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Abstract. Deep convolutional neural networks have liberated its extraordinary

power on various tasks. However, it is still very challenging to deploy state-

of-the-art models into real-world applications due to their high computational

complexity. How can we design a compact and effective network without mas-

sive experiments and expert knowledge? In this paper, we propose a simple and

effective framework to learn and prune deep models in an end-to-end manner.

In our framework, a new type of parameter – scaling factor is first introduced

to scale the outputs of specific structures, such as neurons, groups or residual

blocks. Then we add sparsity regularizations on these factors, and solve this opti-

mization problem by a modified stochastic Accelerated Proximal Gradient (APG)

method. By forcing some of the factors to zero, we can safely remove the corre-

sponding structures, thus prune the unimportant parts of a CNN. Comparing with

other structure selection methods that may need thousands of trials or iterative

fine-tuning, our method is trained fully end-to-end in one training pass without

bells and whistles. We evaluate our method, Sparse Structure Selection with sev-

eral state-of-the-art CNNs, and demonstrate very promising results with adaptive

depth and width selection. Code is available at: https://github.com/huangzehao/

sparse-structure-selection.
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1 Introduction

Deep learning methods, especially convolutional neural networks (CNNs) have achieved

remarkable performances in many fields, such as computer vision, natural language pro-

cessing and speech recognition. However, these extraordinary performances are at the

expense of high computational and storage demand. Although the power of modern

GPUs has skyrocketed in the last years, these high costs are still prohibitive for CNNs

to deploy in latency critical applications such as self-driving cars and augmented reality,

etc.

Recently, a significant amount of works on accelerating CNNs at inference time

have been proposed. Methods focus on accelerating pre-trained models include direct

pruning [9, 24, 29, 13, 27], low-rank decomposition [7, 20, 49], and quantization [31, 6,

44]. Another stream of researches trained small and efficient networks directly, such as

knowledge distillation [14, 33, 35], novel architecture designs [18, 15] and sparse learn-

ing [25, 50, 1, 43]. In spare learning, prior works [25] pursued the sparsity of weights.
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However, non-structure sparsity only produce random connectivities and can hardly uti-

lize current off-the-shelf hardwares such as GPUs to accelerate model inference in wall

clock time. To address this problem, recently methods [50, 1, 43] proposed to apply

group sparsity to retain a hardware friendly CNN structure.

In this paper, we take another view to jointly learn and prune a CNN. First, we intro-

duce a new type of parameter – scaling factors which scale the outputs of some specific

structures (e.g., neurons, groups or blocks) in CNNs. These scaling factors endow more

flexibility to CNN with very few parameters. Then, we add sparsity regularizations on

these scaling factors to push them to zero during training. Finally, we can safely remove

the structures correspond to zero scaling factors and get a pruned model. Comparing

with direct pruning methods, this method is data driven and fully end-to-end. In other

words, the network can select its unique configuration based on the difficulty and needs

of each task. Moreover, the model selection is accomplished jointly with the normal

training of CNNs. We do not require extra fine-tuning or multi-stage optimizations, and

it only introduces minor cost in the training.

To summarize, our contributions are in the following three folds:

– We propose a unified framework for model training and pruning in CNNs. Partic-

ularly, we formulate it as a joint sparse regularized optimization problem by intro-

ducing scaling factors and corresponding sparse regularizations on certain struc-

tures of CNNs.

– We utilize a modified stochastic Accelerated Proximal Gradient (APG) method to

jointly optimize the weights of CNNs and scaling factors with sparsity regulariza-

tions. Compared with previous methods that utilize heuristic ways to force sparsity,

our methods enjoy more stable convergence and better results without fine-tuning

and multi-stage optimization.

– We test our proposed method on several state-of-the-art networks, PeleeNet, VGG,

ResNet and ResNeXt to prune neurons, residual blocks and groups, respectively.

We can adaptively adjust the depth and width accordingly. We show very promising

acceleration performances on CIFAR and large scale ILSVRC 2012 image classifi-

cation datasets.

2 Related Works

Network pruning was pioneered in the early development of neural network. In Opti-

mal Brain Damage [23] and Optimal Brain Surgeon [10], unimportant connections are

removed based on the Hessian matrix derived from the loss function. Recently, Han et

al. [9] brought back this idea by pruning the weights whose absolute value are smaller

than a given threshold. This approach requires iteratively pruning and fine-tuning which

is very time-consuming. To tackle this problem, Guo et al. [8] proposed dynamic net-

work surgery to prune parameters during training. However, the nature of irregular

sparse weights make them only yield effective compression but not faster inference

in terms of wall clock time. To tackle this issue, several works pruned the neurons di-

rectly [16, 24, 29] by evaluating neuron importance on specific criteria. These methods

all focus on removing the neurons whose removal affect the final prediction least. On
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the other hand, the diversity of neurons to be kept is also an important factor to consider

[28]. More recently, [27] and [13] formulate pruning as a optimization problem. They

first select most representative neurons and further minimize the reconstitution error

to recover the accuracy of pruned networks. While neuron level pruning can achieve

practical acceleration with moderate accuracy loss, it is still hard to implement them in

an end-to-end manner without iteratively pruning and retraining. Very recently, Liu et

al. [26] used similar technique as ours to prune neurons. They sparsify the scaling pa-

rameters of batch normalization (BN) [19] to select channels. Ye et al. [48] also adopted

this idea into neuron pruning. As discussed later, both of their works can be seen as a

special case in our framework.

Model structure learning for deep learning models has attracted increasing atten-

tion recently. Several methods have been explored to learn CNN architectures with-

out handcrafted design [2, 51, 32]. One stream is to explore the design space by rein-

forcement learning [2, 51] or genetic algorithms [32, 46]. Another stream is to utilize

sparse learning or binary optimization. [50, 1] added group sparsity regularizations on

the weights of neurons and sparsified them in the training stage. Lately, Wen et al. [43]

proposed a more general approach, which applied group sparsity on multiple structures

of networks, including filter shapes, channels and layers in skip connections. Srinivas et

al. [38] proposed a new trainable activation function tri-state ReLU into deep networks.

They pruned neurons by forcing the parameters of tri-state ReLU into binary.

CNNs with skip connections have been the main stream for modern network de-

sign since it can mitigate the gradient vanishing/exploding issue in ultra deep networks

by the help of skip connections [39, 11]. Among these work, ResNet and its variants [12,

47] have attracted more attention because of their simple design principle and state-of-

the-art performances. Recently, Veit et al. [41] interpreted ResNet as an exponential en-

semble of many shallow networks. They find there is minor impact on the performance

when removing single residual block. However, deleting more and more residual blocks

will impair the accuracy significantly. Therefore, accelerating this state-of-the-art net-

work architecture is still a challenging problem. In this paper, we propose a data-driven

method to learn the architecture of such kind of network. Through scaling and pruning

residual blocks during training, our method can produce a more compact ResNet with

faster inference speed and even better performance.

3 Proposed Method

Notations Consider the weights of a convolutional layer l in a L layers CNN as a 4-

dimensional tensor Wl ∈ R
Nl×Ml×Hl×Wl , where Nl is the number of output channels,

Ml represents the number of input channels, Hl and Wl are the height and width of a

2-dimensional kernel. Then we can use Wl
k to denote the weights of k-th neuron in

layer l. The scaling factors are represented as a 1-dimensional vector λ ∈ R
s, where S

is the number of structures we consider to prune. λi refers to the i-th value of λ. Denote

soft-threshold operator as Sα(z)i = sign(zi)(|zi| − α)+.
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Fig. 1: The network architecture of our method. F represents a residual function. Gray

block, group and neuron mean they are inactive and can be pruned since their corre-

sponding scaling factors are 0.

3.1 Sparse Structure Selection

Given a training set consisting of N sample-label pairs {xi,yi}1≤i≤N , then a L layers

CNN can be represented as a function C(xi,W), where W = {Wl}1≤l≤L represents

the collection of all weights in the CNN. W is learned through solving an optimization

problem of the form:

min
W

1

N

N∑

i=1

L(yi, C(xi,W)) +R(W), (1)

where L(yi, C(xi,W)) is the loss on the sample xi, R(·) is a non-structured regular-

ization applying on every weight, e.g. l2-norm as weight decay.

Prior sparse based model structure learning work [50, 1] tried to learn the number of

neurons in a CNN. To achieve this goal, they added group sparsity regularization Rg(·)
on Wl

k into Eqn.1, and enforced entire Wl
k to zero during training. Another concurrent

work by Wen et al. [43] adopted similar method but on multiple different structures.

These ideas are straightforward but the implementations are nontrivial. First, the opti-

mization is difficult since there are several constraints on weights simultaneously, in-

cluding weight decay and group sparsity. Improper optimization technique may result

in slow convergence and inferior results. Consequently, there is no successful attempt

to directly apply these methods on large scale applications with complicated modern

network architectures.

In this paper, we address structure learning problem in a more simple and effective

way. Different from directly pushing weights in the same group to zero, we try to en-

force the output of the group to zero. To achieve this goal, we introduce a new type of

parameter – scaling factor λ to scale the outputs of some specific structures (neurons,

groups or blocks), and add sparsity constraint on λ during training. Our goal is to obtain

a sparse λ. Namely, if λi = 0, then we can safely remove the corresponding structure

since its outputs have no contribution to subsequent computation. Fig. 1 illustrates our

framework.
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Formally, the objective function of our proposed method can be formulated as:

min
W,λ

1

N

N∑

i=1

L(yi, C(xi,W,λ)) +R(W) +Rs(λ), (2)

where Rs(·) is a sparsity regularization for λ with weight γ. In this work, we consider

its most commonly used convex relaxation l1-norm, which defined as γ‖λ‖1.

For W, we can update it by Stochastic Gradient Descent (SGD) with momentum or

its variants. For λ, we adopt Accelerated Proximal Gradient (APG) [30] method to solve

it. For better illustration, we shorten 1
N

∑N

i=1 L(yi, C(xi,λ)) as G(λ), and reformulate

the optimization of λ as:

min
λ

G(λ) +Rs(λ). (3)

Then we can update λ by APG:

d(t) = λ(t−1) +
t− 2

t+ 1
(λ(t−1) − λ(t−2)) (4)

z(t) = d(t) − η(t)∇G(d(t)) (5)

λ(t) = proxη(t)Rs
(z(t)), (6)

where η(t) is gradient step size at iteration t and proxηRs
(·) = Sηγ(·) since Rs(λ) =

γ‖λ‖1. However, this formulation is not friendly for deep learning since additional to

the pass for updating W, we need to obtain ∇G(d(t)) by extra forward-backward com-

putation, which is computational expensive for deep neural networks. Thus, following

the derivation in [40], we reformulate APG as a momentum based method:

z(t) = λ(t−1) + µ(t−1)v(t−1)

− η(t)∇G(λ(t−1) + µ(t−1)v(t−1)) (7)

v(t) = Sη(t)γ(z(t))− λ(t−1) (8)

λ(t) = λ(t−1) + v(t), (9)

where we define v(t−1) = λ(t−1) − λ(t−2) and µ(t−1) = t−2
t+1 . This formulation is

similar as the modified Nesterov Accelerated Gradient (NAG) in [40] except the update

of vt. Furthermore, we simplified the update of λ by replacing λ(t−1) as λ
′
(t−1) =

λ(t−1)+µ(t−1)v(t−1) following the modification of NAG in [4] which has been widely

used in practical deep learning frameworks [5]. Our new parameters λ′
t updates become:

z(t) = λ
′
(t−1) − η(t)∇G(λ′

(t−1)) (10)

v(t) = Sη(t)γ(z(t))− λ
′
(t−1) + µ(t−1)v(t−1) (11)

λ
′
(t) = Sη(t)γ(z(t)) + µ(t)v(t) (12)

In practice, we follow a stochastic approach with mini-batches and set momentum µ
fixed to a constant value. Both W and λ are updated in each iteration.

The implementation of APG is very simple and effective after our modification. In

the following, we show it can be implemented by only ten lines of code in MXNet [5].
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MXNet implementation of APG

import mxnet as mx

def apg_updater(weight, lr, grad, mom, gamma):

z = weight - lr * grad

z = soft_thresholding(z, lr * gamma)

mom[:] = z - weight + 0.9 * mom

weight[:] = z + 0.9 * mom

def soft_thresholding(x, gamma):

y = mx.nd.maximum(0, mx.nd.abs(x) - gamma)

return mx.nd.sign(x) * y

In our framework, we add scaling factors to three different CNN micro-structures, in-

cluding neurons, groups and blocks to yield flexible structure selection. We will intro-

duce these three cases in the following. Note that for networks with BN, we add scaling

factors after BN to prevent the influence of bias parameters.

3.2 Neuron Selection

We introduce scaling factors for the output of channels to prune neurons. After training,

removing the filters with zero scaling factor will result in a more compact network. A re-

cent work proposed by Liu et al. [26] adopted similar idea for network slimming. They

absorbed the scaling parameters into the parameters of batch normalization, and solve

the optimization by subgradient descent. During training, scaling parameters whose ab-

solute value are lower than a threshold value are set to 0. Comparing with [26], our

method is more general and effective. Firstly, introducing scaling factor is more univer-

sal than reusing BN parameters. On one hand, some networks have no batch normaliza-

tion layers, such as AlexNet [22] and VGG [37]; On the other hand, when we fine-tune

pre-trained models on object detection or semantic segmentation tasks, the parameters

of batch normalization are usually fixed due to small batch size. Secondly, the opti-

mization of [26] is heuristic and need iterative pruning and retraining. In contrast, our

optimization is more stable in an end-to-end manner. Above all, [26] can be seen as a

special case of our method. Similarly, [48] is also a special case of our method. The

difference between Ye et al. [48] and Liu et al. [26] is Ye et al. adopted ISTA [3] to

optimize scaling factors. We will compare these different optimization methods in our

experiments.

3.3 Block Selection

The structure of skip connection CNNs allows us to skip the computation of specific

layers without cutting off the information flow in the network. Through stacking resid-

ual blocks, ResNet [11, 12] can easily exploit the advantage of very deep networks.

Formally, residual block with identity mapping can be formulated by the following for-

mula:

ri+1 = ri + F i(ri,Wi), (13)
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where ri and ri+1 are input and output of the i-th block, F i is a residual function and

Wi are parameters of the block.

To prune blocks, we add scaling factor after each residual block. Then in our frame-

work, the formulation of Eqn.13 is as follows:

ri+1 = ri + λiF i(ri,Wi). (14)

As shown in Fig 1, after optimization, we can get a sparse λ. The residual block with

scaling factor 0 will be pruned entirely, and we can learn a much shallower ResNet. A

prior work that also adds scaling factors for residual in ResNet is Weighted Residual

Networks [36]. Though sharing a lot of similarities, the motivations behind these two

works are different. Their work focuses on how to train ultra deep ResNet to get better

results with the help of scaling factors. Particularly, they increase depth from 100+ to

1000+. While our method aims to decrease the depth of ResNet, we use the scaling

factors and sparse regularizations to sparsify the output of residual blocks.

3.4 Group Selection

Recently, Xie et al. introduced a new dimension – cardinality into ResNets and proposed

ResNeXt [47]. Formally, they presented aggregated transformations as:

A(x) =
C∑

i=1

T i(x,Wi), (15)

where T i(x) represents a transformation with parameters Wi, C is the cardinality of

the set of T i(x) to be aggregated. In practice, they use grouped convolution to ease the

implementation of aggregated transformations. So in our framework, we refer C as the

number of group, and formulate a weighted A(x) as:

A(x) =

C∑

i=1

λiT i(x,Wi) (16)

After training, several basic cardinalities are chosen by a sparse λ to form the final

transformations. Then, the inactive groups with zero scaling factors can be safely re-

moved as shown in Fig 1. Note that neuron pruning can also seen as a special case of

group pruning when each group contains only one neuron. Furthermore, we can com-

bine block pruning and group pruning to learn more flexible network structures.

4 Experiments

In this section, we evaluate the effectiveness of our method on three standard datasets,

including CIFAR-10, CIFAR-100 [21] and ImageNet LSVRC 2012 [34]. For neuron

pruning, we adopt VGG16 [37], a classical plain network to validate our method. As

for blocks and groups, we use two state-of-the-art networks, ResNet [12] and ResNeXt

[47] respectively. To prove the practicability of our method, we further experiment in a

very lightweight network, PeleeNet [42].
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Fig. 2: Error vs. number of parameters and FLOPs after SSS training for VGG on

CIFAR-10 and CIFAR-100 datasets.
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Fig. 3: Error vs. number of parameters and FLOPs after SSS training for ResNet-20 and

ResNet-164 on CIFAR-10 and CIFAR-100 datasets.

For optimization, we adopt NAG [40, 4] and our modified APG to update weights

W and scaling factors λ, respectively. We set weight decay of W to 0.0001 and fix

momentum to 0.9 for both W and λ. The weights are initialized as in [11] and all

scaling factors are initialized to be 1. All the experiments are conducted in MXNet [5].

4.1 CIFAR

We start with CIFAR dataset to evaluate our method. CIFAR-10 dataset consists of

50K training and 10K testing RGB images with 10 classes. CIFAR-100 is similar to

CIFAR-10, except it has 100 classes. As suggested in [11], the input image is 32 × 32
randomly cropped from a zero-padded 40× 40 image or its flipping. The models in our

experiments are trained with a mini-batch size of 64 on a single GPU. We start from a

learning rate of 0.1 and train the models for 240 epochs. The learning rate is divided by

10 at the 120-th,160-th and 200-th epoch.



Data-Driven Sparse Structure Selection for Deep Neural Networks 9

#parameters #105

1 1.5 2 2.5

%
 e

rr
or

7

8

9

10

11
SSS
ResNeXt-20

(a) ResNeXt20 CIFAR10

#flops #107

1 2 3 4

%
 e

rr
or

7

8

9

10

11
SSS
ResNeXt-20

(b) ResNeXt20 CIFAR10

#parameters #105

1.6 1.8 2 2.2 2.4

%
 e

rr
or

28

29

30

31
SSS
ResNeXt-20

(c) ResNeXt20 CIFAR100

#flops #107

1 2 3 4

%
 e

rr
or

28

29

30

31
SSS
ResNeXt-20

(d) ResNeXt20 CIFAR100

#parameters #106

0 0.5 1 1.5 2

%
 e

rr
or

5

5.5

6

6.5

7

7.5
SSS
ResNeXt-164

(e) ResNeXt164 CIFAR10

#flops #108

0 1 2 3

%
 e

rr
or

5

5.5

6

6.5

7

7.5
SSS
ResNeXt-164

(f) ResNeXt164 CIFAR10

#parameters #106

0 0.5 1 1.5 2

%
 e

rr
or

20

25

30

35
SSS
ResNeXt-164

(g) ResNeXt164 CIFAR100

#flops #108

0 1 2 3

%
 e

rr
or

20

25

30

35
SSS
ResNeXt-164

(h) ResNeXt164 CIFAR100

Fig. 4: Error vs. number of parameters and FLOPs with SSS training for ResNeXt-20

and ResNeXt-164 on CIFAR-10 and CIFAR-100 datasets.

VGG: The baseline network is a modified VGG16 with BN [19]1. We remove fc6

and fc7 and only use one fully-connected layer for classification. We add scale factors

after every batch normalization layers. Fig. 2 shows the results of our method. Both

parameters and floating-point operations per second (FLOPs)2 are reported. Our method

can save about 30% parameters and 30% - 50% computational cost with minor lost of

performance.

ResNet: To learn the number of residual blocks, we use ResNet-20 and ResNet-164

[12] as our baseline networks. ResNet-20 consists of 9 residual blocks. Each block has

2 convolutional layers, while ResNet-164 has 54 blocks with bottleneck structure in

each block. Fig. 3 summarizes our results. It is easy to see that our SSS achieves better

performance than the baseline model with similar parameters and FLOPs. For ResNet-

164, our SSS yields 2.5x speedup with about 2% performance loss both in CIFAR-10

and CIFAR-100. After optimization, we found that the blocks in early stages are pruned

first. This discovery coincides with the common design that the network should spend

more budget in its later stage, since more and more diverse and complicated pattern

may emerge as the receptive field increases.

ResNeXt: We also test our method on ResNeXt [47]. We choose ResNeXt-20 and

ResNeXt-164 as our base networks. Both of these two networks have bottleneck struc-

tures with 32 groups in residual blocks. For ResNeXt-20, we focus on groups prun-

ing since there are only 6 residual blocks in it. For ResNeXt-164, we add sparsity on

both groups and blocks. Fig. 4 shows our experiment results. Both groups pruning and

block pruning show good trade-off between parameters and performance, especially in

ResNeXt-164. The combination of groups and blocks pruning is extremely effective in

CIFAR-10. Our SSS saves about 60% FLOPs while achieves 1% higher accuracy. In

1 Without BN, the performance of this network is very worse in CIFAR-100 dataset.
2 Multiply-adds.
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Fig. 5: Top-1 error vs. number of parameters and FLOPs for our SSS models and origi-

nal ResNets on ImageNet validation set.

ResNeXt-20, groups in first and second block are pruned first. Similarly, in ResNeXt-

164, groups in shallow residual blocks are pruned mostly.

4.2 ImageNet LSVRC 2012

To further demonstrate the effectiveness of our method in large-scale CNNs, we con-

duct more experiments on the ImageNet LSVRC 2012 classification task with VGG16

[37], ResNet-50 [12] and ResNeXt-50 (32 × 4d) [47]. We do data augmentation based

on the publicly available implementation of “fb.resnet” 3. The mini-batch size is 128 on

4 GPUs for VGG16 and ResNet-50, and 256 on 8 GPUs for ResNeXt-50. The optimiza-

tion and initialization are similar as those in CIFAR experiments. We train the models

for 100 epochs. The learning rate is set to an initial value of 0.1 and then divided by 10

at the 30-th, 60-th and 90-th epoch. All the results for ImageNet dataset are summarized

in Table 2.

VGG16: In our experiments of VGG16 pruning, we find the results of pruning all

convolutional layers were not promising. This is because in VGG16, the computational

cost in terms of FLOPs is not equally distributed in each layer. The number of FLOPs

of conv5 layers is 2.77 billion in total, which is only 9% of the whole network (30.97

billion). Thus, we consider the sparse penalty should be adjusted by computational

cost of different layers. Similar idea has been adopted in [29] and [13]. In [29], they

introduce FLOPs regularization to the pruning criteria. He et al. [13] do not prune conv5

layers in their VGG16 experiments. Following [13], we set the sparse penalty of conv5

to 0 and only prune conv1 to conv4. The results can be found in Table 2. The pruned

model save about 75% FLOPs, while the parameter saving is negligible. This is due to

that fully-connected layers have a large amount of parameters (123 million in original

VGG16), and we do not pruned fully-connected layers for fair comparison with other

methods.

ResNet-50: For ResNet-50, we experiment three different settings of γ to explore

the performance of our method in block pruning. For simplicity, we denote the trained

3 https://github.com/facebook/fb.resnet.torch
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Table 1: Network architectures of ResNet-50 and our pruned ResNets for ImageNet.
√

represents that the corresponding block is kept while × denotes that the block is pruned

stage output ResNet-50 ResNet-26 ResNet-32 ResNet-41

conv1 112×112 7×7, 64, stride 2

conv2 56×56
3×3 max pool, stride 2





1 × 1, 64

3 × 3, 64

1 × 1, 256



× 3 ××× ××√ ×××

conv3 28×28





1 × 1, 128

3 × 3, 128

1 × 1, 512



× 4 ×√√× √√√√ √√√√

conv4 14×14





1 × 1, 256

3 × 3, 256

1 × 1, 1024



× 6 ×√√√√√ √√√××√ √√√√√√

conv5 7×7





1 × 1, 512

3 × 3, 512

1 × 1, 2048



× 3
√×× √×× √√√

1×1 global average pool 1000-d FC, softmax

Table 2: Results on ImageNet dataset. Both top-1 and top-5 validation errors (single

crop) are reported. Number of parameters and FLOPs for inference of different models

are also shown. Here, M/B means million/billion (106/109), respectively

Model Top-1 Top-5 #Parameters #FLOPs

VGG-16 27.54 9.16 138.3M 30.97B

VGG-16 31.47 11.8 130.5M 7.667B

ResNet-50 23.88 7.14 25.5M 4.089B

ResNet-41 24.56 7.39 25.3M 3.473B

ResNet-32 25.82 8.09 18.6M 2.818B

ResNet-26 28.18 9.21 15.6M 2.329B

ResNeXt-50 22.43 6.32 25.0M 4.230B

ResNeXt-41 24.07 7.00 12.4M 3.234B

ResNeXt-38 25.02 7.50 10.7M 2.431B

ResNeXt-35-A 25.43 7.83 10.0M 2.068B

ResNeXt-35-B 26.83 8.42 8.50M 1.549B

models as ResNet-26, ResNet-32 and ResNet-41 depending on their depths. Their struc-

tures are shown in Table 1. All the pruned models come with accuracy loss in certain

extent. Comparing with original ResNet-50, ResNet-41 provides 15% FLOPs reduction

with 0.7% top-1 accuracy loss while ResNet-32 saves 31% FLOPs with about 2% top-1

loss. Fig. 5 shows the top-1 validation errors of our SSS models and ResNets as a func-
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Table 3: Results of PeleeNet on ImageNet dataset

Model Top-1 Top-5 #Parameters #FLOPs

PeleeNet (Our impl.) 27.47 9.15 2.8M 508M

PeleeNet-A 27.85 9.34 2.4M 436M

PeleeNet-B 30.87 11.38 1.6M 293M

PeleeNet-C 32.81 12.69 1.4M 236M

tion of the number of parameters and FLOPs. The results reveal that our pruned models

perform on par with original hand-crafted ResNets, whilst requiring less parameters and

computational cost. For example, comparing with ResNet-34 [12], both our ResNet-41

and ResNet-32 yield better performances with less FLOPs.

ResNeXt-50: As for ResNeXt-50, we add sparsity constraint on both residual blocks

and groups which results in several pruned models. Table 2 summarizes the perfor-

mance of these models. The learned ResNeXt-41 yields 24% top-1 error in ILSVRC

validation set. It gets similar results with the original ResNet50, but with half parame-

ters and more than 20% less FLOPs. In ResNeXt-41, three residual blocks in “conv5”

stage are pruned entirely. This pruning result is somewhat contradict to the common

design of CNNs, which worth to be studied in depth in the future.

4.3 Pruning lightweight network

Adopting lightweight networks, such as MobileNet[15], ShuffleNet[45] for fast infer-

ence is a more effective strategy in practice. To future prove the effectiveness of our

method, we adopt neuron pruning in PeleeNet[42], which is a state-of-the-art efficient

architecture without separable convolution. We follow the training settings and hyper-

parameters used in [45]. The mini-batch size is 1024 on 8 GPUs and we train 240 epoch.

Table 3 shows the pruning results of PeleeNet. We adopt different settings of γ and get

three pruned networks. Comparing to baseline, Our purned PeleeNet-A save about 14%

parameters and FLOPs with only 0.4% top-1 accuracy degradation.

4.4 Comparison with other methods

We compare our SSS with other pruning methods, including SSL [43], filter pruning

[24], channel pruning [13], ThiNet [27], [29] and [48]. We compare SSL with our

method in CIFAR10 and CIFAR100. All the models are trained from scratch. As shown

in Fig. 6, our SSS achieves much better performances than SSL, even SSL with fine-

tune. Table 4 shows the pruning results on the ImageNet LSVRC2012 dataset. To the

best of our knowledge, only a few works reported ResNet pruning results with FLOPs.

Comparing with filter pruning results, our ResNet-32 performs best with least FLOPs.

As for channel pruning, with similar FLOPs4, our ResNet-32 yields 1.88% lower top-1

error and 1.11% lower top-5 error than pruned ResNet-50 provided by [13]. As for [48],

our ResNet-41 achieves about 1% lower top-1 error with less computation budge. We

4 We calculate the FLOPs of He’s models by provided network structures.
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Fig. 6: Error vs. FLOPs for our SSS models and SSL models

Table 4: Comparison among several state-of-the-art pruning methods on the ResNet and

VGG16 networks

Model Top-1 Top-5 #FLOPs

ResNet-34-pruned [24] 27.44 - 3.080B

ResNet-50-pruned-A [24] (Our impl.) 27.12 8.95 3.070B

ResNet-50-pruned-B [24] (Our impl.) 27.02 8.92 3.400B

ResNet-50-pruned (2×) [13] 27.70 9.20 2.726B

ResNet-32 (Ours) 25.82 8.09 2.818B

ResNet-101-pruned [48] 25.44 - 3.690B

ResNet-41 (Ours) 24.56 7.39 3.473B

VGG16-pruned [29] - 15.5 ≈8.0B

VGG16-pruned (5×) [13] 32.20 11.90 7.033B

VGG16-pruned (ThiNet-Conv) [27] 30.20 10.47 9.580B

VGG16-pruned (Ours) 31.47 11.80 7.667B

also show comparison in VGG16. All the method including channel pruning, ThiNet

and our SSS achieve significant improvement than [29]. Our VGG16 pruning result is

competitive to other state-of-the-art.

We further compare our pruned ResNeXt with DenseNet [17] in Table 5. With 14%

less FLOPs, Our ResNeXt-38 achieves 0.2% lower top-5 error than DenseNet-121.

4.5 Choice of different optimization methods

We compare our APG with other different optimization methods for optimizing λ in

our ImageNet experiments, including SGD adopted in [26] and ISTA [3] used in [48].

We adopted ResNet-50 for block pruning and train it from scratch. The sparse penalty

γ is set to 0.005 for all optimization methods.

For SGD, since we can not get exact zero scale factor during training, a extra hyper-

parameter – hard threshold is need for the optimization of λ. In our experiment, we set

it to 0.0001. After training, we get a ResNet-32-SGD network. As show in Table 6, the

performance of our ResNet-32-APG is better than ResNet-32-SGD.
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Table 5: Comparison between pruned ResNeXt-38 and DenseNet-121

Model Top-1 Top-5 #FLOPs

DenseNet-121 [17] 25.02 7.71 2.834B

DenseNet-121 [17] (Our impl.) 25.58 7.89 2.834B

ResNeXt-38 (Ours) 25.02 7.50 2.431B

Table 6: Comparison between different optimization methods

Model Top-1 Top-5 #FLOPs

ResNet-32-SGD 26.46 8.41 2.726B

ResNet-32-APG 25.82 7.39 2.818B

For ISTA, we found the optimization of network could not converge. The reason

is that the converge speed of ISTA for λ optimization is too slow when training from

scratch. Adopting ISTA can get reasonable results in CIFAR dataset. However, in Ima-

geNet, it is hard to optimize the λ to be sparse with small γ, and larger γ will lead too

many zeros in our experiments. [48] alleviated this problem by fine-tunning from a pre-

trained model. They also adopted λ-W rescaling trick to get an small λ initialization.

Comparing to ISTA, Our APG can be seen as a modified version of an improved

ISTA, namely FISTA [3], which has been proved to be significantly better than ISTA in

convergence. Thus the optimization of our method is effective and stable in both CIFAR

and ImageNet experiments. The results described in Table 4 also show the advantages

of our APG method to ISTA. The performance of our trained ResNet-41 is better than

ResNet-101-pruned provided by [48].

5 Conclusions

In this paper, we have proposed a data-driven method, Sparse Structure Selection (SSS)

to adaptively learn the structure of CNNs. In our framework, the training and pruning of

CNNs is formulated as a joint sparse regularized optimization problem. Through push-

ing the scaling factors which are introduced to scale the outputs of specific structures

to zero, our method can remove the structures corresponding to zero scaling factors. To

solve this challenging optimization problem and adapt it into deep learning models, we

modified the Accelerated Proximal Gradient method. In our experiments, we demon-

strate very promising pruning results on PeleeNet, VGG, ResNet and ResNeXt. We can

adaptively adjust the depth and width of these CNNs based on budgets at hand and dif-

ficulties of each task. We believe these pruning results can further inspire the design of

more compact CNNs.

In future work, we plan to apply our method in more applications such as object

detection. It is also interesting to investigate the use of more advanced sparse regulariz-

ers such as non-convex relaxations, and adjust the penalty based on the complexity of

different structures adaptively.
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