
Action Anticipation with RBF Kernelized

Feature Mapping RNN

Yuge Shi[0000−0003−1905−9320], Basura Fernando[0000−0002−6920−9916], and Richard

Hartley[0000−0002−5005−0191]

The Australian National University, Australia

Abstract. We introduce a novel Recurrent Neural Network-based algorithm for

future video feature generation and action anticipation called feature mapping RNN .

Our novel RNN architecture builds upon three effective principles of machine

learning, namely parameter sharing, Radial Basis Function kernels and adversar-

ial training. Using only some of the earliest frames of a video, the feature map-

ping RNN is able to generate future features with a fraction of the parameters

needed in traditional RNN. By feeding these future features into a simple multi-

layer perceptron facilitated with an RBF kernel layer, we are able to accurately

predict the action in the video.

In our experiments, we obtain 18% improvement on JHMDB-21 dataset, 6% on

UCF101-24 and 13% improvement on UT-Interaction datasets over prior state-

of-the-art for action anticipation.

Keywords: Human action prediction, novel Recurrent Neural Network, Radial

Basis Function kernel, Adversarial training

1 Introduction

Action anticipation (sometimes referred to as action prediction) is gaining a lot of

attention due to its many real world applications such as human-computer interac-

tion [2,33,30], sports analysis [3,4,56] and pedestrian movement prediction [9,21,18,5,46]

especially in the autonomous driving scenarios.

In contrast to most widely studied human action recognition methods, in action

anticipation, we aim to recognize human action as early as possible [39,23,28,42,49].

This is a challenging task due to the complex nature of video data. Although a video

containing a human action consists of a large number of frames, many of them are not

representative of the action being performed; large amount of visual data also tend to

contain entangled information about variations in camera position, background, relative

movements and occlusions. This results in cluttered temporal information and makes

recognition of the human action a lot harder. The issue becomes even more significant

for action anticipation methods, as the algorithm has to make a decision using only a

fraction of the video at the very start. Therefore, finding a good video representation that

extracts temporal information relevant to human action is crucial for the anticipation

model.

To over come some of these issues, we resort to use deep convolutional neural net-

works (CNNs) and take the deep feature on the penultimate layer of CNN as video

2 Y. Shi et al.

Fig. 1: Overview of Proposed feature mapping RNN : Given a frame extracted from

video data, the algorithm first passes the RGB image I(t) through a deep CNN to ac-

quire high level features of the image xt. The vector is then split into smaller segments

xi
t of equal length. Each scalar element in the segmented vector is used as input to a sin-

gle LSTM cell that produces the prediction of corresponding feature element in frame

(t+ k), where k ≥ 1. After all segments are processed with LSTMs, all the prediction

segments x̂i
t+k are concatenated back together to form x̂t+k, which contains high level

features of I(t+ k).

representation. Another motivation to use deep CNNs stems from the difficulty of gen-

erating visual appearances for future. Therefore, similar to Vondrick et al. [49], we

propose a method to generate future features tailored for action anticipation task: given

an observed sequence of deep CNN features, a novel Recurrent Neural Network (RNN)

model is used to generate the most plausible future features and thereby predicting the

action depicted in video data. An overview of this model can be found in Fig. 1.

The objective of our RNN is to map the feature vector at time t denoted by xt to the

future feature vector at (t+ k) denoted by xt+k. Because only a fraction of the frames

are observed during inference, the future feature generator should be highly regularized

to avoid over-fitting. Furthermore, feature generator needs to model complex dynamics

of future frame features.

This can be resolved by parameter sharing. Parameter sharing is a strong machine

learning concept that is being used by many modern leaning methods. Typically, CNNs

share parameters in the spatial domain and RNNs in the temporal dimension. In our

work, we propose to utilize parameter sharing in an unconventional way for RNN mod-

els by expanding it to the feature domain. This is based on the intuition that the CNN

feature activations are correlated to each other.

By utilizing parameter sharing across feature activations, our proposed RNN is

able to learn the temporal mapping from xt to xt+k with significantly fewer param-

eters. This greatly boosts the computational efficiency of the prediction model and

correspondingly shortens the response time. We call our novel RNN architecture fea-

ture mapping RNN .

To model complex dynamic nature of video data, we make use of a novel mapping

layer inside our RNN. In principle, the hidden state of the RNN captures the tempo-

ral information of observed sequence data. In our method, hidden state of the RNN is

processed by a linear combination of Gaussian Radial Basis Function (RBF) kernels to

Feature Mapping RNN 3

produce the future feature vector. While a linear model defines a simple hyperplane as

mapping functions, the kernelized mapping with RBF kernels can model complex sur-

faces and therefore has the potential of improving the prediction accuracy. In our work,

we also implement RBF kernels on the action classification multi-layer perceptron to

improve the performance of classifiers.

Ideally, we are interested in learning the probability distribution of future given

the past features. To learn this conditional distribution, inspired by the of Generative

Adversarial Networks [12], an adversarial approach is used to evaluate the cost of the

feature mapping RNN. The RNN is trained with an adversarial loss and re-constrictive

L2 loss. In this way, the model is optimized not only with the intention of reducing the

Euclidean distance between the prediction and ground truth, but also taking probability

distribution of the feature vector into consideration.

In a summary, our contributions are:
– We propose a novel RNN architecture that share parameters across temporal

domain as well as feature space.

– We propose a novel RBF kernel to improve the prediction performance of

RNNs.

– We demonstrate the effectiveness of our method for action anticipation task

beating state-of-the-art on standard benchmarks.

2 Related Work

The model proposed in this paper focuses on future video content generation for ac-

tion prediction and action anticipation [23,50,36,35,55,27,20,42,39,29,49,10]. In con-

trast to the widely studied action recognition problem, the action anticipation literature

focuses on developing novel loss functions to reduce the predictive generalization er-

ror [39,29,16] or to improve the generalization capacity of future content such as future

appearance [10] and future features [49]. The method propose in this paper also fo-

cuses on future content generation and therefore could further benefit from novel loss

functions as proposed in [39,29,16].

In the early days, Yu et al. [55] make use of spatial temporal action matching to

tackle early action prediction. Their method relies on spatial-temporal implicit shape

models. By explicitly considering all history of observed features, temporal evolution of

human actions is used to predict the class label as early as possible by Kong et al. [20].

Li et al. ’s work [27] exploits sequence mining, where a series of actions and object

co-occurrences are encoded as symbolic sequences. Soomro et al. [43] propose to use

binary SVMs to localize and classify video snippets into sub-action categories, and

obtain the final class label in an online manner using dynamic programming. In [50],

action prediction is approached using still images with action-scene correlations. Dif-

ferent from the above mentioned methods, our work is focused on action anticipation

from videos. We rely on deep CNNs along with a RNN that shares parameters across

both feature and time dimensions to generate future features. To model complex dy-

namics of video data, we are the first to make use of effective RBF kernel functions

inside RNNs for the action anticipation task.

On the other hand, feature generation has been studied with the aim of learning

video representation, instead of specifically for action anticipation. Inspired by natural

4 Y. Shi et al.

language processing technique [1], authors in [34] propose to predict the missing frame

or extrapolate future frames from an input video sequence. However, they demonstrate

this only for unsupervised video feature leaning. Other popular models include the un-

supervised encoder-decoder scheme introduced by [45] for action classification, proba-

bilistic distribution generation model by [25] as well as scene prediction learning using

object location and attribute information introduced by [8]. Research in recent years on

applications of Generative Adversarial Network on video generation have given rise to

models such as MoCoGAN [48], TGAN [40] and Walker et al. ’s work [53] on video

generation using pose as a conditional information. The mechanisms of these GAN vari-

ations are all capable of exploiting both the spatial and temporal information in videos,

and therefore have showed promising results in video generation.

Moreover, trajectory prediction [22], optical-flow prediction [52], path prediction [51,54]

and motion planning [11,19], sports forecasting [7], activity forecasting of [31] are also

related to our work. All these methods generate future aspects of the data. Our novel

RNN model, however, focuses on generating future features for action anticipation.

3 Approach

3.1 Overview

Similar to methods adopted by other action anticipation algorithms, our algorithm makes

predictions of action by only observing a fraction of video frames at the beginning of

a long video. The overall pipeline of our method is shown in Fig. 1. First, we extract

some CNN feature vectors from frames and predict the future features based on the past

features. Subsequently, a multilayer perceptron (MLP) is used to classify generated fea-

tures. We aggregate predictions from observed and generated features to recognize the

action as early as possible.

3.2 Motivation

Denote observed sequence of feature vectors up to time t by X = 〈x1, x2, x3, · · ·xt〉
and future feature vector we aim to produce by x̂t+k, where k ≥ 1 and xt ∈ R

d. We

are interested in modeling the conditional probability distribution of P (xt+k| x1, x2,

x3, · · · xt;Θ), where Θ denotes the parameters of the probabilistic model.

It is natural to use RNNs or RNN variants such as Long Short Term Memory

(LSTM) [14] to model the temporal evolution of the data. However, learning such a

mapping could lead to over-fitting since these methods tend not to utilise the temporal

coherence and the evolutionary nature of video data [32].

Furthermore, a naive CNN feature mapping using a LSTM from past to the future

is also prone to over-fitting. A LSTM with hidden state of dimensionality H and takes

feature vectors of dimensionality d as input uses parameters in the order of 4(dH+d2).
As an example, if we use the penultimate activations of Inception V3 [47] as feature

vectors (d = 2048), a typical LSTM (H = 512) would require parameters in the order

of 107. We believe that the effectiveness of such models can be largely improved by

utilising the correlation of high level activations of modern CNN architectures [47,13].

Feature Mapping RNN 5

Motivated by these arguments, we propose to train a LSTM model where parameters

are not only shared in the time domain, but also across feature activations. By doing so,

we aim to self-regularize the feature generation of the algorithm. We name our novel

architecture feature mapping RNN . Furthermore, to increase the functional capacity

of RNNs, we make use of Radial Basis Functions (RBF) to model temporal dynamics

of the conditional probability distribution P (xt+k | x1, x2, x3, · · · xt; Θ). These

mechanisms will be introduced in details in the following subsection.

3.3 Feature Mapping RNN with RBF Kernel Mapping

A traditional feature generation RNN architecture takes a sequence of vectors up to time

t as input and predicts the future feature vector x̂t+k. Typically, the following recurrent

formula is used to model the prediction:

ht = f(xt,ht−1; θ) (1)

Where ht is the hidden state (ht ∈ R
H) which captures the temporal information of the

sequence and θ are the parameters of the recurrent formula. Then we utilize this hidden

state to predict the future feature vector xt+k using the following formula:

x̂t+k = ht ×W (2)

where W ∈ R
H×D is the parameter that does the linear mapping to predict the future

feature vector.

As introduced previously, in our feature mapping RNN the parameters Θ are shared

across several groups of feature activations. This is achieved by segmenting the input

feature vector of dimensionality d into equal size sub-vectors of dimensionality D,

where D is referred to as feature step size.

Now let us denote the ith sub-feature vector of size D by xi
t. Intuitively, if we

concatenate all such sub-feature vectors in an end-to-end manner, we will be able to

reconstruct the original feature vector xt. The time sequence of data for the ith sub-

feature vector is now denoted by Xi = 〈 xi
1, x

i
2, x

i
3, · · ·x

i
t 〉. If we process each

sequence Xi in units of xi
t with the RNN model in equation 1 and equation 2, we will

be able to predict xi
t+k and by concatenating them end-to-end, generate xt+k. This

approach reduces the number of parameters used in the RNN model from 4(dH + d2)
to 4(DH +D2), which results in a considerable boost in computational efficiency es-

pecially when D ≪ d. However, the parameter complexity of the model would remain

polynomial and is relevant to multiple hyperparameters.

To further improve the efficiency of our model, we adopt an even bolder approach:

we propose to convert the sequence of vectors of Xi = 〈 xi
1, x

i
2, x

i
3, · · ·x

i
t 〉 to a

sequence of scalars. Let us denote the j-th dimension of sub-vector xi
t by x

i(j)
t . Now in-

stead processing sequence of vectors Xi, we convert the sequence Xi to a new sequence

of scalars X
′ i = 〈 x

i(1)
1 , x

i(2)
1 , · · ·x

i(D)
1 , x

i(1)
2 , x

i(2)
2 , · · · , x

i(k)
t , · · ·x

i(D)
t 〉. Length of

the sequence of scalars X
′ i is equal to t × D and we generate d

D
number of such se-

quences from each original sequence of feature vector X .

6 Y. Shi et al.

We then propose to process sequence of scalars using a RNN (LSTM) model. The

computation complexity is now linear, with number of parameters used in the recurrent

model (LSTM) reduced to 4(H + 1) and depends only on the hidden state size.

Again, given the current sequence of vectors X , we want to generate future feature

vector xt+k. In the our RNN model, this is translated to predicting sequence of scalars
〈

x
i(1)
t+k, · · ·x

i(D)
t+k

〉

from sequence X
′ i for all sub-feature vectors i = 1 to d

D
. Then we

merge all predicted scalars for time t+ k to obtain xt+k.

Therefore, mathematically our new RNN model that share the parameter over fea-

ture activations can be denoted by the following formula:

h
i(l)
t = f(x

i(l)
t ,hi(l)

t−1;Θ
′

) (3)

where Θ
′

is the new parameter set of the RNN (LSTM) and the future l-th scalar of i-th

sub-feature vector is given by:

x̂
i(l)
t+k = h

i(l)
t · w

′

. (4)

To further improve the functional capacity of our feature mapping RNN , we make

use of Radial Basis Functions (RBF). Instead of using a simple linear projection of the

hidden state to the future feature vector, we propose to exploit the more capable Radial

Basis Functional mapping. We call this novel RNN architecture the RBF kernelized

feature mapping RNN , denoted by the following formula:

x̂
i(l)
t+k =

n
∑

j=1

αl
j exp

[

−
(h

i(l)
t − µl

j)
2

σl
j

2

]

(5)

where µl
j , σl

j and αl
j are parameters learned during training and n the number of RBF

kernels used. These parameters are shared across all sub-feature vectors. The future fea-

ture vector x̂i
t+k is calculated as the linear combination of RBF kernels outputs. Since

the RBF kernels are better at modeling complex planes in the feature space, this func-

tional mapping is able to accurately capture more complicated dynamics. Implementing

the kernalised RBF on our feature mapping RNN enables the model to so with fewer

parameters than classical RNNs.

Note that the method we have presented here only uses non-overlapping feature-

sub-vectors, i. e. no overlapping exists between 2 consecutive sub-vectors. However,

overlapping feature-sub-vectors can be used to improve the robustness of feature gen-

eration. Therefore, instead of using a non-overlapping feature stride of D, we use an

overlapping stride of size S. In this case, we take the average between all overlapping

parts of 2 consecutive sub-vectors to obtain x̂
i(l)
t+k.

3.4 Training of feature mapping RNN

Data generation, especially visual data generation with raw images, has remained a

challenging problem for years mainly due to the absence of suitable loss function. The

most commonly used function for this task is the L2 loss. However, it works under the

Feature Mapping RNN 7

assumption that data is drawn from a Gaussian distribution, which makes the loss func-

tion ineffective when dealing with data that follows other distributions. As an example,

if there exists only two equally possible value v1 and v2 for a pixel, the possibility for

vavg = (v1 + v2)/2 to be the true value for that pixel is minimal. However, vavg will

be assigned to the output in a neural network that uses L2 loss to evaluate the cost.

This property of the L2 loss function causes a ”blurry” effect on the generated output.

Similar observations can be seen for feature vector generation.

Recent developments in Generative Adversarial Networks address this issue suc-

cessfully [12]. Traditional GAN consists of 2 CNNs, one of them is named gener-

ator (denote as G) and the other discriminator (denote as D). The GAN effectively

learns the probabilistic distribution of the original data, and therefore eliminates the

”blockiness” effect caused by L2 loss function. Here, we propose to train the fea-

ture mapping RNN algorithm using a combination of L2 and adversarial loss, which

is realized by implementing the feature mapping RNN as the generator denoted by

G : xi
t → x̂i

t+k. By doing so, we are able to produce prediction that is both accurate

and realistic.

L2 loss: The L2 loss is defined as the mean squared error between the generated

feature and the real feature vector of the future frame given as follows:

LG
2 (xt) = ||xi

t+k − x̂i
t+k|| = ||xi

t+k − G(xi
t)||. (6)

Adversarial loss: We use generator adversarial loss proposed by [12] where we train

G so that D believes G(xi
t) comes from the dataset, at which point D(G(xi

t)) = 1. The

loss function is defined as:

LG
adv = − log(D(G(xi

t))). (7)

By adding this loss to our objective function, the RNN is encouraged to generate feature

prediction with probabilistic distribution similar to the original data. Finally, the loss

function of our RNN generator G is given by:

LG = λ1L
G
2 + λ2L

G
adv. (8)

The discriminator is trained to judge whether its inputs are real or synthetic. The objec-

tive is to output 1 when given input is the real data xi
t+k and 0 when input is generated

data G(xi
t). Therefore, the discriminator loss is defined as:

LD = −log(D(xi
t+k))− log(1−D(G(xi

t))). (9)

3.5 Action classifier and inference

To evaluate the authentication of predicted features generated by the feature matching

RNN, we again use the frame features to train a 2-layer MLP appended with a RBF

kernel layer (equation 5) to classify videos as early as possible. Illustration of our RBF

kernelized MLP is shown in Fig 2. The classification loss is evaluated using a cross-

entropy loss. Feature mapping RNN and the action classification MLP is trained sep-

arately. One might consider training both MLP and the feature mapping RNN jointly.

However, in terms of performance, we did not see that much of advantage.

8 Y. Shi et al.

Fig. 2: Illustration of RBF keneralized

multilayer perceptron. Fig. 3: Testing Procedure of Fea-

ture Mapping RNN

During inference, we take advantage of all observed and generated features to in-

crease the robustness of the results. Accuracy is calculated by performing temporal

average pooling on all predictions (see Fig 3).

4 Experiments

4.1 Datasets

Three datasets are used to evaluate the performance of our model, namely UT-Interaction

[37], JHMDB-21 [17] and UCF101-24 [44]. We follow the standard protocols for each

of the datasets in our experiments. We select these datasets because they are the most

related to action anticipation task that has been used in prior work [39,35].

UT-Interaction The UT-Interaction dataset (UTI) is a popular human action recog-

nition dataset with complicated dynamics. The dataset consists of 6 types of human

interactions executed under different backgrounds, zoom rates and interference. It has

a total of 20 video sequences split into 2 sets. Each video is of approximately 1 minute

long, depicting 8 interactions on average. The available action classes include hand-

shaking, pointing, hugging, pushing, kicking and punching. The performance evalu-

ation methodology requires the recognition accuracy to be measured using a 10-fold

leave-one-out cross validation per set. The accuracy is evaluated for 20 times while

changing the test sequence repeatedly and final result is yielded by taking the average

of all measurements.

JHMDB-21 JHMDB-21 is another challenging dataset that contains 928 video clips of

21 types of human actions. Quite different from the UT-interaction where video clips of

different actions are scripted and shot in relatively noise-free environments, all videos in

JHMDB-21 are collected from either movies or online sources, which makes the dataset

a lot more realistic. Each video contains an execution of an action and the dataset is split

into 3 sets for training, validation and testing.

Feature Mapping RNN 9

UCF101-24 UCF101-24 is a subset of UCF101. The dataset consists of more than

3000 videos from 24 action classes of UCF101. Since all the videos are collected from

YouTube, the diversity of data in terms of action types, backgrounds, camera motions,

lighting conditions etc are guaranteed. In addition, each video depicts up to 12 actions

of the same category with different temporal and spatial features, which makes it one

of the most challenging dataset to date.

4.2 Implementation Details

Feature Mapping RNN The Feature Mapping RNN is trained with batch size of 128,

using a hidden size (H) of 4 in all experiments unless otherwise specified. The default

dimensionality of feature sub vector referred to as feature step size(D) is set to 128. We

make use of six RBF kernels within the RBF kernelized feature mapping RNN . Feature

stride is set to 64 and weight of the adversarial loss (λ1) is set to 1 and the weight for

L2 loss is set to 10 (i. e. λ2).

Action classifier MLP The a simple two layer MLP classifier consists of two hidden

layers with 256 and 128 activation respectively. We also use RBF kernels along with

the MLP where number of kernels set to 256. MLP is trained with batch size of 256.

Training and Testing Procedures We use pre-trained Inception V3 [47] penultimate

activation as the frame feature representation. The dimensions of each feature vector is

2048 (d = 2048). The action classification MLP is trained on the feature vectors from

the training split of the datasets. These features are also used to train our feature map-

ping RNN to generate future features. Both models are trained with learning rate 0.001
and exponential decay rate 0.9.

Protocols Following the experimental protocol [39,35], we used only the first r% (50%
for UT-Interaction and 20% for JHMDB-21) of the video frames to predict action class

for each video. To utilise our model, we generate extra p% (referred to as prediction

percentage) of the video features using our RBF kernalized feature mapping RNN .

Therefore, we make use of (r+p)% feature vectors of the original video length to make

the final prediction. To generate the next future feature at test time, we recursively apply

our feature mapping RNN given all previous features (including the generated ones).

We then use our action classification MLP to predict the action label using max pooling

or simply average the predictions. This procedure is demonstrated more intuitively in

Fig.3.

4.3 Comparison to State-of-the-Art

We compare our model to the state-of-the-art algorithms for action anticipation task on

the JHMDB-21 dataset. Results are shown in Table 1. Our best algorithm (denoted as

fm+RBF+GAN+Inception V3 in the table) outperforms the state-of-the-art by 18%, and

we can clearly see that the implementation of kernel SVM and adversarial training im-

proves the accuracy by around 3 to 4%. In addition, to show the progression of how our

method is able to outperform the baseline by such a large margin, we also implemented

the Feature Mapping RNN on top of VGG16 so that the deep CNN pre-processing is

consistent with other methods in Table 1. The fm+VGG16 entry in the table shows an

10 Y. Shi et al.

Table 1: Comparison of our model against

state-of-the-arts on JHMDB-21 dataset

for action anticipation. We follow the pro-

tocol of JHMDB-21 for action anticipa-

tion and predictions are made from using

only 20% of video sequence.

Method Accuracy

Others

ELSTM [39] 55%

Within-class Loss [28] 33%

DP-SVM [42] 5%

S-SVM [42] 5%

Where/What [43] 10%

Context-fusion [16] 28%

Ours

fm+VGG16 63%

fm+kSVM+GAN+VGG16 67%

fm+Inception V3 70%

fm+RBF+GAN+Inception V3 73%

Table 2: Comparison of our model against

state-of-the-arts on UT-Interaction dataset

for action anticipation. Following pro-

tocol of UT-Interaction, predictions are

made from using only 50% of video se-

quence.

Method Accuracy

ELSTM [39] 84%

Within-class Loss [28] 48%

Context-fusion [16] 45%

Cuboid Bayes [35] 25%

I-BoW [35] 65%

D-BoW [35] 70%

Cuboid SVM [38] 32%

BP-SVM [26] 65%

Ours 97%

8% improvement from baseline ELSTM, which is purely influenced by the implemen-

tation of Feature Mapping RNN .

Experiments are also carried out on the two other mentioned datasets, where our best

method outperforms the state-of-the-art by 13% on UT-Interaction and 6% on UCF101-

24, as shown in Table 2 and Table 3 respectively.

We believe these significant improvements suggests the effectiveness of two main

principles, the parameter sharing and expressive capacity of RBF functionals. To further

investigate the impact of each component, we perform a series of experiments in the

following sections.

Table 3: Comparison of our model against state-of-the-arts on UCF101-24 dataset for

action anticipation. Again, predictions are made from using only 50% of video se-

quence.

Method Accuracy

Temporal Fusion [6] 86%

ROAD [41] 90%

ROAD + BroxFlow [41] 92%

Ours 98%

4.4 Analysis

In this section we compare the influence of different components of our RBF kernelized

feature mapping RNN . As shown in Table 4, we compare following variants of our

RNN model, including:

(a) Feature Mapping RNN : use only L2 loss to train the Feature Mapping RNN ;

Feature Mapping RNN 11

(b) Feature Mapping RNN +RBF: our RNN with kernalised RBF, still only using

L2 loss;

(c) Feature Mapping RNN + RBF + GAN: RBF kernelized feature mapping RNN

with adversarial loss.

Apart from the Feature Mapping RNN -based models, we also conduct experiments on

the following method as comparisons to our model:

(d) Linear: a matrix of size D × D is used for feature generation (D is dimension

of input feature);

(e) Vanilla LSTM: generate future action features with traditional vanilla LSTM. L2

loss is used to train it;

(f) Vanilla LSTM + RBF: vanilla LSTM with kernalised RBF, using only L2 loss;

(g) Vanilla LSTM + RBF + GAN: RBF kernalized vanilla LSTM with added ad-

versarial loss.

Note that all the results are obtained using features extracted by Inception V3 network,

and the accuracy are acquired using max pooling at prediction percentage p = 50%.

Table 4: Comparison of different approach on JHMDB-21 dataset

Method Accuracy

Linear 62.7%

Vanilla LSTM 66.3%

Vanilla LSTM + RBF 67.9%

Vanilla LSTM + RBF + GAN -

Feature Mapping RNN 72.2%

Feature Mapping RNN + RBF 72.8%

Feature Mapping RNN + RBF + GAN 73.4%

The results in Table 4 shows the proposed scheme outperforms the linear model sig-

nificantly while using fewer parameters. Most interestingly, the feature mapping RNN out-

performs vanilla LSTM by almost 6% indicating the impact of parameter sharing in

the feature space. We can also conclude from Table 4 that the application of adversar-

ial loss as well as RBF kernel layers encourages the model to generate more realistic

future features, which is reflected by the improvement in accuracy with Feature Map-

ping RNN +RBF and Feature Mapping RNN +RBF+GAN. It is also shown in the Table

4 that vanilla LSTM trained with RBF kernel yields almost 2% higher accuracy than

plain vanilla LSTM, which proves further that the RBF layer is something the baseline

can benefit from. Regrettably, the vanilla LSTM with adversarial training model failed

to stabilise due to large number of parameters needed in the LSTM cells to reconstruct

the original feature distribution.

The influence of RBF kernalized feature mapping RNN is quite distinctive. If we

compare the red curve to the green one, we can see that the discrepency between them

becomes larger as the prediction percentage increases. This indicates that the RBF ker-

nalized feature mapping RNN generate more accurate future features in the long term,

and hence it is a more robust model than plain feature mapping RNN . Comparing the

red and green curve to the orange and blue one, we can also conclude that the adversarial

12 Y. Shi et al.

Fig. 4: Prediction accuracy without pool-

ing for JHMDB-21 dataset at different

video prediction percentages p. RBF ker-

nalized Feature mapping RNN is trained

using adversarial loss is able to achieve

the highest stable accuracy.

Fig. 5: Prediction accuracy evaluated at

different feature step sizes on JHMDB-21

dataset. The accuracy plotted in the image

is found by implementing feature step size

between D = 8 to 2048 with increment of

8 on the model and the rolling average is

taken among every 16 measurements. No

temporal pooling is used.

loss assist the RNN training in a similar way. Even without the assistance of GAN loss

and RBF kernel, the feature mapping RNN still performs better than liner projection

RNN.

4.5 Influence of Hyper-parameters

Feature Step Size The accuracy of the generated data indicates the existence of strong

correlations between the D-dimensional segments of the feature vectors. By default, we

resort to feature step size of 128 (D = 128). In order to further explore this property, we

experimented with different feature step sizes. In Fig.5, we plot the recognition accuracy

against feature step size. We observe that small feature step size guarantees effective

feature generation. Specifically, the prediction remains above 70% when feature step

size is smaller than 200. This phenomena can be explained by the intuition that when

feature step size is large, the model tries to generalize a large set of features with mixed

information at one time step, which results in degraded performance.

It is also interesting to note that the prediction accuracy oscillates drastically as the

feature step size exceeds 250. This indicates that perhaps the feature vector summarizes

information of the original image in fixed-size clusters, and when we attempt to break

these clusters by setting different feature step size, the information within each time

step lacks continuity and consistency, which subsequently compromises the prediction

performance.

Although smaller feature step size builds a more robust model, the training time with

feature step size 16 takes only half the amount of time of training with step size 4, with

no compromise on prediction accuracy. Therefore, it might be beneficial sometimes to

choose a larger feature step size to save computational time.

Feature Mapping RNN 13

Table 5: Prediction accu-

racy at different feature

stride size (S)

Interval Size Accuracy

S = 4 74.3%

S = 8 73.8%

S = 16 74.3%

S = 32 73.2%

S = 64 73.2%

S = 128 72.4%

Table 6: Prediction accu-

racy using LSTM cells

with different state size

(H).

Hidden State Size Accuracy

H = 2 71.7%

H = 4 73.2%

H = 8 72.7%

H = 16 73.2%

H = 32 73.2%

H = 64 73.8%

Table 7: Prediction accu-

racy using different num-

ber of RBF kernels.

No. of Kernels Accuracy

k = 4 72.7%

k = 8 72.7%

k = 16 73.3%

k = 32 73.3%

k = 64 72.7%

k = 128 73.8%

k = 256 72.2%

Interval SizeIn this section we experiment the effect of overlapping sub-feature vectors

on our RBF kernalized feature mapping RNN . Recall that the feature mapping RNN is

denoted by G : xi
t → x̂i:

t+k. Instead of incriminating i by the multiple of feature step

size D, in an attempt to improve the prediction accuracy, we define an feature stride S
that is smaller than D. The prediction accuracy of Feature Mapping RNN with several

different feature stride value is shown in Table 5.

LSTM state size This section aims at investigating the influence of LSTM cell’s hid-

den state size (H) on the model’s performance. Since the hidden state stores essential

information of all the input sequence data, it is common to consider it as the ”memory”

of the RNN. It is intuitive to expect an improvement in performance when we increase

the size of the hidden state up to some extent.

However, the results in Table 6 shows that increasing the LSTM state size does not

have much effect on the prediction accuracy, especially when the state size becomes

larger than 8. This is because in the proposed feature mapping RNN model, each LSTM

cell takes only one scalar as input, as opposed to the traditional RNN cells that process

entire vectors. As the hidden state size is always greater than the input size (equal to

1), it is not surprising that very large H does not have much influence on the model

performance.

Number of RBF Kernels In this section we study the influence of number of Gaus-

sian surfaces used in feature mapping RNN . We calculate prediction accuracy while

increasing the number of Gaussian kernels from 21 to 28. Results are as shown in Ta-

ble 7. The results show a general trend of increasing prediction performance as we add

more number of kernels, with the highest accuracy achieved at when k = 128. How-

ever, result obtained when k = 256 is worse than when k = 4. This phenomena could

be explained by over-fitting, resulted from RBF kernel’s strong capability of modeling

temporal dynamics of data with complex boundaries.

Conclusions for hyper-parameters tuning The conclusion from these experiments is

that the model is not too sensitive to the variation of these hyper-parameters in general,

which demonstrates its robustness. Results further demonstrated the computational effi-

ciency of our approach. Since it is possible to effectively train the model with very few

parameters, it can be stored on mobile devices for fast future action anticipation.

14 Y. Shi et al.

5 Conclusions

The proposed RNN which uses a very few parameters outperforms state-of-the-art al-

gorithms on action anticipation task. Our extensive experiments indicates the model’s

ability to produce accurate prediction of future features only observing a fraction of

the features. Furthermore, our RNN model is fast and consumes fraction of the mem-

ory which makes it suitable for real-time execution on mobile devices. Proposed fea-

ture mapping RNN can be trained with and without lables to generate future features.

Our feature generator does not use class level annotations of video data. Therefore,

in principle, we can increase the robustness of the model utilizing large amount of

available unlabelled data. The fact that the model is able to generate valid results us-

ing very few parameters provides strong proofs for the existence of inner-correlation

between deep features, which is a characteristic that can have implications on many

related problems such as video tracking, image translation, and metric learning.

In addition, by appending a RBF layer to the RNN, we observe significant improve-

ment in prediction accuracy. However, it was also noted that over-fitting occurs when

the model is implemented with too many kernel RBFs. To fully explore functional ca-

pacity of RBF function, in future studies, we aim to implement kernel RBFs on fully

connected layer of popular deep CNN models such as ResNet [13], AlexNet [24] and

DenseNet [15].

In conclusion, proposed RBF kernalized feature mapping RNN demonstrates the

power of parameter sharing and RBF functions in a challenging sequence learning task

of video action anticipation.

References

1. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model.

Journal of machine learning research 3(Feb), 1137–1155 (2003) 4

2. Dix, A.: Human-computer interaction. In: Encyclopedia of database systems, pp. 1327–1331.

Springer (2009) 1

3. Duan, L.Y., Xu, M., Chua, T.S., Tian, Q., Xu, C.S.: A mid-level representation framework

for semantic sports video analysis. In: 2003 ACM International Conference on Multimedia.

pp. 33–44. ACM (2003) 1

4. Ekin, A., Tekalp, A.M., Mehrotra, R.: Automatic soccer video analysis and summarization.

IEEE Transactions on Image processing 12(7), 796–807 (2003) 1

5. Enzweiler, M., Gavrila, D.M.: Integrated pedestrian classification and orientation estimation.

In: 2010 IEEE Conference on Computer Vision and Pattern Recognition. pp. 982–989 (2010)

1

6. Fan, Z., Lin, T., Zhao, X., Jiang, W., Xu, T., Yang, M.: An online approach for gesture

recognition toward real-world applications. In: Zhao, Y., Kong, X., Taubman, D. (eds.) Image

and Graphics. pp. 262–272. Springer International Publishing, Cham (2017) 10

7. Felsen, P., Agrawal, P., Malik, J.: What will happen next? forecasting player moves in sports

videos. In: 2017 IEEE International Conference on Computer Vision (2017) 4

8. Fouhey, D.F., Zitnick, C.L.: Predicting object dynamics in scenes. In: 2014 IEEE

Conference on Computer Vision and Pattern Recognition. pp. 2027–2034 (2014).

https://doi.org/10.1109/CVPR.2014.260 4

https://doi.org/10.1109/CVPR.2014.260

Feature Mapping RNN 15

9. Gandhi, T., Trivedi, M.M.: Image based estimation of pedestrian orientation for improving

path prediction. In: 2008 IEEE Intelligent Vehicles Symposium. pp. 506–511 (2008) 1

10. Gao, J., Yang, Z., Nevatia, R.: Red: Reinforced encoder-decoder networks for action antici-

pation. arXiv preprint arXiv:1707.04818 (2017) 3

11. Gong, H., Sim, J., Likhachev, M., Shi, J.: Multi-hypothesis motion planning for visual object

tracking. In: 2011 IEEE International Conference on Computer Vision. pp. 619–626 (Nov

2011). https://doi.org/10.1109/ICCV.2011.6126296 4

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., Bengio, Y.: Generative adversarial nets. In: Advances in neural information processing

systems. pp. 2672–2680 (2014) 3, 7

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016

IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016) 4, 14

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–

1780 (1997) 4

15. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional

networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (2017)

14

16. Jain, A., Singh, A., Koppula, H.S., Soh, S., Saxena, A.: Recurrent neural networks for driver

activity anticipation via sensory-fusion architecture. In: 2016 IEEE International Conference

on Robotics and Automation. pp. 3118–3125 (2016) 3, 10

17. Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.J.: Towards understanding action recog-

nition. In: 2013 IEEE International Conference on Computer Vision. pp. 3192–3199 (Dec

2013) 8

18. Keller, C.G., Gavrila, D.M.: Will the pedestrian cross? a study on pedestrian path prediction.

2014 IEEE Transactions on Intelligent Transportation Systems 15(2), 494–506 (2014) 1

19. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity Forecasting, pp. 201–214.

Springer Berlin Heidelberg, Berlin, Heidelberg (2012) 4

20. Kong, Y., Kit, D., Fu, Y.: A discriminative model with multiple temporal scales for action

prediction, pp. 596–611 (2014) 3

21. Kooij, J.F.P., Schneider, N., Flohr, F., Gavrila, D.M.: Context-based pedestrian path predic-

tion. In: 2014 European Conference on Computer Vision. pp. 618–633. Springer (2014) 1

22. Kooij, J.F.P., Schneider, N., Flohr, F., Gavrila, D.M.: Context-Based Pedestrian Path Predic-

tion, pp. 618–633. Springer International Publishing, Cham (2014) 4

23. Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for re-

active robotic response. IEEE Transactions on Pattern Analysis and Machine Intelligence

38(1), 14–29 (Jan 2016). https://doi.org/10.1109/TPAMI.2015.2430335 1, 3

24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Ad-

vances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates,

Inc. (2012) 14

25. Lampert, C.H.: Predicting the future behavior of a time-varying probability distribution. In:

2015 IEEE Conference on Computer Vision and Pattern Recognition. pp. 942–950 (2015).

https://doi.org/10.1109/CVPR.2015.7298696 4

26. Laviers, K., Sukthankar, G., Aha, D.W., Molineaux, M., Darken, C., et al.: Improving of-

fensive performance through opponent modeling. In: 2009 AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment (2009) 10

27. Li, K., Fu, Y.: Prediction of human activity by discovering temporal sequence patterns. 2014

IEEE transactions on pattern analysis and machine intelligence 36(8), 1644–1657 (2014) 3

28. Ma, S., Sigal, L., Sclaroff, S.: Learning activity progression in lstms for activity detection and

early detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. pp.

1942–1950 (2016). https://doi.org/10.1109/CVPR.2016.214 1, 10

https://doi.org/10.1109/ICCV.2011.6126296
https://doi.org/10.1109/TPAMI.2015.2430335
https://doi.org/10.1109/CVPR.2015.7298696
https://doi.org/10.1109/CVPR.2016.214

16 Y. Shi et al.

29. Ma, S., Sigal, L., Sclaroff, S.: Learning activity progression in lstms for activity detection and

early detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. pp.

1942–1950 (2016) 3

30. MacKenzie, I.S.: Fitts’ law as a research and design tool in human-computer interaction.

Human-computer interaction 7(1), 91–139 (1992) 1

31. Mahmud, T., Hasan, M., Roy-Chowdhury, A.K.: Joint prediction of activity labels and start-

ing times in untrimmed videos. In: 2017 IEEE International Conference on Computer Vision.

pp. 5784–5793 (2017) 4

32. Mobahi, H., Collobert, R., Weston, J.: Deep learning from temporal coherence in video. In:

2009 International Conference on Machine Learning. pp. 737–744. ACM (2009) 4

33. Newell, A., Card, S.K.: The prospects for psychological science in human-computer interac-

tion. Human-computer interaction 1(3), 209–242 (1985) 1

34. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language)

modeling: a baseline for generative models of natural videos. CoRR abs/1412.6604 (2014)

4

35. Ryoo, M.S.: Human activity prediction: Early recognition of ongoing activities from stream-

ing videos. In: 2011 International Conference on Computer Vision. pp. 1036–1043 (Nov

2011). https://doi.org/10.1109/ICCV.2011.6126349 3, 8, 9, 10

36. Ryoo, M.S., Aggarwal, J.K.: Spatio-temporal relationship match: Video structure compari-

son for recognition of complex human activities. In: 2009 IEEE International Conference on

Computer Vision. pp. 1593–1600 (2009). https://doi.org/10.1109/ICCV.2009.5459361 3

37. Ryoo, M.S., Aggarwal, J.K.: UT-Interaction Dataset, ICPR con-

test on Semantic Description of Human Activities (SDHA).

http://cvrc.ece.utexas.edu/SDHA2010/Human Interaction.html (2010) 8

38. Ryoo, M., Chen, C.C., Aggarwal, J., Roy-Chowdhury, A.: An overview of contest on seman-

tic description of human activities (sdha) 2010. In: Recognizing Patterns in Signals, Speech,

Images and Videos, pp. 270–285. Springer (2010) 10

39. Sadegh Aliakbarian, M., Sadat Saleh, F., Salzmann, M., Fernando, B., Petersson, L., An-

dersson, L.: Encouraging lstms to anticipate actions very early. In: 2017 IEEE International

Conference on Computer Vision (Oct 2017) 1, 3, 8, 9, 10

40. Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with singular value

clipping. In: 2017 IEEE International Conference on Computer Vision. vol. 2, p. 5 (2017) 4

41. Singh, G., Saha, S., Sapienza, M., Torr, P., Cuzzolin, F.: Online real time multiple spatiotem-

poral action localisation and prediction (2017) 10

42. Soomro, K., Idrees, H., Shah, M.: Online localization and prediction of actions and interac-

tions. CoRR abs/1612.01194 (2016) 1, 3, 10

43. Soomro, K., Idrees, H., Shah, M.: Predicting the where and what of actors and actions

through online action localization. In: 2016 IEEE Conference on Computer Vision and Pat-

tern Recognition. pp. 2648–2657 (2016) 3, 10

44. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101 human actions classes from

videos in the wild. CoRR abs/1212.0402 (2012) 8

45. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video represen-

tations using lstms. In: 2015 International Conference on Machine Learning. pp. 843–852

(2015) 4

46. Suard, F., Rakotomamonjy, A., Bensrhair, A., Broggi, A.: Pedestrian detection using infrared

images and histograms of oriented gradients. In: 2006 IEEE Intelligent Vehicles Symposium.

pp. 206–212. IEEE (2006) 1

47. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception ar-

chitecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern

Recognition. pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308 4, 9

https://doi.org/10.1109/ICCV.2011.6126349
https://doi.org/10.1109/ICCV.2009.5459361
https://doi.org/10.1109/CVPR.2016.308

Feature Mapping RNN 17

48. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: Decomposing motion and content

for video generation. arXiv preprint arXiv:1707.04993 (2017) 4

49. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled

video. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. pp. 98–106

(2016) 1, 2, 3

50. Vu, T.H., Olsson, C., Laptev, I., Oliva, A., Sivic, J.: Predicting Actions from Static Scenes,

pp. 421–436. Springer International Publishing, Cham (2014) 3

51. Walker, J., Gupta, A., Hebert, M.: Patch to the future: Unsupervised visual prediction. In:

2014 IEEE Conference on Computer Vision and Pattern Recognition. pp. 3302–3309 (2014).

https://doi.org/10.1109/CVPR.2014.416 4

52. Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from a static image. In:

2015 IEEE International Conference on Computer Vision. pp. 2443–2451 (Dec 2015).

https://doi.org/10.1109/ICCV.2015.281 4

53. Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: Video forecasting by gener-

ating pose futures. In: 2017 IEEE International Conference on Computer Vision. pp. 3352–

3361 (2017) 4

54. Xie, D., Todorovic, S., Zhu, S.C.: Inferring dark matter and dark energy from videos.

In: 2013 IEEE International Conference on Computer Vision. pp. 2224–2231 (Dec 2013).

https://doi.org/10.1109/ICCV.2013.277 4

55. Yu, G., Yuan, J., Liu, Z.: Predicting human activities using spatio-temporal structure of in-

terest points. In: 2012 ACM International Conference on Multimedia (2012) 3

56. Zhong, D., Chang, S.F.: Structure analysis of sports video using domain models. In: 2001

IEEE International Conference on Multimedia & Expo. Citeseer (2001) 1

https://doi.org/10.1109/CVPR.2014.416
https://doi.org/10.1109/ICCV.2015.281
https://doi.org/10.1109/ICCV.2013.277

