matrix V . In this work, we refrain from using deep net based infor-

mation even though we could easily augment our technique with more features.

To address the computational complexity, we use an approximate k nearest neigh-

bor search. Specifically, we use the fast implementation of ANN search utilizing the

randomized k-d forest provided in [37].

4 Experiments

In the following, we present the implementation details, describe the datasets and met-

rics used for evaluation, followed by ablation study highlighting the influences of the

proposed design choices and comparisons with the state-of-the-art.

4.1 Implementation details

For the proposed saliency estimation algorithm, we set the number of clusters K = 3

for modeling the background. For neighborhood graph construction described in Sec-

tion 3.2, we found k = 40,r = 15,σ = 0.1,σ2 = 2−6,σw = 50 to work well across

datasets. The number of diffusion iterations is set to 25. In the supplementary material,

we show that the performance of our method is reasonably robust to parameter choices.

The average running time of our approach on the DAVIS dataset, including the

graph construction and diffusion is about 8.5 seconds per frame when using a single

PC with Intel i7-4770 CPU and 32 GB memory. Extracting superpixels and feature

descriptors takes about 1.5 and 0.8 seconds per frame, respectively. We use the imple-

mentation by [21, 47] for computing optical flow, which takes about 10.7 seconds per

frame, including both forward flow and backward flow.

4.2 Datasets

We extensively compare our proposed technique to a series of baselines using the

DAVIS dataset [42] (50 video sequences), the SegTrack v2 dataset [33] (14 video se-

quences), and the FBMS-59 dataset [39] (22 video sequences in the test set). These

datasets are challenging as they contain nonrigid deformation, drastic illumination changes,

cluttered background, rapid object motion, and occlusion. All three datasets provide

pixel-level ground-truth annotations for each frame.

4.3 Evaluation metrics

Intersection over union (J ): The intersection over union (IoU) metric, also called the

Jaccard index, computes the average over the dataset. The IoU metric has been widely

used for evaluating the quality of the segmentation.

Contour accuracy (F ) [42]: To assess the segmentation quality, we compute the con-

tour accuracy as F = 2PR
P+R

, where P and R are the matching precision and recall of the
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Table 1: Contribution of different components of our algorithm evaluated on the DAVIS

dataset. Our algorithm with inter-frame, intra-frame connections, long range connec-

tions, and focused diffusion (denoted as FDiff) enabled performs best and achieves an

IoU of 77.56%.

Connections
FDiff IoU (%)

Inter-frame Intra-frame Long range

- - - - 57.52

X - - - 62.75

- X - - 62.13

- - X - 72.38

X X - - 65.01

X - X - 72.70

- X X - 74.13

X X X - 74.34

X X X X 77.56

two sets of points on the contours of the ground truth segment and the output segment,

calculated via a bipartite graph matching.

Temporal stability (T ) [42]: The temporal stability is measured by computing the

distance between the shape context descriptors [3] describing the shape of the boundary

of the segmentations between two successive frames. Intuitively, the metric indicates the

degree of deformation required to transform the segmentation mask from one frame to

its adjacent frames.

Subsequently we first present an ablation study where we assess the contributions

of our technique. Afterwards we perform a quantitative evaluation where we compare

the accuracy of our approach to baseline video segmentation approaches. Finally we

present qualitative results to illustrate the success and failure cases of our method.

4.4 Ablation study

We assess the resulting performance of the individual components of our adjacency

defined neighborhood in Table 1. The performance in IoU of the motion saliency esti-

mation in our approach (with all the connections disabled) is 57.52%. We analyze the

effect of the three main components in the adjacency graph: (1) inter-frame flow based

temporal connections T , (2) intra-frame edge based spatial connections E and (3) long

range connections V .

The improvements reported for saliency estimation and neighborhood construction

motivate their use for unsupervised video segmentation. Besides, we apply a second

round of ‘focused diffusion,’ restricted to the region which focuses primarily on the

foreground object, to improve the results. The effects of the focused diffusion (denoted

‘FDiff’) can be found in Table 1 as well, showing significant improvements.

In Table 1, the checkmark ‘X’ indicates the enabled components. We observe con-

sistent improvements when including additional components, which improve the ro-

bustness of the proposed method.
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Table 2: The quantitative evaluation on the DAVIS dataset [42]. Evaluation metrics are

the IoU measurement J , boundary precision F , and time stability T . Following [42],

we also report the recall and the decay of performance over time for J and F mea-

surements.
Semi-supervised Unsupervised

SEA HVS JMP FCP BVS OFL CTN VPN MSK OURS-S NLC MSG KEY FST FSG LMP ARP OURS-U

Deep features - - - - - X X X X - - - - - X X - -

Mean M ↑ 0.556 0.596 0.607 0.631 0.665 0.711 0.755 0.750 0.803 0.810 0.641 0.543 0.569 0.575 0.716 0.697 0.763 0.776

J Recall O ↑ 0.606 0.698 0.693 0.778 0.764 0.800 0.890 0.901 0.935 0.946 0.731 0.636 0.671 0.652 0.877 0.829 0.892 0.886

Decay D ↓ 0.355 0.197 0.372 0.031 0.260 0.227 0.144 0.093 0.089 0.102 0.086 0.028 0.075 0.044 0.017 0.056 0.036 0.044

Mean M ↑ 0.533 0.576 0.586 0.546 0.656 0.679 0.714 0.724 0.758 0.783 0.593 0.525 0.503 0.536 0.658 0.663 0.711 0.750

F Recall O ↑ 0.559 0.712 0.656 0.604 0.774 0.780 0.848 0.842 0.882 0.928 0.658 0.613 0.534 0.579 0.790 0.783 0.828 0.869

Decay D ↓ 0.339 0.202 0.373 0.039 0.236 0.240 0.140 0.136 0.095 0.115 0.086 0.057 0.079 0.065 0.043 0.067 0.073 0.042

T Mean M ↓ 0.137 0.296 0.131 0.285 0.316 0.239 0.198 0.300 0.189 0.212 0.356 0.250 0.190 0.276 0.286 0.689 0.352 0.243

Table 3: The attribute-based aggregate performance comparing unsupervised methods

on the DAVIS dataset [42]. We calculate the average IoU of all sequences with the spe-

cific attribute: appearance change (AC), dynamic background (DB), fast motion (FM),

motion blur (MB), and occlusion (OCC). The right column with small font indicates

the performance change for the method on the remaining sequences if the sequences

possessing the corresponding attribute are not taken into account.

Attribute NLC [13] MSG [5] KEY [31] FST [40] FSG [25] LMP [49] ARP [30] OURS-U

AC 0.54 +0.13 0.48 +0.08 0.42 +0.19 0.55 +0.04 0.73 -0.02 0.67 +0.03 0.73 +0.04 0.72 +0.07

DB 0.53 +0.15 0.43 +0.15 0.52 +0.07 0.53 +0.06 0.67 +0.05 0.57 +0.16 0.70 +0.08 0.66 +0.15

FM 0.64 +0.00 0.46 +0.14 0.50 +0.12 0.50 +0.12 0.69 +0.04 0.67 +0.05 0.73 +0.05 0.75 +0.04

MB 0.61 +0.04 0.35 +0.29 0.51 +0.08 0.48 +0.14 0.65 +0.10 0.64 +0.08 0.69 +0.11 0.74 +0.06

OCC 0.70 -0.09 0.48 +0.10 0.52 +0.08 0.53 +0.07 0.65 +0.10 0.70 -0.01 0.71 +0.08 0.81 -0.05

4.5 Quantitative evaluation

Evaluation on the DAVIS dataset: We compare the performance of our approach to

several baselines using the DAVIS dataset. The results are summarized in Table 2, where

we report the IoU, the contour accuracy, and the time stability metrics. The best method

is emphasized in bold font and the second best is underlined. We observe our approach

to be quite competitive, outperforming a wide variety of existing unsupervised video

segmentation techniques, e.g., NLC [13], MSG [5], KEY [31], FST [40], FSG [25],

LMP [49], ARP [30]. We also evaluate our method in the semi-supervised setting by

simply replacing the saliency initialization of the first frame with the ground truth. Note

that it is common to refer to usage of the first frame as ‘semi-supervised.’ Our unsu-

pervised version is denoted as OURS-U and the semi-supervised version is referred to

via OURS-S in Table 2. Semi-supervised baselines are SEA [1], HVS [17], JMP [14],

FCP [43], BVS [36], OFL [52], CTN [27], VPN [26], and MSK [41]. Note that OFL

uses deep features, and CTN, VPN, MSK, FSG, and LMP are deep learning based ap-

proaches. We observe our method to improve the state-of-the-art performance in IoU

metric by 1.3% in the unsupervised setting and by 0.7% in the semi-supervised case.

Note that beyond training of edge detectors, no learning is performed in our approach.

In Table 3, we compare the average IoU of all DAVIS sequences, clustered by at-

tributes, e.g., appearance change, dynamic blur, fast motion, motion blur, and occlusion.
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Table 4: Performance in IoU on SegTrack v2 dataset [33].

Sequence KEY [31] FST [40] NLC [13] FSG [25] Ours

BIRDFALL 0.490 0.014 0.565 0.380 0.649

BIRD OF PARADISE 0.922 0.837 0.814 0.699 0.937

BMX 0.630 0.621 0.754 0.591 0.847

CHEETAH 0.281 0.396 0.518 0.596 0.518

DRIFT 0.469 0.811 0.741 0.876 0.829

FROG 0.000 0.629 0.713 0.570 0.832

GIRL 0.877 0.441 0.860 0.667 0.846

HUMMINGBIRD 0.602 0.335 0.624 0.652 0.464

MONKEY 0.790 0.699 0.823 0.805 0.739

MONKEYDOG 0.396 0.523 0.525 0.328 0.381

PARACHUTE 0.963 0.839 0.859 0.516 0.937

PENGUIN 0.093 0.074 0.139 0.713 0.240

SOLDIER 0.666 0.453 0.692 0.698 0.800

WORM 0.844 0.705 0.782 0.506 0.800

Average IoU 0.573 0.527 0.672 0.614 0.701

Table 5: Performance in IoU on FBMS-59 test set [39].

NLC [13] POR [59] POS [28] FST [40] ARP [30] OURS

Average IoU 0.445 0.473 0.542 0.555 0.598 0.608

Our method is more robust and outperforms the baselines for fast motion, motion blur

and occlusion. In particular, our method performs well for objects with occlusion, out-

performing other methods by 10% for this attribute.

Evaluation on the SegTrack v2 dataset: We assess our approach on the SegTrack v2

dataset using identical choice of parameters. We show the results in Table 4. We observe

our method to be competitive on SegTrack v2. Note that the reported performance of

NLC differs from [13] as in the evaluation in [13] only a subset of the 12 video se-

quences were used. We ran the code released by [13] and report the results on the full

SegTrack v2 dataset with 14 video sequences. The results we report here are similar to

the ones reported in [48].

Evaluation on the FBMS dataset: We evaluate our method on the FBMS [39] test set

which consists of 22 video sequences. The results are presented in Table 5. We observe

our approach to outperform the baselines.

Comparisons of the saliency estimation: To illustrate the benefits of the proposed

motion saliency estimation, we compare the performance of the proposed initialization

with other approaches in Table 6 and observe that the proposed saliency estimation

performs very well. Note that the saliency estimation in our approach is unsupervised

as opposed to FSG and LMP which are trained on more than 10,000 images and 2,250

videos, respectively.
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Table 6: Performance comparisons in IoU on the initialization on the DAVIS and Seg-

Track v2 datasets.

DAVIS Segtrack v2

NLC FST FSG LMP Ours NLC FST FSG Ours

Training? - - X X - - - X -

Initial saliency 0.402 0.456 0.602 0.569 0.575 0.419 0.389 0.530 0.424

Ground truth APR [30] LMP [49] FSG [25] NLC [13] Ours

Fig. 4: Comparison of our algorithm and other unsupervised methods on sequence

BMX-TREES (1st row), FLAMINGO (2nd row), LIBBY (3rd row), RHINO (4th row), and

DANCE-JUMP (5th row) of the DAVIS dataset.

4.6 Qualitative evaluation

Side-by-side comparison: Next we present qualitative results comparing our algo-

rithm to competing methods on challenging parts of the DAVIS dataset. In Figure 4

we provide side-by-side comparisons to existing methods, i.e., APR [30], LMP [49],

FSG [25], and NLC [13]. We observe our approach to yield encouraging results even

in challenging situations such as frames in BMX-TREES (Figure 4, first row), where the

foreground object is very small and occluded, and the background is very colorful, and

in FLAMINGO (Figure 4, second row), where there is non-rigid deformation, and the

background object is similar to the foreground object. We refer the interested reader to

the supplementary material for additional results and videos.

Success cases: In Figure 5, we provide success cases of our algorithm, i.e., frames

where our designed technique delineates the foreground object accurately. We want to

highlight that our approach is more robust to challenges such as occlusions, motion

blur and fast moving objects as the attribute-based aggregate performance in Table 3

suggests.
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Fig. 5: Visual results of our approach on the sequences SWING (1st row), SOAPBOX

(2nd row), DRIFT-STRAIGHT (3rd row), and DANCE-TWIRL (4th row) of the DAVIS

dataset.

Fig. 6: Failure case. Groundtruth vs. our result.

Failure modes: In Figure 6, we also present failure modes of our approach. We observe

our technique to be challenged by complex motion. Since our method mainly relies on

motion and appearance, water is classified as foreground due to its complex motion

(MALLARD-WATER).

5 Conclusion

We proposed a saliency estimation and a graph neighborhood for effective unsupervised

foreground-background video segmentation. Our key novelty is a motion saliency esti-

mation and an informative neighborhood structure. Our unsupervised method demon-

strates how to effectively exploit the structure of video data, i.e., taking advantage of

flow and edges, and achieves state-of-the-art performance in the unsupervised setting.
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