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5 JD AI Research, Beijing, China

{n12345,kyoungmu}@snu.ac.kr, jingdw@microsoft.com,

stang@tuebingen.mpg.de, tmei@jd.com

Abstract. Comparing the appearance of corresponding body parts is essential

for person re-identification. As body parts are frequently misaligned between the

detected human boxes, an image representation that can handle this misalign-

ment is required. In this paper, we propose a network that learns a part-aligned

representation for person re-identification. Our model consists of a two-stream

network, which generates appearance and body part feature maps respectively,

and a bilinear-pooling layer that fuses two feature maps to an image descriptor.

We show that it results in a compact descriptor, where the image matching sim-

ilarity is equivalent to an aggregation of the local appearance similarities of the

corresponding body parts. Since the image similarity does not depend on the rel-

ative positions of parts, our approach significantly reduces the part misalignment

problem. Training the network does not require any part annotation on the person

re-identification dataset. Instead, we simply initialize the part sub-stream using

a pre-trained sub-network of an existing pose estimation network and train the

whole network to minimize the re-identification loss. We validate the effective-

ness of our approach by demonstrating its superiority over the state-of-the-art

methods on the standard benchmark datasets including Market-1501, CUHK03,

CUHK01 and DukeMTMC, and standard video dataset MARS.
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1 Introduction

The goal of person re-identification is to identify the same person across videos cap-

tured from different cameras. It is a fundamental visual recognition problem in video

surveillance with various applications [56]. It is challenging because the camera views

are usually disjoint, the temporal transition time between cameras varies considerably,

and the lighting conditions/person poses differ across cameras in real-world scenarios.

Body part misalignment (i.e., the problem that body parts are spatially misaligned

across person images) is one of the key challenges in person re-identification. Figure 1

shows some examples. This problem causes conventional strip/grid-based representa-

tions [25, 1, 72, 70, 10, 59] to be unreliable as they implicitly assume that every person
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(a) (b) (c)

Fig. 1. (a, b) As a person appears in different poses/viewpoints in different cameras, and (c)

human detections are imperfect, the corresponding body parts are usually not spatially aligned

across the human detections, causing person re-identification to be challenging.

appears in a similar pose within a tightly surrounded bounding box. Thus, a body part-

aligned representation, which can ease the representation comparison and avoid the

need for complex comparison techniques, should be designed.

To resolve this problem, recent approaches have attempted to localize body parts

explicitly and combine the representations over them [50, 79, 75, 23, 76]. For exam-

ple, the body parts are represented by the pre-defined (or refined [50]) bounding boxes

estimated from the state-of-the-art pose estimators [79, 50, 4, 75]. This scheme re-

quires highly-accurate pose estimation. Unfortunately, state-of-the-art pose estimation

solutions are still not perfect. Also, these schemes are bounding box-based and lack

fine-grained part localization within the boxes. To mitigate the problems, we propose

to encode human poses by feature maps rather than by bounding boxes. Recently, Zhao

et al. [76] represented body parts through confidence maps, which are estimated using

attention techniques. The method has a lack of guidance on body part locations during

the training, thereby failing to attend to certain body regions consistently.

In this paper, we propose a part-aligned representation for person re-identification.

Our approach learns to represent the human poses as part maps and combine them

directly with the appearance maps to compute part-aligned representations. More pre-

cisely, our model consists of a two-stream network and an aggregation module. 1) Each

stream separately generates appearance and body part maps. 2) The aggregation module

first generates the part-aligned feature maps by computing the bilinear mapping of the

appearance and part descriptors at each location, and then spatially averages the local

part-aligned descriptors. The resulting image matching similarity is equivalent to an ag-

gregation of the local appearance similarities of the corresponding body parts. Since it

does not depend on the relative positions of parts, the misalignment problem is reduced.

Training the network does not require any body part annotations on the person re-

identification dataset. Instead, we simply initialize the part map generation stream using

the pre-trained weights, which are trained from a standard pose estimation dataset. Sur-

prisingly, although our approach only optimizes the re-identification loss function, the

resulting two-stream network successfully separates appearance and part information

into each stream, thereby generating the appearance and part maps from each of them,

respectively. In particular, the part maps adapt from the original form to further differ-

entiate informative body parts for person re-identification. Through extensive experi-

ments, we verify that our approach consistently improves the accuracy of the baseline

and achieves competitive/superior performance over standard image datasets, Market-

1501, CUHK03, CUHK01 and DukeMTMC, and one standard video dataset, MARS.
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2 Related Work

The early solutions of person re-identification mainly relied on hand-crafted features [36,

27, 18, 39], metric learning techniques [71, 73, 42, 28, 22, 26, 20], and probabilis-

tic patch matching algorithms [6, 5, 48] to handle resolution/light/view/pose changes.

Recently, attributes [51, 52, 77], transfer learning [43, 49], re-ranking [81, 15], partial

person matching [83], and human-in-the-loop learning [38, 61], have also been stud-

ied. More can be found in the survey [82]. In the following, we review recent spatial-

partition-based and part-aligned representations, matching techniques, and some works

using bilinear pooling.

Regular spatial-partition based representations. The approaches in this stream of

research represent an image as a combination of local descriptors, where each lo-

cal descriptor represents a spatial partition such as grid cell [25, 1, 72] and horizon-

tal stripe [70, 10, 59]. They work well under a strict assumption that the location of

each body part is consistent across images. This assumption is often violated under

realistic conditions, thereby causing the methods to fail. An extreme case is that no

spatial partition is used and a global representation is computed over the whole im-

age [42, 65, 78, 64, 7, 66].

Body part-aligned representations. Body part and pose detection results have been ex-

ploited for person re-identification to handle the body part misalignment problem [12,

69, 3, 13, 63, 11]. Recently, these ideas have been re-studied using deep learning tech-

niques. Most approaches [79, 50, 75] represent an image as a combination of body part

descriptors, where a dozen of pre-defined body parts are detected using the off-the-

shelf pose estimator (possibly an additional RoI refinement step). They usually crop

bounding boxes around the detected body parts and compute the representations over

the cropped boxes. In contrast, we propose part-map-based representations, which is

different from the previously used box-based representations [79, 50, 75].

Tang et al [56] also introduced part maps for person re-identification to solve the

multi-people tracking problem. They used part maps to augment appearances as another

feature, rather than to generate part-aligned representations, which is different from our

method. Some works [34, 76] proposed the use of attention maps, which are expected

to attend to informative body parts. They often fail to produce reliable attentions as

the attention maps are estimated from the appearance maps; guidance from body part

locations is lacking, resulting in a limited performance.

Matching. The simple similarity functions [70, 59, 10], e.g., cosine similarity or Eu-

clidean distance, have been adapted, for part-aligned representations, such as our ap-

proach, or under an assumption that the representations are body part/pose aligned.

Various schemes [60, 1, 25, 72] were designed to eliminate the influence from body

part misalignment for spatial partition-based representations. For instance, a matching

sub-network was proposed to conduct convolution and max-pooling operations, over

the differences [1] or the concatenation [25, 72] of grid-based representation of a pair

of person images. Varior et al. [58] proposed the use of matching maps in the interme-

diate features to guide feature extraction in the later layers through a gated CNN.

Bilinear pooling. Bilinear pooling is a scheme to aggregate two different types of fea-

ture maps by using the outer product at each location and spatial pooling them to ob-

tain a global descriptor. This strategy has been widely adopted in fine-grained recog-
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Fig. 2. Overview of the proposed model. The model consists of a two-stream network and an

aggregator (bilinear pooling). For a given image I, the appearance and part map extractors, A
and P , generate the appearance and part maps, A and P, respectively. The aggregator performs

bilinear pooling over A and P and generates a feature vector f . Finally, the feature vector is l2-

normalized, resulting in a final part-aligned representation f̃ . Conv and BN denote the convolution

and batch normalization layers, respectively.

nition [30, 14, 21] and showed promising performance. For person re-identification,

Ustinova et al. [57] adopted a bilinear pooling to aggregate two different appearance

maps; this method does not generate part-aligned representations and leads to poor per-

formance. Our approach uses a bilinear pooling to aggregate appearance and part maps

to compute part-aligned representations.

3 Our Approach

The proposed model consists of a two-stream network and an aggregation module. It

receives an image I as an input and outputs a part-aligned feature representation f̃ as

illustrated in Figure 2. The two-stream network contains two separate sub-networks, the

appearance map extractor A and the part map extractor P , which extract the appearance

map A and part map P, respectively. The two types of maps are aggregated through bi-

linear pooling to generate the part-aligned feature f , which is subsequently normalized

to generate the final feature vector f̃ .

3.1 Two-Stream Network

Appearance map extractor. We feed an input image I into the appearance map extrac-

tor A, thereby outputting the appearance map A:

A = A(I). (1)
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A ∈ R
h×w×cA is a feature map of size h×w, where each location is described by cA-

dimensional local appearance descriptor. We use the sub-network of GoogLeNet [55]

to form and initialize A.

Part map extractor. The part map extractor P receives an input image I and outputs

the part map P:

P = P(I). (2)

P ∈ R
h×w×cP is a feature map of size h × w, where each location is described by a

cP -dimensional local part descriptor. Considering the rapid progress in pose estimation,

we use the sub-network of the pose estimation network, OpenPose [4], to form and

initialize P . We denote the sub-network of the OpenPose as Ppose.

3.2 Bilinear Pooling

Let axy be the appearance descriptor at the position (x, y) from the appearance map A,

and pxy be the part descriptor at the position (x, y) from the part map P. We perform

bilinear pooling over A and P to compute the part-aligned representation f . There are

two steps, bilinear transformation and spatial global pooling, which are mathematically

given as follows:

f = poolingxy{fxy} =
1

S

∑

xy

fxy, fxy = vec(axy ⊗ pxy), (3)

where S is the spatial size. The pooling operation we use here is average-pooling. vec(.)
transforms a matrix to a vector, and ⊗ represents the outer product of two vectors, with

the output being a matrix. The part-aligned feature f is then normalized to generate the

final feature vector f̃ as follows:

f̃ =
f

‖f‖2
. (4)

Considering the normalization, we denote the normalized part-aligned representation

as f̃xy = vec(ãxy ⊗ p̃xy), where ãxy =
axy√
‖f‖2

and p̃xy =
pxy√
‖f‖2

. Therefore, f̃ =

1
S

∑
xy f̃xy .

Part-aligned interpretation. We can decompose a⊗ p6 into cP components:

vec(a⊗ p) = [(p1a)
⊤ (p2a)

⊤ . . . (pcP a)
⊤]⊤, (5)

where each sub-vector pia corresponds to a i-th part channel. For example, if pknee = 1
on knee and 0 otherwise, then pkneea becomes a only on the knee and 0 otherwise.

Thus, we call vec(a⊗p) as part-aligned representation. In general, each channel c does

not necessarily correspond to a certain body part. However, the part-aligned represen-

tation remains valid as p encodes the body part information. Section 4 describes this

interpretation in detail.

6 We drop the subscript xy for presentation clarification
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3.3 Loss

To train the network, we utilize the widely-used triplet loss function. Let Iq , Ip and In
denote the query, positive and negative images, respectively. Then, (Iq, Ip) is a pair of

images of the same person, and (Iq, In) is that of different persons. Let f̃q , f̃p, and f̃n
indicate their representations. The triplet loss function is formulated as

ℓtriplet(f̃q, f̃p, f̃n) = max(m+ sim(f̃q, f̃n)− sim(f̃q, f̃p), 0), (6)

where m denotes a margin and sim(x,y) =< x,y >. The margin is empirically set as

m = 0.2. The overall loss function is written as follows.

L =
1

|T |
∑

(Iq,Ip,In)∈T
ℓtriplet(f̃q, f̃p, f̃n), (7)

where T is the set of all triplets, {(Iq, Ip, In)}.

4 Analysis

Part-aware image similarity. We show that under the proposed part-aligned repre-

sentation in Eqs.(3) and (4), the similarity between two images is equivalent to the

aggregation of local appearance similarities between the corresponding body parts. The

similarity between two images can be represented as the sum of local similarities be-

tween every pair of locations as follows.

simI(I, I
′) =< f̃ , f̃ ′ >=

1

S2
<

∑

xy

f̃xy,
∑

x′y′

f̃ ′x′y′ >

=
1

S2

∑

xy

∑

x′y′

< f̃xy, f̃
′
x′y′ >

=
1

S2

∑

xy

∑

x′y′

sim(f̃xy, f̃
′
x′y′), (8)

where simI(, ) measures the similarity between images. Here, the local similarity is

computed by an inner product:

sim(f̃xy, f̃
′
x′y′) =< vec(ãxy ⊗ p̃xy), vec(ã

′
x′y′ ⊗ p̃′

x′y′) >

=< ãxy, ã
′
x′y′ >< p̃xy, p̃

′
x′y′ >

= sim(ãxy, ã
′
x′y′) sim(p̃xy, p̃

′
x′y′). (9)

This local similarity can be interpreted as the appearance similarity weighted by the

body part similarity or vice versa. Thus, from Eqs(8) and (9), the similarity between

two images is computed as the average of local appearance similarities weighted by the

body part similarities at the corresponding positions:

simI(I, I
′) =

1

S2

∑

xyx′y′

sim(ãxy, ã
′
x′y′) sim(p̃xy, p̃

′
x′y′).
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(a) Appearance features (b) Part features

Fig. 3. The t-SNE visualization of the normalized local appearance and part descriptors on the

Market-1501 dataset. It illustrates that our two-stream network decomposes the appearance and

part information into two streams successfully. (a) Appearance descriptors are clustered roughly

by colors, independently from the body parts where they came from. (b) Part descriptors are

clustered by body parts where they came from, regardless of the colors. (Best viewed on a monitor

when zoomed in)

As a result, the image similarity does not depend on the relative positions of parts in

images, and therefore the misalignment problem is reduced. To make the local part

similarity to be always non-negative and therefore the sign of the local similarity de-

pends only on the sign of the local appearance similarity, we can also restrict the part

descriptors pxy to be element-wise non-negative by adding a ReLU layer after the part

map extractor P as shown in Figure 2. As this variant results in similar accuracy to the

original one, we used the model without the ReLU layer for all the experiments. See

supplementary material for more details.

Relationship to the baseline models. Consider a baseline approach that only uses the

appearance maps and spatial global pooling for image representation. Then, the im-

age similarity is computed as simI(I, I
′) = 1

S2

∑
xyx′y′ sim(ãxy, ã

′
x′y′). Unlike our

model, this approach cannot reflect part similarity. Consider another model based on

the box-based representation, which represents an image as a concatenation of K body

part descriptors, where k-th body part is represented as the average-pooled appearance

feature within the corresponding bounding box. This model is equivalent to our model

when pxy is defined as pxy = [δ[(x, y) ∈ R1], · · · , δ[(x, y) ∈ RK ]], where Rk is the

region within the k-th part bounding box and δ[·] is an indicator function, i.e., δ[x] = 1
if x is true otherwise 0. Because our model contains these baselines as special cases and

is trained to optimize the re-identification loss, it is guaranteed to perform better than

them.

The two-stream network yields a decomposed appearance and part maps. At the

beginning of the training, the two streams of the network mainly represent the appear-

ance and part maps because the appearance map extractor A and the part map extractor

P are initialized using GoogleNet [54] pre-trained on ImageNet [46] and OpenPose [4]

model pre-trained on COCO [29], respectively. During training, we do not set any con-

straints on the two streams, i.e., no annotations for the body parts, but only optimize the

re-identification loss. Surprisingly, the trained two-stream network maintains to decom-
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Fig. 4. Visualization of the appearance maps A and part maps P obtained from the proposed

method. For a given input image (left), appearance (center) and part (right) maps encode the

appearance and body parts, respectively. For both appearance and part maps, the same color

implies that the descriptors are similar, whereas different colors indicate that the descriptors are

different. The appearance maps share similar color patterns among the images from the same

person, which means that the patterns of appearance descriptors are similar as well. In the part

maps, the color differs depending on the location of the body parts where the descriptors came

from. (Best viewed in color)

Fig. 5. Comparing the body part descriptors. For a given image (left), the conventional joint-based

(center) and the proposed (right) descriptors are visualized. (Best viewed in color)

pose the appearance and part information into two streams: one stream corresponds to

the appearance maps and the other corresponds to the body part maps.

We visualize the distribution of the learned local appearance and part descriptors

using t-SNE [37] as shown in Figures 3 (a) and (b). Figure 3 (a) shows that the ap-

pearance descriptors are clustered depending on the appearance while being indepen-

dent on the parts that they come from. For example, the red/yellow box shows that the

red/black-colored patches are closely embedded, respectively. By contrast, Figure 3 (b)

illustrates that the local part embedding maps the similar body parts into close regions

regardless of color. For example, the green/blue box shows that the features from the

head/lower leg are clustered, respectively. In addition, physically adjacent body parts,

such as head–shoulder and shoulder–torso, are also closely embedded.

To understand how the learned appearance/part descriptors are used in person re-

identification, we visualize the appearance maps A and the part maps P following the

visualization used in SIFTFlow [32], as shown in Figure 4.For a given input image (left),

the appearance (center) and part (right) maps encode the appearance and body parts,

respectively. The figure shows how the appearance maps differentiate different persons
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while being invariant for each person. By contrast, the part maps encode the body parts

independently from their appearance. In particular, a certain body part is represented by

a similar color across images, which confirms our observation in Figure 3 that the part

features from physically adjacent regions are closely embedded.

Our approach learns the optimal part descriptor for person re-identification, rather

than relying on the pre-defined body parts. Figure 5 qualitatively compares the con-

ventional body part descriptor and the one learned by our approach. 7 In the previous

works on human pose estimation [62, 4, 41], human poses are represented as a collec-

tion of pre-defined key body joint locations. It corresponds to a part descriptor which

one-hot encodes the key body joints depending on the existence of a certain body joint

at the location, e.g, pknee = 1 on knee and 0 otherwise. Compared to the baseline, ours

smoothly maps the body parts. In other words, the colors are continuous over the whole

body in ours, which implies that the adjacent body parts are mapped closely. By con-

trast, the baseline not always maps adjacent body parts maps closely. For example, the

upper leg between the hip and knee is more close to the background descriptors than

to ankle or knee descriptors. This smooth mapping makes our method to work robustly

against the pose estimation error because the descriptors do not change rapidly along

the body parts and therefore are insensitive to the error in estimation. In addition, the

part descriptors adopt to distinguish the informative parts more finely. For example, the

mapped color varies sharply from elbow to shoulder and differentiates the detailed re-

gions. Based on these properties, the learned part descriptors better support the person

re-identification task and improve the accuracy.

5 Implementation Details

Network architecture. We use a sub-network of the first version of GoogLeNet [54] as

the appearance map extractor A, from the image input of size 160× 80 to the output of

inception4e, which is followed by a 1× 1 convolution layer and a batch normalization

layer to reduce the dimension to 512 (Figure 2). Moreover, we optionally adopt dilation

filters in the layers from the inception4a to the final layer, resulting in 20× 10 response

maps. Figure 2 illustrates the architecture of the part map extractor P . We use a sub-

network of the OpenPose network [4], from the image input to the output of stage2 (i.e.,

concat stage3) to extract 185 pose heat maps, which is followed by a 3× 3 convolution

layer and a batch normalization layer, thereby outputting 128 part maps. We adopt the

compact bilinear pooling [14] to aggregate the two feature maps into a 512-dimensional

vector f .

Compact bilinear pooling. The bilinear transformation over the 512-dimensional ap-

pearance vector and the 128-dimensional part vector results in an extremely high di-

mensional vector, which consumes large computational cost and memory. To resolve

this issue, we use the tensor sketch approach [44] to compute a compact representation

as in [14]. The key idea of the tensor sketch approach is that the original inner product,

on which the Euclidean distance is based, between two high-dimensional vectors can be

approximated as an inner product of the dimension-reduced vectors, which are random

projections of the original vectors. Details can be found in [44].

7 We used the visualization method proposed in SIFTFlow [32]
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Network training. The appearance map extractor A and part map extractor P are fine-

tuned from the network pre-trained on ImageNet [46] and COCO [29], respectively.

The added layers are initialized following [17]. We use the stochastic gradient descent

algorithm. The initial learning rate, weight decay, and the momentum are set to 0.01,

2 × 10−4, and 0.9, respectively. The learning rate is decreased by a factor of 5 after

every 20, 000 iterations. All the networks are trained for 75, 000 iterations.

We follow [76] to sample a mini-batch of samples at each iteration and use all the

possible triplets within each mini-batch. The gradients are computed using the acceler-

ation trick presented in [76]. In each iteration, we sample a mini-batch of 180 images,

e.g., there are on average 18 identities with each containing 10 images. In total, there

are approximately 102 · (180− 10) · 18 ≈ 3× 105 triplets in each iteration.

6 Experiments

6.1 Datasets

Market-1501 [80]. This dataset is one of the largest benchmark datasets for person re-

identification. Six cameras are used: five high-resolution cameras and one low-resolution

camera. There are 32, 668 DPM-detected pedestrian image boxes of 1, 501 identities:

750 identities are utilized for training and the remaining 751 identities are used for test-

ing. There are 3, 368 query images and 19, 732 gallery images with 2, 793 distractors.

CUHK03 [25]. This dataset consists of 13, 164 images of 1, 360 people captured by six

cameras. Each identity appears in two disjoint camera views (i.e., 4.8 images in each

view on average). We divided the train/test set following the previous work [25]. For

each test identity, two images are randomly sampled as the probe and gallery images

and the average accuracy over 20 trials is reported as the final result.

CUHK01 [24]. This dataset comprises 3884 images of 971 people captured in two

disjoint camera views. Two images are captured for each person from each of the two

cameras (i.e., a total of four images). Experiments are performed under two evaluation

settings [1], using 100 and 486 test IDs. Following the previous works [1, 7, 10, 76],

we fine-tuned the model from the one learned from the CUHK03 training set for the

experiments with 486 test IDs.

DukeMTMC [45]. This dataset is originally proposed for video-based person tracking

and re-identification. We use the fixed train/test split and evaluation setting following

[31]8. It includes 16, 522 training images of 702 identities, 2, 228 query images of 702
identities and 17, 661 galley images.

MARS [78]. This dataset is proposed for video-based person re-identification. It con-

sists of 1261 different pedestrians captured by at least two cameras. There are 509, 914
bounding boxes and 8, 298 tracklets from 625 identities for training and 681, 089 bound-

ing boxes and 12, 180 tracklets from 636 identities for testing.

6.2 Evaluation Metrics

We use both the cumulative matching characteristics (CMC) and mean average preci-

sion (mAP) to evaluate the accuracy. The CMC score measures the quality of identi-

8 https://github.com/layumi/DukeMTMC-reID evaluation

https://github.com/layumi/DukeMTMC-reID_evaluation
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Fig. 6. (a) Comparison of different pooling methods on the appearance maps. (c) Comparing

models, with and without part maps, on different datasets. (d) Comparing models, with and with-

out part maps, on different architectures of the appearance map extractor. If not specified, the

results are reported on Market-1501. (b) Comparison of different methods to aggregate the ap-

pearance and part maps.

fying the correct match at each rank. For multiple ground truth matches, CMC cannot

measure how well all the images are ranked. Therefore, we report the mAP scores for

Market-1501, DukeMTMC, and MARS where more than one ground truth images are

in the gallery.

6.3 Comparison with the Baselines

We compare the proposed method with the baselines in three aspects. In this section,

when not specified, all the experiments are performed on the Market-1501 dataset, all

the models do not use dilation, and Ppose is trained together with the other parameters.

Effect of part maps. We compare our method with a baseline that does not explicitly

use body parts. As a baseline network, we use the appearance map extractor of Eq.(1),

which is followed by a global spatial average pooling and a fully connected layer,

thereby outputting the 512-dimensional image descriptor. Figures 6 (a) and (b) com-

pare the proposed method with the baseline, while varying the training strategy: fixing

and training Ppose. Fixing Ppose initializes Ppose using the pre-trained weights [4, 29]

and fixes the weight through the training. Training Ppose also initializes Ppose in the

same way, but fine-tunes the network using the loss of Eq.(7) during training. Figure 6

(a) illustrates the accuracy comparison on three datasets, Market-1501, MARS, and

Duke. It shows that using part maps consistently improves the accuracy on all the three

datasets from the baseline. In addition, training Ppose largely improves the accuracy

than fixing Ppose. It implies that the part descriptors are adopted to better serve the per-

son re-identification task. Figure 6 (b) shows the accuracy comparison while varying

the appearance sub-network architecture. Similarly, the baseline accuracy is improved

when part maps are introduced and further improved when Ppose is fine-tuned during

training.

Effect of bilinear pooling. Figure 6 (c) compares the proposed method (bilinear) to

the baseline with a different aggregator. For the given appearance and part maps, con-

cat+averagepool+linear generates a feature vector by concatenating two feature maps,

spatially average pooling, and feeding through a fully connected layer, resulting in a
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512-dimensional vector. The result shows that bilinear pooling consistently achieves

higher accuracy than the baseline, for both cases when Ppose is fixed/trained.

Comparison with previous pose-based methods. Finally, we compare our method

with three previous works [79, 75, 50], which use human pose estimation, on Market-

1501. For a fair comparison, we use the reduced CPM(R-CPM [∼3M param]) uti-

lized in [50]9 as Ppose. The complexity of the R-CPM is lower than the standard FCN

(∼6M param) used in [75] and CPM (30M param) used in [79]. As the appearance

network, [75] used GoogLeNet and [79] used ResNet50. [50] used 13 inception mod-

ules, whereas we use 7. Table 1 shows the comparison. In comparison with the method

adopted by [79, 75, 50], the proposed method (Inception V1, R-CPM) achieves an in-

crease of 4% and 9% for rank@1 accuracy and mAP, respectively. It shows that our

method effectively uses the part information compared with the previous approaches.

6.4 Comparison with State-of-the-Art Methods

Market-1501. Table 1 shows the comparison over two query schemes, single query and

multi-query. Single query takes one image from each person whereas multi-query takes

multiple images. For the multi-query setting, one descriptor is obtained from multiple

images by averaging the feature from each image. Our approach achieves the best ac-

curacy in terms of both mAP and rank@K for both single and multi-query. We also

provide the result after re-ranking [86], which further boosts accuracy. In addition, we

conduct the experiment over an expanded dataset with additional 500K images [80].

Following the standard evaluation protocol [19], we report the results over four differ-

ent gallery sets, 19, 732, 119, 732, 219, 732, and 519, 732, using two evaluation metrics

(i.e., rank-1 accuracy and mAP). Table 2 reports the results. The proposed method out-

performs all the other methods.

CUHK03. We report the results with two person boxes: manually labeled and detected.

Table 3 presents the comparison with existing solutions. In the case of detected boxes,

the state-of-the-art accuracy is achieved. With manual bounding boxes, our method also

achieves the best accuracy.

CUHK01. We compare the results with two evaluation settings (i.e., 100 and 486 test

IDs) in Table 3. For 486 test IDs, the proposed method shows the best result. For 100
test IDs, our method achieves the second best result, following [16]. Note that [16] fine-

tuned the model which is learned from the CUHK03+Market1501, whereas we trained

the model using 871 training IDs of the CUHK01 dataset, following the settings in

previous works [1, 7, 10, 76].

DukeMTMC. We follow the setting in [31] to conduct the experiments. Table 4 reports

the results. The proposed method achieves the best result for both with and without

re-ranking.

MARS. We also evaluate our method on one video-based person re-identification dataset [78].

We use our approach to extract the representation for each frame and aggregate the rep-

resentations of all the frames using temporal average pooling, which shows similar

accuracy to other aggregation schemes (RNN and LSTM). Table 5 presents the com-

9 https://github.com/yokattame/SpindleNet

https://github.com/yokattame/SpindleNet
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Table 1. Accuracy comparison on Market-1501

Sinlge Query Multi Query

Rank 1 5 10 20 mAP 1 5 10 20 mAP

Varior et al. 2016 [58] 61.6 - - - 35.3 - - - - -

Zhong et al. 2017 [86] 77.1 - - - 63.6 - - - - -

Zhao et al. 2017 [76] 80.9 91.7 94.7 96.6 63.4 - - - - -

Sun et al. 2017 [53] 82.3 92.3 95.2 - 62.1 - - - - -

Geng et al. 2016 [16] 83.7 - - - 65.5 89.6 - - - 73.8

Lin et al. 2017 [31] 84.3 93.2 95.2 97.0 64.7 - - - - -

Bai et al. 2017 [2] 82.2 - - - 68.8 88.2 - - - 76.2

Chen et al. 2017 [9] 72.3 88.2 91.9 95.0 - - - - -

Hermans et al. 2017 [19] 84.9 94.2 - - 69.1 90.5 96.3 - - 76.4

+ re-ranking 86.7 93.4 - - 81.1 91.8 95.8 - - 87.2

Zhang et al. 2017 [74] 87.7 - - - 68.8 91.7 - - - 77.1

Zhong et al. 2017 [87] 87.1 - - - 71.3 - - - - -

+ re-ranking 89.1 - - - 83.9 - - - - -

Chen et al. 2017 [8] (MobileNet) 90.0 - - - 70.6 - - - - -

Chen et al. 2017 [8] (Inception-V3) 88.6 - - - 72.6 - - - - -

Ustinova et al. 2017 [57] (Bilinear) 66.4 85.0 90.2 - 41.2 - - - - -

Zheng et al. 2017 [79] (Pose) 79.3 90.8 94.4 96.5 56.0 - - - - -

Zhao et al. 2017 [75] (Pose) 76.9 91.5 94.6 96.7 - - - - - -

Su et al. 2017 [50] (Pose) 84.1 92.7 94.9 96.8 65.4 - - - - -

Proposed (Inception-V1, R-CPM) 88.8 95.6 97.3 98.6 74.5 92.9 97.3 98.4 99.1 81.7

Proposed (Inception-V1, OpenPose) 90.2 96.1 97.4 98.4 76.0 93.2 97.5 98.4 99.1 82.7

+ dilation 91.7 96.9 98.1 98.9 79.6 94.0 98.0 98.8 99.3 85.2

+ re-ranking 93.4 96.4 97.4 98.2 89.9 95.4 97.5 98.2 98.9 93.1

Table 2. Accuracy comparison on Market-1501+500k.

Gallery size

metric 19732 119732 219732 519732

Zheng et al. 2017 [84]
rank-1 79.5 73.8 71.5 68.3

mAP 59.9 52.3 49.1 45.2

Linet al. 2017 [31]
rank-1 84.0 79.9 78.2 75.4

mAP 62.8 56.5 53.6 49.8

Hermans et al. 2017 [19]
rank-1 84.9 79.7 77.9 74.7

mAP 69.1 61.9 58.7 53.6

Proposed (Inception V1, OpenPose)
rank-1 91.7 88.3 86.6 84.1

mAP 79.6 74.2 71.5 67.2

Table 3. Accuracy comparison on CUHK03 and CUHK01

CUHK03 CUHK01

Detected Manual 100 test IDs 486 test IDs

Rank 1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

Shi et al. [70] 52.1 84.0 92.0 96.8 61.3 88.5 96.0 99.0 69.4 90.8 96.0 - - - - -

SIR-CIR [60] 52.2 - - - - - - - 71.8 91.6 96.0 98.0 - - - -

Varior et al. [58] 68.1 88.1 94.6 98.8 - - - - - - - - - - - -

Bai et al. [2] 72.7 92.4 96.1 - 76.6 94.6 98.0 - - - - - - - - -

Zhang et al. [72] - - - - 80.2 97.7 99.2 99.8 89.6 97.8 98.9 99.7 76.5 94.2 97.5 -

Sun et al. [53] 81.8 95.2 97.2 - - - - - - - - - - - - -

Zhao et al. [76] 81.6 97.3 98.4 99.5 85.4 97.6 99.4 99.9 88.5 98.4 99.6 99.9 74.7 92.6 96.2 98.4

Geng et al. [16] 84.1 - - - 85.4 - - - 93.2 - - - 77.0 - - -

Chen et al. [9] 87.5 97.4 98.7 99.5 - - - - - - - - 74.5 91.2 94.8 97.1

Ustinova et al. [57] (Bilinear) 63.7 89.2 94.7 97.5 69.7 93.4 98.9 99.4 - - - - 52.9 78.1 86.3 92.6

Zheng et al. [79] (Pose) 67.1 92.2 96.6 98.1 - - - - - - - - - - - -

Zhao et al. [75] (Pose) - - - - 88.5 97.8 98.6 99.2 - - - - 79.9 94.4 97.1 98.6

Su et al. [50] (Pose) 78.3 94.8 97.2 98.4 88.7 98.6 99.2 99.7 - - - - - - - -

Proposed 88.0 97.6 98.6 99.0 91.5 99.0 99.5 99.9 90.4 97.1 98.1 98.9 80.7 94.4 97.3 98.6
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Table 4. Accuracy comparison on DukeMTMC

Rank 1 5 10 20 mAP

Zheng et al. [85] 67.7 - - - 47.1

Tong et al. [67] 68.1 - - - -

Lin et al. [31] 70.7 - - - 51.9

Schumann et al. [47] 72.6 - - - 52.0

Sun et al. [53] 76.7 86.4 89.9 - 56.8

Chen et al. [8] (MobileNet) 77.6 - - - 58.6

Chen et al. [8] (Inception-V3) 79.2 - - - 60.6

Zhun et al. [87] 79.3 - - - 62.4

+ re-ranking 84.0 - - - 78.3

Proposed (Inception V1, OpenPose) 82.1 90.2 92.7 95.0 64.2

+ dilation 84.4 92.2 93.8 95.7 69.3

+ re-ranking 88.3 93.1 95.0 96.1 83.9

Table 5. Accuracy comparison on MARS

Rank 1 5 10 20 mAP

Xu et al. [68] (Video) 44 70 74 81 -

McLaughlin et al. [40] (Video) 45 65 71 78 27.9

Zheng et al. [78] (Video) 68.3 82.6 - 89.4 49.3

Liu et al. [33] (Video) 68.3 81.4 - 90.6 52.9

Zhou et al. [88] 70.6 90.0 - 97.6 50.7

Li et al. [23] 71.8 86.6 - 93.1 56.1

+ re-ranking 83.0 93.7 - 97.6 66.4

Liu et al. [35] 73.7 84.9 - 91.6 51.7

Hermans et al. [19] 79.8 91.4 - - 67.7

+ re-ranking 81.2 90.8 - - 77.4

Proposed (Inception V1, OpenPose) 83.0 92.8 95 96.8 72.2

+ dilation 84.7 94.4 96.3 97.5 75.9

+ re-ranking 85.1 94.2 96.1 97.4 83.9

parison with the competing methods. Our method shows the highest accuracy over both

image-based and video-based approaches.

7 Conclusions

We propose a new method for person re-identification. The key factors that contribute

to the superior performance of our approach are as follows. (1) We adopt part maps

where parts are not pre-defined but learned specially for person re-identification. They

are learned to minimize the re-identification loss with the guidance of the pre-trained

pose estimation model. (2) The part map representation provides a fine-grained/robust

differentiation of the body part depending on their usefulness for re-identification. (3)

We use part-aligned representations to handle the body part misalignment problem. The

resulting approach achieves superior/competitive person re-identification performances

on the standard image and video benchmark datasets.
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