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Abstract. We present a deep model that can accurately produce dense
depth maps given an RGB image with known depth at a very sparse
set of pixels. The model works simultaneously for both indoor/outdoor
scenes and produces state-of-the-art dense depth maps at nearly real-
time speeds on both the NYUv2 and KITTI datasets. We surpass the
state-of-the-art for monocular depth estimation even with depth values
for only 1 out of every ∼ 10000 image pixels, and we outperform other
sparse-to-dense depth methods at all sparsity levels. With depth val-
ues for 1/256 of the image pixels, we achieve a mean error of less than
1% of actual depth on indoor scenes, comparable to the performance of
consumer-grade depth sensor hardware. Our experiments demonstrate
that it would indeed be possible to efficiently transform sparse depth
measurements obtained using e.g. lower-power depth sensors or SLAM
systems into high-quality dense depth maps.
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1 Introduction

Efficient, accurate and real-time depth estimation is essential for a wide variety
of scene understanding applications in domains such as virtual/mixed reality,
autonomous vehicles, and robotics. Currently, a consumer-grade Kinect v2 depth
sensor consumes ∼ 15W of power, only works indoors at a limited range of
∼ 4.5m, and degrades under increased ambient light [8]. For reference, a future
VR/MR head mounted depth camera would need to consume 1/100th the power
and have a range of 1-80m (indoors and outdoors) at the full FOV and resolution
of an RGB camera. Such requirements present an opportunity to jointly develop
energy-efficient depth hardware and depth estimation models. Our work begins
to address depth estimation from this perspective.

Due to its intrinsic scale ambiguity, monocular depth estimation is a chal-
lenging problem, with state-of-the-art models [4, 17] still producing > 12% mean
absolute relative error on the popular large-scale NYUv2 indoor dataset [24].
Such errors are prohibitive for applications such as 3D reconstruction or track-
ing, and fall very short of depth sensors such as the Kinect that boast relative
depth error on the order of ∼ 1% [14, 25] indoors.
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Fig. 1: From Sparse to Dense Depth. An RGB Image and very sparse depth
map are input into a deep neural network. We obtain a high-quality dense depth
prediction as our final output.

Acknowledging the limitations of monocular depth estimation, we provide our
depth model with a sparse amount of measured depth along with an RGB image
(See Fig. 1) in order to estimate the full depth map. Such sparse depth resolves
the depth scale ambiguity, and could be obtained from e.g. a sparser illumina-
tion pattern in Time-of-Flight sensors [8], confident stereo matches, LiDAR-like
sensors, or a custom-designed sparse sensor. We show that the resultant model
can provide comparable performance to a modern depth sensor, despite only
observing a small fraction of the depth map. We believe our results can thus
motivate the design of smaller and more energy-efficient depth sensor hardware.
As the objective is now to densify a sparse depth map (with additional cues
from an RGB image), we call our model Deep Depth Densification, or D3.

One advantage of our D3 model is that it accommodates for arbitrary sparse
depth input patterns, each of which may correspond to a relevant physical sys-
tem. A regular grid of sparse depth may come from a lower-power depth sensor,
while certain interest point sparse patterns such as ORB [27] or SIFT [21] could
be output from modern SLAM systems [23]. In the main body of this work, we
will focus on regular grid patterns due to their ease of interpretation and immedi-
ate relevance to existing depth sensor hardware, although we detail experiments
on ORB sparse patterns in the Supplementary Materials.

Our contributions to the field of depth estimation are as follows:

1. A deep network model for dense scene depth estimation that achieves accu-
racies comparable to conventional depth sensors.

2. A depth estimation model which works simultaneously for indoors and out-
doors scenes and is robust to common measurement errors.

3. A flexible, invertible method of parameterizing sparse depth inputs that can
accommodate arbitrary sparse input patterns during training and testing.

2 Related Work

Depth estimation has been tackled in computer vision well before the advent of
deep learning [28, 29]; however, the popularization of encoder-decoder deep net
architectures [1, 20], which produce full-resolution pixel-wise prediction maps,
make deep neural networks particularly well-suited for this task. Such advances
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have spurred a flurry of research into deep methods for depth estimation, whether
through fusing CRFs with deep nets [37], leveraging geometry and stereo con-
sistency [5, 16], or exploring novel deep architectures [17].

Depth in computer vision is often used as a component for performing other
perception tasks. One of the first approaches to deep depth estimation also simul-
taneously estimates surface normals and segmentation in a multitask architec-
ture [4]. Other multitask vision networks [3, 12, 34] also commonly use depth as
a complementary output to benefit overall network performance. Using depth as
an explicit input is also common in computer vision, with plentiful applications
in tracking [30, 33], SLAM systems [13, 36] and 3d reconstruction/detection [7,
19]. There is clearly a pressing demand for high-quality depth maps, but current
depth hardware solutions are power-hungry, have severe range limitations [8],
and the current traditional depth estimation methods [4, 17] fail to achieve the
accuracies necessary to supersede such hardware.

Such challenges naturally lead to depth densification, a middle ground that
combines the power of deep learning with energy-efficient sparse depth sensors.
Depth densification is related to depth superresolution [10, 31], but superres-
olution generally uses a bilinear or bicubic downsampled depth map as input,
and thus still implicitly contains information from all pixels in the low-resolution
map. This additional information would not be accessible to a true sparse sensor,
and tends to make the estimation problem easier (see Supplementary Material).
Work in [22] and [23] follows the more difficult densification paradigm where only
a few pixels of measured depth are provided. We will show that our densification
network outperforms the methods in both [22] and [23].

3 Methodology

3.1 Input Parametrization for Sparse Depth Inputs

We desire a parametrization of the sparse depth input that can accommodate
arbitrary sparse input patterns. This should allow for varying such patterns not
only across different deep models but even within the same model during training
and testing. Therefore, rather than directly feeding a highly discontinuous sparse
depth map into our deep depth densification (D3) model (as in Fig. 1), we
propose a more flexible parametrization of the sparse depth inputs.

At each training step, the inputs to our parametrization are:

1. I(x, y) and D(x, y): RGB vector-valued image I and ground truth depth D.
Both maps have dimensions H×W. Invalid values in D are encoded as zero.

2. M(x, y): Binary pattern mask of dimensions H×W, where M(x, y) = 1 de-
fines (x, y) locations of our desired depth samples. M(x, y) is preprocessed
so that all points where M(x, y) = 1 must correspond to valid depth points
(D(x, y) > 0). (see Algorithm 1).

From I, D, and M , we form two maps for the sparse depth input, S1(x, y) and
S2(x, y). Both maps have dimension H×W (see Fig. 2 for examples).
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Algorithm 1 Sparse Inputs for the Deep Depth Densification (D3) Model

INPUT image I(x, y), depth D(x, y), and pattern mask M(x, y).
INITIALIZE S1(x, y) = 0, S2(x, y) = 0 for all (x, y).
FOR r := (x, y) s.t. D(r) = 0 AND M(r) = 1:

rnew = argmin
r
′ ||r− r′||2 s.t. D(r′) > 0; (|| · ||2 denotes the L2 norm.)

M(r) = 0; M(rnew) = 1;

ENDFOR (All depth locations are now valid.)
FOR r := (x, y):

rnearest = argmin
r
′ ||r′ − r||2 s.t. M(r′) = 1;

S1(x, y) = D(rnearest); S2(x, y) =
√

||rnearest − r||2;

ENDFOR
OUTPUT concatenate(S1,S2)

Fig. 2: Various Sparse Patterns. NN fill maps S1 (top row) and the sampling
pattern Euclidean Distance transforms S2 (bottom row) are shown for both
regular and irregular sparse patterns. Dark points in S2 correspond to the pixels
where we have access to depth information.

– S1(x, y) is a NN (nearest neighbor) fill of the sparse depth M(x, y)∗D(x, y).
– S2(x, y) is the Euclidean Distance Transform of M(x, y), i.e. the L2 distance

between (x,y) and the closest point (x’,y’) where M(x′, y′) = 1.

The final parametrization of the sparse depth input is the concatenation of
S1(x, y) and S2(x, y), with total dimension H×W×2. This process is described
in Algorithm 1. The parametrization is fast and involves at most two Euclidean
Transforms. The resultant NN map S1 is nonzero everywhere, allowing us to
treat the densification problem as a residual prediction with respect to S1. The
distance map S2 informs the model about the pattern mask M(x, y) and acts as
a prior on the residual magnitudes the model should output (i.e. points farther
from a pixel with known depth tend to incur higher residuals). Inclusion of S2

can substantially improve model performance and training stability, especially
when multiple sparse patterns are used during training (see Section 5.3).
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In this work, we primarily focus on regular grid patterns, as they are high-
coverage sparse maps that enable straightforward comparisons to prior work (as
in [22]) which often assume a grid-like sparse pattern, but our methods fully
generalize to other patterns like ORB (see Supplementary Materials).

3.2 Sparse Pattern Selection

For regular grid patterns, we try to ensure minimal spatial bias when choos-
ing the pattern mask M(x, y) by enforcing equal spacing between subsequent
pattern points in both the x and y directions. This results in a checkerboard
pattern of square regions in the sparse depth map S1 (see Fig. 2). Such a strat-
egy is convenient when one deep model must accommodate images of different
resolutions, as we can simply extend the square pattern in M(x, y) from one res-
olution to the next. For ease of interpretation, we will always use sparse patterns
close to an integer level of downsampling; for a downsampling factor of A × A,
we take ∼ H ∗W/A2 depth values as the sparse input. For example, for 24×24
downsampling on a 480×640 image, this would be 0.18% of the total pixels.

Empirically we observed that it is beneficial to vary the sparse pattern
M(x, y) during training. For a desired final pattern of N sparse points, we em-
ploy a slow decay learning schedule following Nsparse(t) = ⌊5Ne−0.0003t+N⌋ for
training step 0 ≤ t ≤ 80000. Such a schedule begins training at six times the
desired sparse pattern density and smoothly decays towards the final density as
training progresses. Compared to a static sparse pattern, we see a relative de-
crease of ∼ 3% in the training L2 loss and also in the mean relative error when
using this decay schedule. We can also train with randomly varying sampling
densities at each training step. This we show in Section 5.3 results in a deep
model which performs well simultaneously at different sampling densities.

4 Experimental Setup

4.1 Architecture

We base our network architecture (see Fig. 3) on the network used in [2] but with
DenseNet [9] blocks in place of Inception [32] blocks. We empirically found it
critical for our proposed model to carry the sparse depth information throughout
the deep network, and the residual nature of DenseNet is well-suited for this re-
quirement. For optimal results, our architecture retains feature maps at multiple
resolutions for addition back into the network during the decoding phase.

Each block in Fig. 3 represents a DenseNet Module (see Fig. 3 inset for a pre-
cise module schematic) except for the first and last blocks, which are simple 3x3
stride-2 convolutional layers. A copy of the sparse input [S1,S2] is presented as
an additional input to each module, downsampled to the appropriate resolution.
Each DenseNet module consists of 2L layers and k feature maps per layer; we
use L = 5 and k = 12. At downsample/upsample blocks, the final convolution
has stride 2. The (residual) output of the network is added to the sparse input
map S1 to obtain the final depth map estimate.
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Fig. 3: D3 Network Architecture. Our proposed multi-scale deep network
takes an RGB image concatenated with S1 and S2 as inputs. The first and last
computational blocks are simple 3x3 stride-2 convolutions, but all other blocks
are DenseNet modules [9] (see inset). All convolutional layers in the network are
batch normalized [11] and ReLU activated. The network outputs a residual that
is added to the sparse depth map S1 to produce the final dense depth prediction.

4.2 Datasets

We experiment extensively with both indoor and outdoor scenes. For indoor
scenes, we use the NYUv2 [24] dataset, which provides high-quality 480×640
depth data taken with a Kinect V1 sensor with a range of up to 10m. Missing
depth values are filled using a standard approach [18]. We use the official split
of 249/215 train/validation scenes, and sample 26331 images from the training
scenes. We further augment the training set with horizontal flips. We test on the
standard validation set of 654 images to compare against other methods.

For outdoor scenes, we use the KITTI road scenes dataset [35], which has
a depth range up to ∼85m. KITTI provides over 80000 images for training,
which we further augment with horizontal flips. We test on the full validation
set (∼10% the size of the training set). KITTI images have resolution 1392×512,
but we take random 480×640 crops during training to enable joint training with
NYUv2 data. The 640 horizontal pixels are sampled randomly while the 480
vertical pixels are the 480 bottom pixels of the image (as KITTI only provides
LiDAR GT depth towards ground level). The LiDAR projections used in KITTI
result in very sparse depth maps (with only ∼10% of depths labeled per image),
and we only evaluate our models on points with GT depth.

4.3 General Training Characteristics and Performance Metrics

In all our experiments we train with a batch size of 8 across 4 Maxwell Titan X
GTX GPUs using Tensorflow 1.2.1. We train for 80000 batches and start with
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a learning rate of 1e-3, decaying the learning rate by 0.2 every 25000 steps. We
use Adam [15] as our optimizer, and standard pixel-wise L2 loss to train.

Standard metrics are used [4, 23] to evaluate our depth estimation model
against valid GT depth values. Let ŷ be the predicted depth and y the GT depth
for N pixels in the dataset. We measure: (1) Root Mean Square Error (RMSE):
√

1
N

∑

[ŷ − y]2, (2) Mean Absolute Relative Error (MRE): 100
N

∑

(

|ŷ−y|
y

)

, and

(3) Delta Thresholds (δi):
|{ŷ|max( y

ŷ
,
ŷ

y
)<1.25i}|

|{ŷ}| . δi is the percentage of pixels with

relative error under a threshold controlled by the constant i.

5 Results and Analysis

Here we present results and analysis of the D3 model for both indoor (NYUv2)
and outdoor (KITTI) datasets. We further demonstrate that D3 is robust to
input errors and also generalizes to multiple sparse input patterns.

5.1 Indoor scenes from NYUv2

Fig. 4: Performance on the NYUv2 Dataset. RMSE and MRE are plotted
on the left (lower is better), while the δi are plotted on the right (higher is
better). Our D3 models achieve the best performance at all sparsities, while
joint training on outdoor data (D3 mixed) only incurs a minor performance loss.

From Table 1 we see that, at all pattern sparsities, the D3 network offers su-
perior performance for all metrics1 compared to the results in [23] and in [22]2.

1 A model trained with 0.18% sparsity performs very well on a larger NYUv2 test set
of 37K images: RMSE 0.116m/ MRE 1.34%/δ1 99.52%/δ2 99.93%/δ3 99.986%.

2 As results in [22] were computed on a small subset of the NYUv2 val set, metrics
were normalized to each work’s reported NN fill RMSE to ensure fair comparison.
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Table 1: D3 Performance on NYUv2. Lower RMSE and MRE is better, while
higher δi is better. NN Fill corresponds to using the sparse map S1 as our final
prediction. If no sparse depth is provided, the D3 model falls short of [4] and
[17], but even at 0.01% points sampled the D3 model offers significant improve-
ments over state-of-the-art non-sparse methods. D3 additionally performs the
best compared to other sparse depth methods at all input sparsities.

Model % Points Downsampling RMSE MRE δ1 δ2 δ3
Sampled Factor (m) (%) (%) (%) (%)

Eigen et al. [4] 0 N/A 0.641 15.8 76.9 95.0 98.8
Laina et al. [17] 0 N/A 0.573 12.7 81.1 95.3 98.8

D3 No Sparse 0 N/A 0.711 22.37 67.32 89.68 96.73

NN Fill 0.011 96×96 0.586 11.69 86.8 95.8 98.4
D3 (Ours) 0.011 96×96 0.318 7.20 94.2 98.9 99.8

Ma et al. [23] 0.029 ∼59×59 0.351 7.8 92.8 98.4 99.6
NN Fill 0.043 48×48 0.383 6.23 94.42 98.20 99.35
D3 Mixed (Ours) 0.043 48×48 0.217 3.77 97.90 99.65 99.93
D3 (Ours) 0.043 48×48 0.193 3.21 98.31 99.73 99.95

NN Fill 0.174 24×24 0.250 3.20 97.5 99.3 99.8
Lu et al. [22] - 24×24 0.171 - - - -
D3 Mixed (Ours) 0.174 24×24 0.131 1.76 99.31 99.90 99.98
D3 (Ours) 0.174 24×24 0.118 1.49 99.45 99.92 99.98

Ma et al. [23] 0.289 ∼19×19 0.23 4.4 97.1 99.4 99.8
NN Fill 0.391 16×16 0.192 2.10 98.5 99.6 99.88
Lu et al. [22] - 16×16 0.108 - - - -
D3 (Ours) 0.391 16×16 0.087 0.99 99.72 99.97 99.99

The accuracy metrics for the D3 mixed network represent the NYUv2 results for
a network that has been simultaneously trained on the NYUv2 (indoors) and
KITTI (outdoors) datasets (more details in Section 5.4). We see that incorporat-
ing an outdoors dataset with significantly different semantics only incurs a mild
degradation in accuracy. Fig. 4 has comparative results for additional sparsities,
and once again demonstrates that our trained models are more accurate than
other recent approaches.

At 16×16 downsampling our absolute mean relative error falls below 1% (at
0.99%). At this point, the error of our D3 model becomes comparable to the error
in consumer-grade depth sensors [8]. Fig. 5(a) presents a more detailed plot of
relative error at different values of GT depth. Our model performs well at most
common indoor depths (around 2-4m), as can be assessed from the histogram
in Fig. 5(b). At farther depths the MRE deteriorates, but these depth values
are rarer in the dataset. This suggests that using a more balanced dataset can
improve those MRE values as well.
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Table 2: Timing for D3 and other architectures. Models are evaluated
assuming 0.18% sparsity and using 1 Maxwell Titan X. The D3 network achieves
the lowest RMSE compared to other well known efficient network architectures.
A slim version of D3 runs at a near real-time 16fps for VGA resolution.

Model L k RMSE FPS Forward Model L k RMSE FPS Forward
(m) Pass (s) (m) Pass (s)

D3 5 12 0.118 10 0.11 SegNet [1] - - 0.150 5 0.20
D3 3 8 0.127 13 0.08 ENet [26] - - 0.237 25 0.04
D3 2 6 0.131 16 0.06

(a) (b)

Fig. 5: NYUv2 MRE performance at different depths. (a) MRE at differ-
ent depths for varying levels of sparsity. At 0.39% sparsity the average MRE is
less than 1% which is comparable to depth sensors. (b) Histogram of GT depths
in the validation dataset; higher relative errors correspond to rarer depth values.

Visualizations of our network predictions on the NYUv2 dataset are shown in
Fig. 6. At a highly sparse 48×48 downsampling, our D3 network already shows
a dramatic improvement over a vanilla network without any sparse input. We
note here that although network outputs are added as residuals to a sparse map
with many first order discontinuities, the final predictions appear smooth and
relatively free of sharp edge artifacts. Indeed, in the final column of Fig. 6, we can
see how the direct residual predictions produced by our networks also contain
sharp features which cancels out the non-smoothness in the sparse maps.

5.2 Computational Analysis

In Table 2 we show the forward pass time and accuracy for a variety of models at
0.18% points sampled. Our standard D3 model with L = 5 and k = 12 achieves
the lowest error and takes 0.11s per VGA frame per forward pass. Slimmer
versions of the D3 network incur mild accuracy degradation but still outperform
other well known efficient architectures [1, 26]. The baseline speed for our D3
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Fig. 6: Visualization of D3 Predictions on NYUv2. Left column: Sample
RGB and GT depths. Middle columns: sparse S1 map on top and D3 network
prediction on bottom for different sparsities. Vanilla network denotes the case
with no sparse input (monocular depth estimation). Final column: D3 residual
predictions (summed with S1 to obtain the final prediction) and error maps of
the final estimate with respect to GT. Errors are larger at farther distances.
Residuals are plotted in grayscale and capped at |δ| ≤ 1 for better visualization;
they exhibit similar sharp features as S1, showing how a D3 model cancels out
the nonsmoothness of S1.

networks can thus approach real-time speeds for full-resolution 480×640 inputs,
and we expect these speeds can be further improved by weight quantization
and other optimization methods for deep networks [6]. Trivially, operating at
half resolution would result in our slimmer D3 networks operating at a real-time
speed of >60fps. This speed is important for many application areas where depth
is a critical component for scene understanding.

5.3 Generalizing D3 to Multiple Patterns and the Effect of S2

We train a D3 network with a different input sparsity (sampled uniformly be-
tween 0.065% and 0.98% points) for each batch. Fig. 7(a) shows how this multi-
sparsity D3 network performs relative to the 0.18% and 0.39% sparsity models.
The single-sparsity trained D3 networks predictably perform the best near the
sparsity they were tuned for. However, the multi-sparsity D3 network only per-
forms slightly worse at those sparsities, and dramatically outperforms the single-
sparsity networks away from their training sparsity value. Evidently, a random
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(a) (b)

Fig. 7: Multi-sparsity D3 models. (a) The Random Sampling network was
trained with a different sparse pattern (between 0.065% and 0.98% points sam-
pled) on every iteration, and performs well at all sparsity levels while being only
mildly surpassed by single-density networks at their specialized sparsities. (b)
Validation loss curves (for 0.18% points sampled) for a D3 models trained with
and without inclusion of distance map S2. S2 is clearly crucial for stability and
performance, especially when training with complex pattern schedules.

sampling schedule effectively regularizes our model to work simultaneously at all

sparsities within a wide range. This robustness may be useful in scenarios where
different measurement modes are used in the same device.

Inclusion of the distance map S2 gives our network spatial information of the
sparse pattern, which is especially important when the sparse pattern changes
during training. Fig. 7(b) shows validation L2 loss curves for D

3 networks trained
with and without S2. S2 improves relative L2 validation loss by 34.4% and greatly
stabilizies training when the sparse pattern is varied randomly during training.
For a slow decay sampling schedule (i.e. what is used for the majority of our
D3 networks), the improvement is 8.8%, and even for a static sampling schedule
(bottom of Fig. 7(b)) there is a 2.8% improvement. The inclusion of the distance
map is thus clearly essential to train our model well.

5.4 Generalizing D3 to Outdoor Scenes

We extend our model to the challenging outdoor KITTI dataset [35]. All our
KITTI D3 models are initialized to a pre-trained NYUv2 model. We then train
either with only KITTI data (KITTI-exclusive) or with a 50/50 mix of NYUv2
and KITTI data for each batch (mixed model). Since NYUv2 images have a max
depth of 10m, depth values are scaled by 0.1 for the KITTI-exclusive model. For
the mixed model we use a scene-agnostic scaling rule; we scale all images down to
have a max depth of ≤10m, and invert this scaling at inference. Our state-of-the-
art results are shown in Table 3. Importantly, as for NYUv2, our mixed model
only performs slightly worse than the KITTI-exclusive network. More results for
additional sparsities are presented in the Supplementary Material.
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Table 3: D3 Model Performance on the KITTI Dataset. Lower values of
RMSE and MRE are better, while higher values of δi are better. For competing
methods we show results at the closest sparsity. The performance of our models,
including the mixed models, is superior by a large margin.

Model % Points Downsample RMSE MRE δ1 δ2 δ3
Sampled Factor (m) (%) (%) (%) (%)

NN Fill 0.077 36×36 4.441 9.306 91.88 97.75 99.04
D3 Mixed (Ours) 0.077 36×36 1.906 3.14 98.62 99.65 99.88
D3 (Ours) 0.077 36×36 1.600 2.50 99.12 99.76 99.91

Ma et al. [23] 0.096 ∼32×32 3.851 8.3 91.9 97.0 98.6
NN Fill 0.174 24×24 3.203 5.81 96.62 99.03 99.57
D3 Mixed (Ours) 0.174 24×24 1.472 2.22 99.30 99.83 99.94
D3 (Ours) 0.174 24×24 1.387 2.09 99.40 99.85 99.95

Ma et al. [23] 0.240 ∼20×20 3.378 7.3 93.5 97.6 98.9
NN Fill 0.391 16×16 2.245 3.73 98.67 99.60 99.81
D3 Mixed (Ours) 0.391 16×16 1.120 1.62 99.67 99.92 99.97
D3 (Ours) 0.391 16×16 1.008 1.42 99.76 99.94 99.98

Visualizations of the our model outputs are shown in Fig. 8. The highlight
here is that the mixed model produces high-quality depth maps for both NYUv2
and KITTI. Interestingly, even the KITTI-exclusive model (bottom row of Fig.
8) produces good qualitative results on the NYUv2 dataset. Perhaps more strik-
ingly, even an NYUv2 pretrained model with no KITTI data training (third-to-
last row of Fig. 8) produces reasonable results on KITTI. This suggests that our
D3 models intrinsically possess some level of cross-domain generalizability.

5.5 Robustness Tests

Thus far, we have sampled depth from high-quality Kinect and LiDAR depth
maps, but in practice sparse depth inputs may come from less reliable sources.
We now demonstrate how our D3 network performs given the following common
errors within the sparse depth input:

1. Spatial misregistration between the RGB camera and depth sensor.
2. Random gaussian error.
3. Random holes (dropout), e.g. due to shadows, specular reflection, etc.

In Fig. 9 we show examples of each of these potential sources of error, and in
Fig. 10 we show how D3 performs when trained with such errors in the sparse
depth input (see Supplementary Material for for tabulated metrics). The D3

network degrades gracefully under all sources of error, with most models still
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Fig. 8: Joint Predictions on NYUv2 and KITTI. The RGB, Depth GT, and
Sparse Input S1 are given in the first three rows. Predictions by three models
on both indoors and outdoors scenes are given in the final three rows, with the
second-to-last row showing the mixed model trained on both datasets simulta-
neously. All sparse maps have a density of 0.18% (∼24×24 downsampling).

Fig. 9: Potential Errors in Sparse Depth. The three sparse depth maps on
the right all exhibit significant errors that are common in real sensors.

outperforming the other baselines in Table 1 (none of which were subject to
input errors). It is especially encouraging that network performs robustly under
constant mis-registration error, a very common issue when multiple imaging
sensors are active in the same visual system. The network effectively learns to
fix the calibration between the different visual inputs. Predictably, the error is
much higher when the mis-registration is randomly varying per image.

5.6 Discussion

Through our experiments, we’ve shown how the D3 model performs very well at
taking a sparse depth measurement in a variety of settings and turning it into
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Fig. 10: Accuracy of D3 Networks under Various Sparse Depth Errors.
Under all potential error sources (with the exception of the unlikely random spa-
tial mis-registration error), the D3 network exhibits graceful error degradation.
This error degradation is almost negligible for constant spatial mis-registration.

a dense depth map. Most notably, our model can simultaneously perform well
both on indoor and outdoor scenes. We attribute the overall performance of the
model to a number of factors. As can be gathered from Table 2, the design of
our multi-scale architecture, in which the sparse inputs are ingested at various
scales and outputs are treated as residuals with respect to S1, is important
for optimizing performance. Our proposed sparse input parameterization clearly
allows for better and more stable training as seen in Fig. 7. Finally, the design
of the training curriculum, in which we use varying sparsities in the depth input
during training, also plays an important role. Such a strategy makes the model
robust to test time variations in sparsity (see Fig. 7) and reduces overall errors.

6 Conclusions

We have demonstrated that a trained deep depth densification (D3) network
can use sparse depth information and a registered RGB image to produce high-
quality, dense depth maps. Our flexible parametrization of the sparse depth infor-
mation leads to models that generalize readily to multiple scene types (working
simultaneously on indoor and outdoor images, from depths of 1m to 80m) and
to diverse sparse input patterns. Even at fairly aggressive sparsities for indoor
scenes, we achieve a mean absolute relative error of under 1%, comparable to
the performance of consumer-grade depth sensor hardware. We also found that
our model is fairly robust to various input errors.

We have thus shown that sparse depth measurements can be sufficient for
applications that require an RGBD input, whether indoors or outdoors. A nat-
ural next step in our line of inquiry would be to evaluate how densified depth
maps perform in 3d-reconstruction algorithms, tracking systems, or perception
models for related vision tasks such as surface normal prediction. We hope that
our work motivates additional research into uses for sparse depth from both the
software and hardware perspectives.
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