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Abstract. Domain adversarial learning aligns the feature distributions
across the source and target domains in a two-player minimax game. Ex-
isting domain adversarial networks generally assume identical label space
across different domains. In the presence of big data, there is strong moti-
vation of transferring deep models from existing big domains to unknown
small domains. This paper introduces partial domain adaptation as a new
domain adaptation scenario, which relaxes the fully shared label space as-
sumption to that the source label space subsumes the target label space.
Previous methods typically match the whole source domain to the target
domain, which are vulnerable to negative transfer for the partial domain
adaptation problem due to the large mismatch between label spaces. We
present Partial Adversarial Domain Adaptation (PADA), which simulta-
neously alleviates negative transfer by down-weighing the data of outlier
source classes for training both source classifier and domain adversary,
and promotes positive transfer by matching the feature distributions in
the shared label space. Experiments show that PADA exceeds state-of-
the-art results for partial domain adaptation tasks on several datasets.

1 Introduction

Deep neural networks have made significant advances to a variety of machine
learning problems and applications. However, the significant advances attribute
to the availability of large-scale labeled data. Since manually labeling sufficient
training data for various applications is often prohibitive, for problems short of
labeled data, there is strong incentive to designing versatile algorithms to reduce
the labeling consumption. Domain adaptation methods [1] enable the ability to
leverage labeled data from a different but related source domain. At the core of
these methods is the shift in data distributions across different domains, which
hinders the generalization of predictive models to new target tasks [2].

Existing domain adaptation methods generally assume that the source and
the target domains share identical label space but follow different distributions.
These methods close the large gap between different domains by learning domain-
invariant feature representations using both domain data but without using tar-
get labels, and apply the classifier trained on the source domain to the target
domain. Recent research has shown that deep networks can disentangle explana-
tory factors of variations underlying domains to learn more transferable features
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Fig. 1. The partial domain adaptation scenario introduced in this paper, where source
label space (‘T'V’, ‘chair’, ‘mug’) is a superset of target label space (‘chair’, ‘mug’). This
scenario is difficult as the source domain may have some outlier classes not appearing
in the target domain, e.g. the ‘T'V’ class. These outlier source classes will make the
well-known negative transfer bottleneck more prominent. Another technical difficulty
is that it is nontrivial to identify which classes are outlier source classes since the target
classes are unknown during training. In this paper, we will tackle these challenges in an
end-to-end deep learning framework, Partial Adversarial Domain Adaptation (PADA).

for domain adaptation [3,4,5]. Along this line, domain adaptation modules such
as moment matching [6,7,8,9] and adversarial adaptation [10,11,12] have been
embedded in deep networks to learn domain-transferable representations.

However, in real applications, it is usually not easy to find a source domain
with identical label space as the target domain of interest. Thus, previous do-
main adaptation methods can hardly fit into proper datasets to train a domain-
invariant model. Also, it is really cumbersome to seek for new source domains for
emerging target domains. Thanks to the big data evolution, large-scale datasets
with rich supervised information such as ImageNet-1K become accessible. As a
common practice, ImageNet-1K is used as a universal repository to train deep
models that are later fine-tuned to a variety of significantly different tasks. How-
ever, until now we can only reuse the learned features. And a natural ambition is
to further transfer the classification layers of deep networks from a large dataset
with supervision e.g. ImageNet, to a small target dataset without supervision e.g.
Caltech-256. Since the large dataset is required to be big enough, it is reasonable
to assume that its label space subsumes that of our target dataset.

Towards the aforementioned ambition, we introduce a novel partial domain
adaptation problem, which assumes that the target label space is a subspace
of the source label space. As shown in Fig. 1, this novel scenario is more gen-
eral and challenging than standard domain adaptation, since the outlier source
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classes (‘TV’) will trigger negative transfer when discriminating the target classes
(‘chairs’ and ‘mug’). Negative transfer is the worst case that an adapted learner
performs even worse than a supervised classifier trained solely on the source do-
main, which is the key bottleneck of domain adaptation to be widely adopted by
practical applications [1]. Thus, matching the whole source and target domains
as previous methods is not an effective solution to this new problem.

In this paper, we present Partial Adversarial Domain Adaptation (PADA),
an end-to-end framework that largely extends the ability of domain adversarial
adaptation approaches [10,11,12] to address the new partial domain adaptation
scenario. PADA aligns the feature distributions of the source and target data
in the shared label space and more importantly, identifies the irrelevant source
data belonging to the outlier source classes and down-weighs their importance
automatically. The key improvement over previous methods is the capability to
simultaneously promote positive transfer of relevant source data and alleviate
negative transfer of irrelevant source data. Experiments show that our models
exceed state-of-the-art results for partial domain adaptation on public datasets.

2 Related Work

Domain adaptation [1] bridges different domains following different distributions
to mitigate the burden of manual labeling for machine learning [13,14,15,16],
computer vision [17,18,19] and natural language processing [20]. Supervised do-
main adaptation [11,21,22,23] exploits a few labeled data in the target domain.
While supervised domain adaptation achieves significant performance, unsuper-
vised domain adaptation [6,7,12,10,8,9] is more practical since no labeled data
is required. We focus on unsupervised domain adaptation in this paper.

Deep networks disentangle different explanatory factors of variations in the
learned representations [24] and manifest invariant factors underlying different
populations that transfer well across similar tasks [5]. Therefore, we mainly focus
on deep domain adaptation methods, which enables domain adaptation by re-
ducing the distribution discrepancy of deep features across different domains and
have been proved to yield state-of-the-art performance on several domain adap-
tation tasks. Maximum Mean Discrepancy (MMD) based methods [6,7,9] trans-
fers deep convolutional networks (CNNs) by adding adaptation layers through
which the kernel embeddings of distributions are matched by minimizing MMD.
Residual transfer network [8] improves the MMD-based methods by adding a
shortcut path and adopting entropy minimization criterion.

Driven by the popularity of generative adversarial networks (GANs), several
methods [10,12] add a subnetwork as a domain discriminator on the last feature
layers to discriminate features of different domains, while the deep features are
learned to deceive the domain discriminator in a two-player game. Label Efficient
Learning [25] addresses different label spaces by extending the entropy minimiza-
tion criterion [8] over the pairwise similarity of a target image with each source
image, enforcing each target image to be similar to only a few source images.
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These methods may be restricted by the assumption that the source and
target domains share the same label space, which does not hold in partial domain
adaptation. Adaptive Deep Learning [26], somehow reduces the negative transfer
of outlier classes by localizing the image regions more responsible for the domain
shift as well as the regions that are shared among domains to guide the attention
of the classifier. But for images with no regions related to the target domain,
the attention mechanism may fail by wrongly localizing related regions.

3 Partial Adversarial Domain Adaptation

This paper introduces partial domain adaptation, a novel domain adaptation
scenario where the source domain label space C; is a superset of the target domain
label space C; i.e. C; C Cs. This scenario generalizes standard domain adaptation
with identical label spaces, and can be widely applied to real applications, since
with the availability of big data, it is not difficult to find a large-scale dataset
(e.g. ImageNet) and adapt our model trained on that dataset to any small-scale
dataset of interest (e.g. Caltech-256), given the partial assumption holds. By
this means, we can avoid burdensome work to provide supervised information
for the target dataset.

Similar to standard domain adaptation, in partial domain adaptation we are
also provided with a source domain Dy = {(x5,y)}1; of ns labeled examples
associated with |Cs| classes and a target domain Dy = {x!}1*; of n; unlabeled
examples associated with |C;| classes, but differently, we have |Cs| > |C¢| in
partial domain adaptation. The source and target domains are sampled from
distributions p and ¢ respectively. While in standard domain adaptation we have
p # g, in partial domain adaptation, we further have pc, # g, where pc, denotes
the distribution of the source domain labeled data belonging to label space C;.
The goal of this paper is to design a deep neural network that enables learning
of transferable features f = G (x) and adaptive classifier y = G, (f) to close the
domain gap, such that the target risk Prx ,)~q [Gy (G¢(x)) # y] can be bounded
by minimizing the source domain risk and the cross-domain discrepancy.

In standard domain adaptation, one of the main difficulties is that the tar-
get domain has no labeled data and thus the source classifier G, trained on
source domain D, cannot be directly applied to target domain D;, due to the
distribution discrepancy of p # ¢. In partial domain adaptation, another more
difficult challenge is that we even do not know which part of the source do-
main label space C; is shared with the target domain label space C;, because C;
is not known during training. This results in two technical difficulties. On one
hand, the source domain labeled data belonging to outlier label space Cs\C; will
cause negative transfer effect to the overall performance. Existing deep do-
main adaptation methods [7,10,11,8] generally assume source domain and target
domain have the same label space and match the whole distributions p and g,
which are prone to negative transfer since the source and target label spaces are
different and thus the outlier classes should not be matched. Thus, how to undo
or at least decay the influence of the source labeled data in outlier label space
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Cs\C; is the key to mitigating negative transfer. On the other hand, reducing
the distribution discrepancy between pe, and ¢ is crucial to enabling positive
transfer in the shared label space C;. These two interleaving challenges should
be tackled jointly through filtering out the negative influence of unrelated part
of source domain and meanwhile enabling effective domain adaptation between
related part of source domain and target domain.

In summary, we should tackle two challenges to enabling partial domain adap-
tation. (1) Mitigate negative transfer by filtering out unrelated source labeled
data belonging to the outlier label space Cs\C;. (2) Promote positive transfer by
maximally matching the data distributions pe, and ¢ in the shared label space
C:. We propose a partial domain adversarial network to address both challenges.

3.1 Domain Adversarial Neural Network

Domain adaptation is usually reduced to matching the feature distributions of
the source and target domains. In the deep learning regime, this can be done by
learning new feature representations such that the source and target domains
are not distinguishable by a domain discriminator. This idea leads to the a series
of domain adversarial neural networks (DANN) [10,11], achieving strong perfor-
mance in standard domain adaptation with shared label space across domains.
More formally, DANN is a two-player minimax game, where the first player is
a domain discriminator G4 trained to distinguish the source domain from the
target domain, and the second player is a feature extractor Gy simultaneously
trained to confuse the domain discriminator.

In order to extract domain-transferable features f, the parameters 6 of the
feature extractor Gy are learned by maximizing the loss of domain discriminator
(G4, while the parameters 6, of domain discriminator G4 are learned by minimiz-
ing the loss of the domain discriminator. In addition, the loss of source classifier
Gy is also minimized to guarantee lower source domain classification error. The
overall objective of the Domain Adversarial Neural Network (DANN) [10] is

Co (07,000) = - 3 Ly (Gy Gy (x0) 1)

S

;\QEDS (1)
By > La(Ga(Gy(xi)),di)
x; ED;UDy

where d; is the domain label of x;, and A is a hyper-parameter to trade off the
two objectives L, and Lg. After training convergence, the learned parameters 6y,
0y, 0q will deliver a saddle point of functional (1) in the minimax optimization:

(éf,éy) =argminCy (0¢,0y,04) ,

e.f’ey (2)
(04) = arg max C (0f,0y,04) .
04
Domain adversarial neural network has been widely applied to standard domain
adaptation where the source domain label space and target domain label space
are exactly the same, C; = C¢, proving powerful for computer vision problems.
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Fig. 2. The architecture of Partial Adversarial Domain Adaptation (PADA), where f
is the extracted deep features, y is the data label prediction (softmax probability), and
d is the domain label prediction; G is the feature extractor, G, and L, are the source
classifier and its loss, G4 and L4 are the domain discriminator and its loss; «y is the class
weights averaged over the label predictions of target data. GRL stands for Gradient
Reversal Layer. The blue part shows the partial adversarial domain discriminator with
weighting mechanism newly designed in this paper. Best viewed in color.

3.2 Partial Adversarial Domain Adaptation

In partial domain adaptation, the target domain label space is a subspace of the
source domain label space, C; C C,. Thus, aligning the whole source domain dis-
tribution p and target domain distribution g will cause negative transfer since the
target domain is also forced to match the outlier label space Cs\C; in the source
domain. And the larger the outlier label space C;\C; compared to the target label
space Ct, the severer the negative transfer will be. Note that |G| < |Cs\Cy| is a
natural scenario of partial domain adaptation in real world applications because
we usually need to transfer from very large-scale source dataset (e.g. ImageNet)
to relatively small target dataset. Thus, when performing adversarial domain
adaptation to mitigate negative transfer, we should reduce or even eliminate
the negative influence of the outlier source classes as well as the associated source
labeled data in Cs\Cy.

In this paper, we propose a novel approach, Partial Adversarial Domain
Adaptation (PADA), to address the aforementioned challenges. The key idea
is to down-weigh the contribution of the source data within the outlier source
label space Cs\C; to the training of both the source classifier and the domain
adversarial network. This idea is implemented in a novel architecture shown in
Fig. 2. For now the technical problem is reduced to finding some metrics that
have large difference between the source outlier classes and the target classes, in
order to discriminate the source data belonging to the outlier label space and
the target label space. Fortunately, we observe that the output of the source
classifier y; = Gy (x;) to each data point x; gives a probability distribution over
the source label space Cs. This distribution well characterizes the probability of
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assigning x; to each of the |C;| classes. Since the source outlier label space and
target label space are disjoint, the target data should be significantly dissimilar
to the source data in the outlier label space. Hence, the probabilities of assigning
the target data to the source outlier classes, i.e. yf,xi € Dy, k € C,\Ct, should
be sufficiently small. It is possible that the source classifier can make a few mis-
takes on some target data and assign large probabilities to false classes or even
to outlier classes. To eliminate the influence of such few mistakes, we propose to
average the label predictions y; on all target data. Hence, the weight indicating
the contribution of each source class to the training can be calculated as follows

1 &
= — A,L-7 3
5 nt;y (3)

where 7 is a |Cs|-dimensional weight vector quantifying the contribution of each
source class. Specifically, since the target data are not belonging to the source
outlier label space, the corresponding weight for source outlier labels v, k €
Cs\C: will be significantly smaller than the weight for target labels vy, k € C;. In
practice, it is possible that some of the weights are very small, since by definition,
Zl,f:sll ¢ = 1. Thus, we normalize the weight v by dividing its largest element,
ie. v« v/ max (7).

We enable partial adversarial domain adaptation by down-weighing the con-
tributions of all source data belonging to the outlier source label space C;\Cs.
This is achieved by applying the class weight vector v to both the source label
classifier and the partial adversarial domain discriminator over the source domain
data. The objective of the Partial Adversarial Domain Adaptation (PADA) is

C0.0,:00 = 2= >~ Ly (G (G (x0)
x; €D

_ i Z Yy La (Ga (G (x4)) , d;) (4)

n
S x,€Ds

— 2 S L4 (Ga(Gy (x2)) )
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x; €Dy

where y; is the ground truth label of source point x; while «y,, is the corresponding

class weight, and A is a hyper-parameter that trade-offs the source label classifier

and the partial adversarial domain discriminator in the optimization problem.
The optimization problem finds the optimal parameters 0y, 8, and 6, by

(9}, éy) =argminC (0y,0,,64),
v )
(04) = arg max C (0¢,0,,04) .
(]
Note that the proposed PADA approach as in Equation (5) successfully enables
partial domain adaptation, which simultaneously mitigates negative transfer by
filtering out outlier source classes Cs\Ct, and promotes positive transfer by max-

imally matching the data distributions p¢, and ¢ in the shared label space C;.
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4 Experiments

We conduct experiments on three datasets to evaluate our partial adversarial do-
main adaptation approach against several state-of-the-art deep transfer learning
methods. Codes and datasets is available at https://github.com/thuml/PADA.

4.1 Setup

The evaluation is conducted on three standard domain adaptation datasets:
Office-31, Office-Home and ImageNet-Caltech.

Office-31 [17] is a most widely-used dataset for visual domain adaptation,
with 4,652 images and 31 categories from three distinct domains: Amazon (A),
which contains images downloaded from amazon.com, Webcam (W) and DSLR
(D), which contain images respectively taken by web camera and digital SLR
camera. We denote the three domains as A, W and D. We use the ten categories
shared by Office-31 and Caltech-256 and select images of these ten categories
in each domain of Office-31 as target domains. We evaluate all methods across
six partial domain adaptation tasks A - W D - W, W D A —-D,D —
A and W — A. Note that each source domain here contains 31 categories and
each target domain here contains 10 categories.
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Fig. 3. Example images of the Office-Home dataset.

Office-Home [27] was released recently as a more challenging domain adap-
tation dataset, crawled through several search engines and online image direc-
tories, as shown in Fig. 3. It consists of 4 different domains: Artistic images
(Ar), Clipart images (Cl), Product images (Pr) and Real-World images (Rw).
For each domain, the dataset contains images from 65 object categories. In each
transfer task, when a domain is used as source domain, we use the images from
all 65 categories; when a domain is used as target domain, we choose (in alpha-
betic order) the first 25 categories as target categories and select all images of
these 25 categories as target domain. Denoting the four domains as Ar, Cl, Pr,
Rw, we can build twelve partial domain adaptation tasks: Ar — Cl, Ar — Pr,
Ar - Rw, Cl — Ar, Cl — Pr, Cl - Rw, Pr —» Ar, Pr — CI, Pr —» Rw,
Rw — Ar, Rw — Cl and Rw — Pr. The transfer tasks from this dataset can
test the performance of our method on more visually-dissimilar domains.

ImageNet-Caltech is constructed from ImageNet-1K [28] and Caltech-256.
They share 84 common classes, and thus we form two partial domain adaptation
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tasks: ImageNet-1K — Caltech-84 and Caltech-256 — ImageNet-84. To
prevent the effect of the pre-trained model on ImageNet, we adopt the validation
set when ImageNet is used as target domain and adopt the training set when
ImageNet is used as source domain. This setting represents the performance on
partial domain adaptation tasks with large number of classes.

VisDA2017 has two domains where one consists of synthetic 2D renderings
of 3D models and the other consists of photo-realistic images or real images.
They have 12 classes in common. We choose (in alphabetic order) the first 6
categories as target categories and select all images of these 6 categories as target
domain and construct two domain adaptation tasks: Real-12 — Synthetic-6
and Synthetic-12 — Real-6. In this dataset, both domains have large number
of images, which validates the efficiency of PADA on large-scale dataset.

We compare the performance of PADA with state-of-the-art transfer learn-
ing and deep learning methods: ResNet-50 [29], Deep Adaptation Network
(DAN) [7], Residual Transfer Networks (RTIN) [8], Domain Adversarial Neural
Network (DANN) [10], Adversarial Discriminative Domain Adaptation (ADDA)
[12] and Joint Adaptation Network (JAN) [9]. In order to go deeper with the ef-
ficacy of the proposed partial adversarial mechanism, we perform ablation study
by evaluating two variants of PADA: (1) PADA-classifier is the variant with-
out the weight on the source classifier; (2) PADA-adversarial is the variant
without the weight on the partial adversarial domain discriminator.

We follow standard evaluation protocols and use all labeled source data and
all unlabeled target data for unsupervised domain adaptation [17,7]. We compare
the average classification accuracy of each partial domain adaptation task using
three random experiments. For MMD-based methods (DAN and RTN), we use
Gaussian kernel with bandwidth set to median pairwise squared distances on
training data, i.e. the median heuristic [30]. For all methods, we use importance-
weighted cross-validation [31] on labeled source data and unlabeled target data
to select their hyper-parameters.

We implement all deep methods in PyTorch, and fine-tune from PyTorch-
provided models of ResNet-50 [32] pre-trained on ImageNet. We add a bottleneck
layer between the resbc and fc layers as DANN [10] except for the transfer task
ImageNet (1000 classes) — Caltech (84 classes), since the pre-trained
model is trained on ImageNet dataset and it can fully exploit the advantage of
pre-trained model with the original network parameters. For PADA, we fine-tune
all the feature layers and train the bottleneck layer, the classifier layer and the
partial adversarial domain discriminator though back-propagation. Since these
new layers are trained from scratch, we set their learning rate to be 10 times that
of the other layers. We use mini-batch stochastic gradient descent (SGD) with
momentum of 0.9 and the learning rate strategy implemented in DANN [10]: the
learning rate is adjusted during SGD using 7, = (1_;7701))7, where p is the training
progress changing from 0 to 1, 1y, while @ and ~ are optimized with importance-
weighted cross-validation [31] on one task of a dataset and fixed for all the other
tasks of this dataset. As PADA works stably across different tasks, the penalty
of adversarial networks is increased progressively from 0 to 1 as DANN [10].
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4.2 Results

The classification accuracy results of partial domain adaptation on the twelve
tasks of Office-Home, the six tasks of Office-31, and the two tasks of ImageNet-
Caltech are shown in Tables 1, 2, and 3, respectively. PADA outperforms all
comparison methods on all the tasks. In particular, PADA substantially improves
the average accuracy by huge margins on Office-31 of small domain gaps, e.g.
Amazon — Webcam, and on Office-Home of large domain gaps, e.g. Clipart
— Real World. It is inspiring that PADA achieves considerable accuracy gains
on ImageNet—Caltech with large-scale source domain and target domain.
These consistent results suggest that PADA can learn transferable features and
classifiers for partial domain adaptation on all the partial domain adaptation
tasks, varying by the sizes of the source and target domains and the gaps between
the source and target domains.

Previous deep domain adaptation methods, including those based on adver-
sarial networks (e.g. DANN) and those based on MMD (e.g. DAN), perform
worse than standard ResNet on most of the tasks, showing the undesirable in-
fluence of the negative transfer effect. Adversarial-network based methods try
to learn deep features that deceive the domain discriminator, while MMD based
methods align the source and target feature distributions. Both mechanisms will
mix up the whole source and target domains in the feature space, since they aim
to match all classes of source domain to target domain. But there are classes in
the source domain that do not exist in the target domain, a.k.a. outlier source
classes. This explains their weak performance for partial domain adaptation. Not
surprisingly, PADA outperforms all the comparison methods by large margins,
indicating that PADA can effectively avoid negative transfer by eliminating the
influence of outlier source classes irrelevant to the target domain.

Methods based on domain-adversarial networks perform worse than MMD-
based methods. Since adversarial-network based methods try to confuse a non-
linear domain discriminator, it has more power to match source and target do-
mains and is more vulnerable to the outlier source classes than MMD based
methods. Although PADA is also based on adversarial networks, it establishes
a partial adversarial domain discriminator, which down-weighs the source data
in the outlier source classes to eliminate the negative influence of the outlier
source classes and meanwhile enhances the positive influence of shared classes,
successfully boosting the performance of partial domain adaptation.

Table 1. Accuracy of partial domain adaptation tasks on Office-Home (ResNet-50)

Method Office-Home
Ar—CIl Ar—Pr Ar—Rw Cl—Ar Cl-Pr Cl-Rw Pr—Ar Pr—Cl Pr-Rw Rw—Ar Rw—Cl Rw—Pr| Avg
ResNet [32] 38.57  60.78 75.21 39.94  48.12 52.90 49.68  30.91 70.79 65.38 41.79 70.42 |53.71
DAN [7] 44.36  61.79 74.49 41.78 4521 54.11 46.92  38.14 68.42 64.37 45.37 68.85 | 54.48
DANN [10] 44.89  54.06 68.97 36.27 34.34 4522 44.08  38.03 68.69 52.98 34.68 46.50 |47.39
RTN [8] 49.37  64.33 76.19 47.56  51.74 57.67 50.38  41.45 75.53 70.17 51.82 74.78 |59.25
PADA-classifier | 47.45 58.15 74.32 43.62  37.93 51.91 48.21  41.67 71.62 67.13 52.98 71.60 | 55.55
PADA-adversarial| 47.10  47.54 67.53 41.32  39.72 52.70 43.07  35.94 70.51 61.80 48.24 70.08 |52.13
PADA 51.95 67 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.6 77.09 |62.06
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Table 2. Accuracy of partial domain adaptation tasks on Office-31 (ResNet-50)

Method Office-31
A—-W D—-W WD A—-D D—-A W=A Avg
ResNet [32] 54.52 94.57 94.27 65.61 73.17 71.71 75.64
DAN [7] 46.44 53.56 58.60 42.68 65.66 65.34 55.38
DANN [10] 41.35 46.78 38.85 41.36 41.34 44.68 42.39
ADDA [12] 43.65 46.48 40.12 43.66 42.76 45.95 43.77
RTN [§] 75.25 97.12 98.32 66.88 85.59 85.70 84.81
JAN [9] 43.39 53.56 41.40 35.67 51.04 51.57 46.11
LEL [25] 73.22 93.90 96.82 76.43 83.62 84.76 84.79
PADA-classifier 83.12 99.32 100 80.16 90.13 92.34 90.85
PADA-adversarial 65.76 97.29 97.45 77.07 87.27 87.37 85.37
PADA 86.54 99.32 100 82.17 92.69 95.41 92.69

Table 3. Classification accuracy on ImageNet-Caltech and VisDA2017 (ResNet-50)

Method ImageNet-Caltech VisDA2017
ImageNet — Caltech Caltech — ImageNet Avg |Real — Synthetic Synthetic — Real Avg
ResNet [32] 71.65 66.14 68.90 64.28 45.26 54.77
DAN [7] 71.57 66.48 69.03 68.35 47.60 57.98
DANN [10] 68.67 52.97 60.82 73.84 51.01 62.43
RTN [§] 72.24 68.33 70.29 72.93 50.04 61.49
PADA 75.03 70.48 72.76 76.50 53.53 65.01

Among previous deep domain adaptation methods, RTN is the only approach
that generally performs better than ResNet-50. The remedy of RTN is to in-
troduce entropy minimization criterion which can increase the contributions of
target data and thus implicitly avoid the impact of outlier source data to some
degree. Unlike RTN, PADA does not use the entropy minimization criterion. But
we observe that PADA outperforms RTN in all the partial domain adaptation
tasks, proving that RTN also suffers from the negative transfer effect and even
the residual branch of RTN, originally designed for large domain gap, cannot
bridge the large discrepancy between source and target caused by different label
spaces. These results validate that our partial adversarial mechanism is versatile
enough to jointly promote positive transfer from relevant source domain data
(belonging to target label space) and circumvent negative transfer from irrele-
vant source domain data (belonging to outlier source label space).

We perform ablation study of PADA by comparing the PADA variants in
Tables 1 and 2. We can make some insightful observations from the results. (1)
PADA outperforms PADA-classifier, proving that using weighting mechanism
on the source classifier can reduce the influence of the source data in the outlier
classes and focus the source classifier more on the source data belonging to the
target label space. (2) PADA outperforms PADA-adversarial with large margin,
which proves that our weighting mechanism on the domain adversarial network
can assign small weight on the outlier classes and down-weigh the source data of
the outlier classes. In this way, PADA is able to avoid matching the whole source
domain and target domain and boost performance of partial domain adaptation.



12 Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin Wang
4.3 Empirical Analysis

Statistics of Class Weights: We illustrate the learned class weight for each
class in our weighting mechanism on the task A (31 classes) — W (10 classes)
in Fig. 4(a). Since it is difficult to visualize all the 1000 weights in one plot, we
visualize the sum and average of the weights of all classes on the task ImageNet-
1K — Caltech-84 in Fig. 4(b). As shown in Fig. 4(a), our partial adversarial
mechanism assigns much larger weights to the shared classes than to the out-
lier classes. It is inspiring that and some outlier classes even have nearly zero
weights, by carefully observing the plot for task A—W. Not only for task with
small number of classes, our partial adversarial mechanism also works well on
dataset with large number of classes, as shown in 4(b). In task ImageNet-1K
— Caltech-84, the average weights of the shared classes are significantly larger
than those of the outlier classes. Note that even though the number of the outlier
classes is much larger than that of the shared classes, the sum of the weights
for shared classes is still larger than the sum of the weights for outlier classes.
These results prove that PADA can automatically discriminate the shared and
outlier classes and down-weigh the outlier classes data.

We also show the corresponding class weights learned by DANN on task A (31
classes) = W (10 classes) in Fig. 4(c), and task ImageNet-1K — Caltech-84
in Fig. 4(d). The results clearly demonstrate that the weights for outlier source
classes are still substantially large, which cannot down-weigh these harmful out-
lier classes in the domain adversarial learning procedure. As a result, these outlier
source classes will cause severe negative transfer, as shown in Tables 1 and 2.

I Outlier Classes
I Shared Classes

o
&

Sum of Weight
o
2 s

Average Weight
o

°

1 6 21 26 31

16 0 0
Class Id Shared  Outlier Shared  Outlier

(a) PADA: AW (b) PADA: ImageNet-
1K—Caltech-84

I Outlier Classes
I Shared Classes

Sum of Weight
Wei

&
vera
o

6 "

21 26 31 0
Shared Outlier Shared Outlier

16
Class Id

(c) DANN: AW (d) DANN: ImageNet-
1K—Caltech-84

Fig. 4. Histograms of class weights learned by PADA and DANN on two typical tasks.
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Fig. 5. Analysis: (a) Accuracy by varying #target domain classes; (b) Target test error.

Accuracy for Different Numbers of Target Classes: We investigate a
wider spectrum of partial domain adaptation by varying the number of target
classes. Fig. 5(a) shows that when the number of target classes decreases, the
performance of DANN degrades quickly, meaning that negative transfer becomes
severer when the domain gap is enlarged. The performance of PADA degener-
ates when the number of target classes decreases from 31 to 25, where negative
transfer problem arises while the domain adaptation problem itself is still hard;
but it increases when the number of target classes decreases from 25 to 10, where
the domain adaptation problem itself becomes easier. The margin that PADA
outperforms DANN becomes larger when the number of target classes decreases.
Note that PADA performs comparably to DANN in standard domain adaptation
when the number of target classes is 31, meaning that the weighting mechanism
will not wrongly filter out classes when there are no outlier classes.

Convergence Performance: We examine the convergence of PADA by
studying the test error through training process. As shown in Fig. 5(b), the test
errors of ResNet, DAN and DANN are increasing due to negative transfer. Their
test errors are not stable as well, attributed to the possibility that the target
domain is falsely matched to different parts of the source domain during the
training process. RTN converges very fast depending on the entropy minimiza-
tion criterion, but it converges to a higher test error. PADA converges fast and
stably to the lowest test error, implying that it can be trained efficiently and
stably to tackle partial domain adaptation problems.

Feature Visualization: We visualize the t-SNE embeddings [4] of the bot-
tleneck representations by DAN, DANN, RTN and PADA on the partial domain
adaptation task A (31 classes) — W (10 classes) in Fig. 6(a)-6(d) (with class
information) and Fig. 7(a)-7(d) (with domain information). We randomly se-
lect five classes in the source domain not shared with target domain and five
classes shared with target domain. (1) Fig. 6(a)-6(b) show that the bottleneck
features are mixed all together, meaning that DAN and DANN cannot discrim-
inate both source and target classes very well; Fig. 7(a)- 7(b) show that the
target data are aligned to all source classes including those outlier ones, which
triggers negative transfer. (2) Fig. 6(b)—6(c) show that RTN discriminates the
source domain well but the features of most target data are very close to the
source data even to the wrong source classes; Fig. 7(c) further indicates that
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RTN tends to draw target data close to all source classes even to those not ex-
isting in target domain. Thus, their performance on target data degenerates due
to negative transfer. (3) Fig. 6(d) and 7(d) show that PADA can discriminate
different classes in both source and target while the target data are close to the
right source classes, while the outlier source classes cannot influence the target
classes. These in-depth results show the versatility of the weighting mechanism.

. vt J N
) : A i | . &
a0 : . PO
e *
(a) DAN (b) DANN (¢) RTN (d) PADA

Fig. 6. The t-SNE visualization of DAN, DANN, RTN, and PADA with class info.

Fig. 7. The t-SNE visualization of DAN, DANN, RTN, and PADA with domain info.

5 Conclusion

This paper presented a novel approach to partial domain adaptation. Unlike
previous adversarial domain adaptation methods that match the whole source
and target domains based on the shared label space assumption, the proposed
approach simultaneously circumvents negative transfer by down-weighing the
outlier source classes and promotes positive transfer by maximally matching the
data distributions in the shared label space. Our approach successfully tackles
partial domain adaptation problem where source label space subsumes target
label space, testified by extensive experiments on various benchmark datasets.
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