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Abstract. We present a deep learning based volumetric approach for
performance capture using a passive and highly sparse multi-view capture
system. State-of-the-art performance capture systems require either pre-
scanned actors, large number of cameras or active sensors. In this work,
we focus on the task of template-free, per-frame 3D surface reconstruction
from as few as three RGB sensors, for which conventional visual hull or
multi-view stereo methods fail to generate plausible results. We introduce
a novel multi-view Convolutional Neural Network (CNN) that maps 2D
images to a 3D volumetric field and we use this field to encode the
probabilistic distribution of surface points of the captured subject. By
querying the resulting field, we can instantiate the clothed human body
at arbitrary resolutions. Our approach scales to different numbers of
input images, which yield increased reconstruction quality when more
views are used. Although only trained on synthetic data, our network can
generalize to handle real footage from body performance capture. Our
method is suitable for high-quality low-cost full body volumetric capture
solutions, which are gaining popularity for VR and AR content creation.
Experimental results demonstrate that our method is significantly more
robust and accurate than existing techniques when only very sparse views
are available.

Keywords: Human performance capture, neural networks for multi-view
stereo, wide-baseline reconstruction

1 Introduction

Performance capture is essential for a variety of applications ranging from gaming,
visual effects to free-viewpoint videos. The increasing popularity of VR/AR
technologies has further triggered the needs for volumetric capture systems,
which enables an end-to-end solution for capturing dynamic clothed digital
humans.

High-end capture solutions use a large number of cameras and active projec-
tions [1–3] or controlled lighting conditions [4, 5], and are restricted to professional
studio settings. More lightweight systems often use a pre-scanned subject-specific
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template [6–8], but may produce unnatural baked-in details, e.g. clothing folds.
Classic shape-from-silhouette approaches [9] and stereo variants [10] use a visual
hull to approximate the target geometry and do not rely on a template mesh.
However, surfaces with concavities are difficult to model, and the resulting
geometries are often rough when a very sparse number of cameras are used. In
most cases, a minimum of eight cameras are required to ensure reasonable results.

To make high-quality performance capture more accessible to end users,
we propose a passive motion capture technique without requirements for pre-
processing or specialized capture hardware. In particular, our approach is able to
faithfully capture detailed human shapes from highly sparse, e.g. three or four,
camera views without the need of manual image processing, marker tracking,
texture cues, or a pre-scanned mesh template.

Reconstruction from highly sparse views is challenging as large regions of
the body are often occluded or not observed by multiple cameras. We tackle
this challenge by using a novel multi-view convolutional neural network. Inspired
by the shape-from-silhouette method, which reconstructs the target surface by
fusing multi-view ray projections from 2D silhouettes, we propose to learn a
similar 3D probability field that depicts the surface boundary of a human body
using multi-view projection constraints. However, instead of calculating the
silhouettes directly, which is either tedious to extract manually or error-prone
if computed via automatic segmentation, we use a 2D deep neural network to
learn discriminative features that could tell whether a 3D sample point is inside
or outside the silhouette. In particular, we associate each 3D point in the space
where the object occupies with the features extracted from its projections on
multi-view image planes using our convolutional neural network. The per-point
features are then fed into a classification network to infer its possibilities of lying
inside and outside of the human body. By densely sampling the near-surface
region, we obtain a high-resolution volumetric probability field that can be used
for reconstructing the body geometry at arbitrary resolutions.

As our proposed network implicitly learns the relations between 3D volume
and 2D projections, our approach is capable of reconstructing texture-less surfaces
and unseen regions, which is not possible with existing muti-view stereo techniques.
For varying input views, e.g. different viewing distances and numbers of captured
images, we propose a novel scale-invariant symmetric pooling layer to aggregate
features from different views. As a result, our approach scales well to different
numbers of input views and produces better reconstruction when more views are
available. We evaluate the performance of our network using different numbers
of views. Our network is only trained on synthetic data generated using a
standard 3D rendering software with animated CG characters. Our method can
faithfully capture fast and complex motions with a wide range of occlusion,
backgrounds, and clothing. In addition, we compare our technique with state-
of-the-art performance capture methods and demonstrate that our approach is
significantly more robust and accurate, when only very sparse views are available.

Our main contributions are:
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– A novel performance capture technique that is able to robustly reconstruct
clothed human bodies from highly sparse camera views, which was not
possible using existing techniques.

– A lightweight performance capture framework that does not require back-
ground segmentation, marker tracking, texture cues, or a pre-scanned tem-
plate model.

– A novel multi-view 2D CNN network that maps multi-view images to a dense
3D probability field, which enables high-resolution reconstruction and robust
motion capture from texture-less surfaces.

– A large synthetic dataset of clothed human body animations rendered on
multiple views, containing 50 characters and 13 animation sequences for each
subject.

2 Related Work

Silhouette-Based Multi-View Reconstruction. Visual hulls created from multi-view
silhouette images are widely used for multi-view reconstruction, [6, 11–14, 10, 15],
since they are fast and easy to compute and well approximate the underlying 3D
geometry. Further progresses have been made to the visual-hull-based viewing
experience [9], smoothing the geometry with fewer cameras [16], and real-time
performance [17]. Approaches have also emerged to recover geometric details
using multi-view constraints [18–20] and photometric stereo [4, 21]. Recently,
Collet et al. [1] introduced a system for high-quality free-viewpoint video by
fusing multi-view RGB, IR and silhouette inputs.

Despite the speed and robustness of silhouette-based reconstruction methods,
their reliance on visual hulls implies bias against surface concavities as well as
susceptibility to artifacts in invisible space.

Human Body Performance Capture. Actor-specific shape priors can be incor-
porated to improve the reconstruction quality for human body performance
capture [22–24, 7, 25]. Additional improvements have been proposed using kine-
matic skeletons [26, 27], segmentation of moving subjects [28–30, 27, 31, 32] and
human parametric models [33–39], even enabling single-view reconstruction [40–
44]. To obtain even higher accuracy and robustness, multi-view depth based
approaches are actively explored [45–48]. Orts-Escolano et al. [2] employ active
stereo cameras and highly specialized acquisition devices for real-time high-quality
capture. Wang et al. [49] use sparse depth sensors and RGB inputs to capture
moving subject with textures. In comparison, our method does not require any
active sensors and is more accessible to common users.

Further efforts have focused on capturing dynamic details such as clothing folds
using shape-from-shading [50], photometric stereo [51, 52] or implicit modeling
of deformable meshes [53]. To reduce the computational cost for the inverse
rendering problem in many of these approaches, Pons-Moll et al. [54] propose
a multi-cloth 3D model to reconstruct both body and clothes from 4D scan
sequences, estimating an unclothed body shape using [55, 56] and tracking the
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clothing over time. More recently, Xu et al. [8] reconstruct a human body wearing
general clothing. However, this approach requires each actor to be scanned in
advance for a template mesh and skeleton. In contrast, our method reconstructs
the mesh in a fully automatic way without needing any template model.

Multi-View 3D Deep Learning. Multi-view convolutional neural networks (CNN)
have been introduced to learn deep features for various 3D tasks including shape
segmentation [57], object recognition and classification [58–60], correspondence
matching [61], and novel view synthesis [62–64]. More closely related, a number
of previous works apply multi-view CNNs to 3D reconstruction problems in both
unsupervised [65] and supervised approaches to obtain the final geometry directly
[66, 67], or indirectly via normal maps [68], silhouettes [69], or color images [70].
Inspired by the multi-view stereo constraint, others [71, 72] have formulated ray
consistency and feature projection in a differentiable manner, incorporating this
formulation into an end-to-end network to predict a volumetric representation of
a 3D object.

Hartmann et al. [73] propose a deep learning based approach to predict the
similarity between the image patches across multiple views, which enables 3D
reconstruction using stereopsis. In contrast, our approach aims for a different
and more challenging task of predicting per-point possibility of lying on the
reconstructed surface, and directly connects 3D volume and its 2D projections
on the image planes. Closer to our work, Ji et al. [74] propose a learned metric to
infer the per-voxel possibility of being on the reconstructed surface in a volumetric
shape representation. However, due to the reliance on multi-view stereopsis, these
methods [74, 73] fail to faithfully reconstruct textureless surfaces and generate
dense reconstruction from sparse views. In addition, as both the input images
and the output surface need to be converted into volumetric representations,
it remains difficult for prior methods to generate high-resolution results. Our
approach, on the other hand, can work on textureless surfaces and produce results
with much higher resolution by leveraging an implicit representation.

Additionally, Dibra et al. [75] propose a cross-modal neural network that
captures parametric body shape from a single silhouette image. However, this
method can only predict naked body shapes in neutral poses, while our approach
generalizes well to dynamic clothed bodies in extreme poses.

3 Overview

Given multiple views and their corresponding camera calibration parameters as
input, our method aims to predict a dense 3D field that encodes the probabilistic
distribution of the reconstructed surface. We formulate the probability prediction
as a classification problem. At a high level, our approach resembles the spirit of
the shape-from-silhouette method: reconstructing the surface according to the
consensus from multi-view images on any 3D point staying inside the reconstructed
object. However, instead of directly using silhouettes, which only contain limited
information, we leverage the deep features learned from a multi-view convolution
neural network.
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As demonstrated in Figure 1, for each query point in the 3D space, we project
it onto the multi-view image planes using the input camera parameters. We
then collect the multi-scale CNN features learned at each projected location and
aggregate them through a pooling layer to obtain the final global feature for the
query point. The per-point feature is later fed into a classification network to infer
its possibilities of lying inside and outside the reconstructed object respectively.
As our method outputs a dense probability field, the surface geometry can be
faithfully reconstructed from the field using marching cube reconstruction.

We introduce the multi-view based probability inference network and training
details in Section 4. In Section 5, we will detail the surface reconstruction.

Fig. 1: Network architecture.

4 Multi-view based Probability Inference Network

4.1 Network Architecture

Our network consists of two parts: one feature extraction network that learns
discriminative features for each query point in the 3D space, and one classification
network that consumes the output of the preceding network and predicts the
per-point possibilities of lying inside and outside the reconstructed body. Both
networks are trained in an end-to-end manner.

Feature Extraction. The feature extraction network takes multi-view im-
ages along with their corresponding camera calibration parameters and 3D query
points as input. The multi-view images are first passed to a shared-weight fully
convolutional network, whose building block includes a convolutional layer, an
Relu activation layer, and a pooling layer. Batch normalization [76] is utilized in
each convolutional layer.

We then associate each query point pi with its features by projecting it onto
the multi-view image planes. Let qij denote pi’s projection onto image plane j.
As shown in Figure 1, we track each qij throughout the feature maps at each level
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of convolutional layers. The features retrieved from each layer at the projected
location are concatenated to obtain a single-view feature vector Fij .

Since the view projection has floating-point precision, ambiguity may arise
for feature extraction if the projected point lies on the boundary between two
adjacent pixels. To address this issue, at each level of the feature maps, we
perform bilinear interpolation on the nearest four pixels according to the local
coordinate of the projected location. It is worth mentioning that by applying
bilinear interpolation, our method further increases the receptive field of the
feature vector at each layer, and makes the network more robust against boundary
points around the silhouette. If the projection of a query point is out of scope of
the input image, we fill its feature vector with zeros and do not include it in the
back propagation.

Scale-invariant Symmetric Pooling. After obtaining the feature vector Fij from
each view j, one key module must effectively aggregate these view-dependent
signatures. However, the viewing distance and focal length may differ for each
camera, and so the scales of projections of the same 3D volume may vary
significantly from viewpoint to viewpoint. As a result, features on the same level
of convolutional layers may have different 3D receptive fields across different
views. Therefore, direct element-wise pooling on view-dependent features may
not be effective, as it could be operated on mismatched scales.

To resolve this issue, we introduce shared-weight MLP layers before the
pooling operation so that multi-scale features will be more uniformly distributed
to all element entries, enabling the follow-up pooling module to be feature scale
invariant. Then, we apply a permutation invariant pooling module on the output
feature vectors of the MLP layers. The outputs of the pooling module are the
final feature vector associated with each query point.

in
out

τ
τ

Surface boundary

Fig. 2: Classifica-
tion boundary.

Classification Network. After obtaining a feature
vector for a query point, we employ a classification network
to infer its probability of being on the reconstructed surface.
A simple structure consisting of multiple fully connected
layers is used for this classification task. In particular, we
predict two labels (Pin, Pout) for each point, where Pin and
Pout stand for the possibility of the 3D point being inside and
outside the reconstructed object, respectively. For a query
point p and a ground-truth mesh M, if p is inside M, we
mark its labels as (1, 0); if p lies on the surface, it is marked
as (1, 1); otherwise, p is marked as (0, 1).

In reality, only very few sample points lay exactly on the
surface. To better capture the surface, we relax the criteria for determining the
inside/outside labels. As shown in Figure 2, in addition to the points inside the
surface, we also include those outside points whose distance to the surface is below
a threshold τ (τ is set as 1 cm) and mark their Pin label as 1. Similarly, we apply
the same threshold to mark Pout. Therefore, points in the near-surface region
are labeled as both (1, 1). We predict the two labels independently and train the
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network using sigmoid cross-entropy loss. Therefore, the predicted value of Pin

and Pout ranges from 0 to 1, where a larger value indicates a higher probability.
More details of network design are provided in the supplementary materials.

4.2 Network Training

As our approach aims to predict a dense probability field, for each 3D mesh, it is
necessary to generate a large amount of query points for training the network.
However, uniformly sampling the 3D space would be prohibitive in terms of
computational cost. In fact, we only care about points that are near the final
reconstructed surface. We therefore adopt an adaptive sampling strategy to
emphasize our sampling on such points. For each ground-truth mesh M, we first
generate a regular point grid with resolution 2563 filling the space of an enlarged
(1.5 times) bounding box of M. We compute signed distances of the grid points
with the method given by [77]. We then calculate the largest distance l from the
interior grid point to M’s surface: l = |mini dist(ti,M)|.

To select points that are more centered around the surface of M, we utilize
Monte Carlo sampling to keep those grid points ti whose distance |dist(ti,M)|
satisfies the Gaussian distribution: norm(µ = 0, σ = l). For each of the combi-
nations of multi-view images and their camera matrices that will appear in the
training, we augment the data by firstly reconstructing the visual hull from the
input views; and then randomly sampling more points inside the visual hull but
ensuring the newly added points achieve an equal distribution inside and outside
the ground-truth mesh M. We stop adding samples when the total number of
query points for each M reaches 100, 000.

We train the network using various combinations of camera views. For a
certain number of views (3, 4 or 8), we train an individual model. We test each
model using corresponding number of views. The combinations of views are
selected such that every adjacent two of them have a wide baseline and all the
views together cover the entire subject in a loop. The query points and their
labels for each mesh are pre-computed so as to save training time.

During training, we randomly draw 10, 000 query points from the pre-computed
set for each sample. We directly take color images of each view as inputs in their
original resolutions, which varies from 1600×1200 to 1920×1080. For each batch,
we only load images from one multi-view scene due to the limited GPU memory.
The network is optimized using Adam optimizer. We start with a learning rate of
0.00001 and gradually decay it exponentially every 100, 000 batches with a factor
of 0.7. We train the network for 20 epochs on a single NVIDIA GTX 1080Ti
GPU.

5 Surface Reconstruction

At test time, we first use our network to generate a dense probability field from
the input images. As the near-surface region only occupies little volume compared
to the space it encloses, it is highly inefficient to apply uniform sampling over the



8 Z. Huang, et al.

space. Therefore we employ an octree-based approach to achieve a high-resolution
reconstruction with a low computational cost. In particular, we first compute
the center of the scene according to the camera positions and their calibration
parameters. A bounding box of length 3 meters on each side is placed at the scene
center. We then fill the bounding box with a regular 3D grid. By traversing each
cube in the grid, we subdivide those cubes whose centers are surface points, or
whose vertices consist both inside and outside points, recognized by our network.
As our network predicts two probabilities (Pin, Pout) per point, we propose
to aggregate the two probabilities into one signed distance for surface point
prediction and later reconstruction of the entire surface.

As discussed in Section 4.2 and illustrated in Figure 2, Pin and Pout indicate
the relaxed probabilities of being inside and outside the object, respectively.
Since Pin and Pout are independent events, the probability of a point being
near the surface can be simply computed as: Psurf = Pin × Pout. By excluding
the near-surface region (defined above), we define the probability of reliably
staying inside the object as P ′

in = Pin × (1− Pout). Similarly, the probability of
lying in the outer region but having point-to-mesh distance larger than τ can
be calculated as P ′

out = Pout × (1 − Pin). We compute all three probabilities
{Psurf , P

′

in, P
′

out} for each grid point. We then determine the signed distance
value for each point by selecting the largest probability. In particular, we only
assign three discrete signed distance values: {−1, 0, 1}, which represent inner,
surface and outer points respectively. For instance, for one query point, if its
Psurf is larger than the other probabilities, it will be assigned with 0 and treated
as a surface point. A similar strategy is applied to determine inner and outer
points and to assign their corresponding signed distances.

We then generate a dense signed distance field in a coarse-to-fine manner. As
discussed previously, we subdivide those cubes marked by the network, further
infer the signed distance for all the octant cubes, and iterate until a target
resolution is achieved. Finally, after obtaining the signed distance field, we use
the marching cubes algorithm to reconstruct the surface whose signed distance
equals 0.

6 Results

6.1 Dataset

A good training set of sufficient size is key to a successful deep learning model.
However, existing datasets of multi-view clothed body capture usually consist of
only a few subjects, making them unsuitable for training a deep neural network.
SURREAL dataset [78] has large amount of synthetic humans but it does not
contain geometric details of clothes and thus is not suitable for our task.

We therefore generate a synthetic dataset by rendering rigged and animated
human character models from Mixamo [79] as seen from multiple views. The
characters share the same rig, and so a variety of animations and human poses
could be rapidly synthesized of different figures dressed in many clothing types and
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styles. In total we render images with 50 characters and 13 animations, for eight
camera viewpoints with known projection matrices. We use 43 characters and 10
animations for training. The remaining seven characters and three animations
are used for validation and testing.

6.2 Evaluations

In this section, we evaluate our model on various datasets, including [6], [4],
[18], as well as our own synthetic data. For real-world datasets whose original
backgrounds are removed, we composite a green background according to the
provided segmentation.

Fig. 6: Camera set-
ting for reported
four-view results.

Qualitative Results. We first reconstruct these results from
four views on grids of resolution 10243 as shown in Figure 3.
All the results are generated directly from our pipeline
without any post-processing except edge collapse to reduce
file sizes. All the results are generated from test cases. To
validate the accuracy of the reconstructed geometry, we
colorize each vertex with the visible cameras with simple
cosine weight blending. Our rendering results could be
further improved via recent real-time [80] or offline [81]
texturing approaches.

Figure 6 shows the camera setting for the results. From
only four-view inputs with limited overlap between each of
them, our network reconstructs a watertight surface that resembles the subject’s
geometry and recovers reasonable local details. Even for ambiguous areas where
no cameras have line-of-sight, our network can still predict plausible shapes. We
also present results on a sequence of challenging motion performance from Vlasic
et al. [6] in Figure 4. Even for the challenging poses and extreme occlusion, our
network can robustly recover a plausible shape.

As our network is not limited by the number of views, we train and test our
models with different numbers of views. We test our model with three-view, four-
view, and eight-view settings, selecting input views incrementally. As shown in
Figure 5, with more views, our network can predict more details, e.g. facial shape
and hairstyle. For most of the results shown in this paper, we use a four-view
setting, which achieves the best balance between view-sparsity and reconstruction
quality.

Quantitative Results. We evaluate our reconstruction accuracy by measuring
Euclidean distance from reconstructed surface vertices to the reference scan. For
real world data, we use results given by [6] and [18] as our references, which
approximate the ground-truth surface using a much more advanced capturing
setup. We show visualizations for the mesh-to-scan distances and evaluate the
distance statistics.

As shown in Figure 3, given inputs from various test sets, our network predicts
accurate surface, with median mesh-to-scan distance of all examples less than
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Fig. 3: Results reconstructed from four views. Top to bottom rows: input multi-view

images, reconstructed mesh, textured mesh, and error visualization. From left to right,

median mesh-to-scan distance: 0.90cm, 0.66cm, 0.85cm, 0.54cm, 0.59cm; mean mesh-to-

scan distance: 1.18cm, 0.88cm, 1.10cm, 0.65cm, 0.76cm.
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Fig. 4: Sequence results. Top to bottom rows: multi-view images, reconstructed mesh,

textured mesh, and error visualization. From left to right, median mesh-to-scan distance:

0.94cm, 0.86cm, 0.82cm, 0.76cm, 0.85cm; mean mesh-to-scan distance: 1.31cm, 1.27cm,

1.21cm, 1.06cm, 1.25cm
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Fig. 5: Reconstructions with di�erent views. Top to bottom rows: recons tructed mesh,
textured mesh, and error visualization. Left to right columns: th ree-view results, four-
view results, and eight-view-view results, for both two test ca ses respectively. Median
mesh-to-scan distance: left subject: 0:84cm (three-view), 0:77cm (four-view), 0:45cm
(eight-view); right subject: 1 :38cm (three-view), 1:06cm (four-view), 0:59cm (eight-view).

0:9cm. As shown in Figure 4, our network also predicts accurate reconstruction
for the challenging input image sequences, with median mesh-to-scandistance
below 0:95cm. In Figure 5, we observe that the distance error decreases as more
views are available during network training. The median distance for 8-view
drops below half of the distance as for the three-view training setting.

6.3 Comparisons

In this section we compare our approach with existing methods using four-view
input in Figure 7.

While traditional multi-view stereo PMVS [82] is able to reconstruct an
accurate point cloud, it often fails to produce complete geometry with large
baseline (four views to cover 360 degree in this case) and texture-less inputs. As
a learning-based approach, SurfaceNet [74] reconstructs a more complete point
cloud, but still fails at the region with fewer correspondences due to large baseline.
It remains di�cult to reconstruct a complete surface from sparse point clouds
















