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Abstract. Estimation of 3D motion in a dynamic scene from a tempo-
ral pair of images is a core task in many scene understanding problems.
In real-world applications, a dynamic scene is commonly captured by a
moving camera (i.e., panning, tilting or hand-held), increasing the task
complexity because the scene is observed from different viewpoints. The
primary challenge is the disambiguation of the camera motion from scene
motion, which becomes more difficult as the amount of rigidity observed
decreases, even with successful estimation of 2D image correspondences.
Compared to other state-of-the-art 3D scene flow estimation methods,
in this paper, we propose to learn the rigidity of a scene in a supervised
manner from an extensive collection of dynamic scene data, and directly
infer a rigidity mask from two sequential images with depths. With the
learned network, we show how we can effectively estimate camera motion
and projected scene flow using computed 2D optical flow and the inferred
rigidity mask. For training and testing the rigidity network, we also pro-
vide a new semi-synthetic dynamic scene dataset (synthetic foreground
objects with a real background) and an evaluation split that accounts for
the percentage of observed non-rigid pixels. Through our evaluation, we
show the proposed framework outperforms current state-of-the-art scene
flow estimation methods in challenging dynamic scenes.

Keywords: Rigidity Estimation · Dynamic Scene Analysis · Scene Flow
· Motion Segmentation

1 Introduction

The estimation of 3D motion from images is a fundamental computer vision
problem, and key to many applications such as robot manipulation [3], dynamic
scene reconstruction [14,23], autonomous driving [8,27,29,44], action recogni-
tion [43], and video analysis [13]. This task is commonly referred as 3D motion

field or scene flow estimation. 3D motion field estimation in a dynamic envi-
ronment is, however, a challenging and still open problem when the scene is

⋆ This work started during an internship that the author did at NVIDIA.
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(a) Two RGB-D frames
(b) Rigidity (red for

dynamic scene)
(c) Ego motion flow (d) Projected scene flow

Fig. 1: Our estimated Rigidity (b), Ego-motion Flow (c) and Projected scene
flow (d) (bottom row) compared to the ground truth (top row). The rigidity
mask allows us to solve for the relative camera transform and compute the 3D
motion field given the optical flow.

observed from different view points and the amount of coverage of moving ob-
jects in each image is significant. This is mainly because the disambiguation of
camera motion (ego-motion) from object motion requires the correct identifica-
tion of rigid static structure of a scene. Unlike other methods solving the problem
with piecewise rigid motion [41,19,9], clustering local motions [16], and semantic
segmentation [32,45], our network can infer per-pixel rigidity by jointly learning
rigidity and the relative camera transform from large-scale dynamic scene data.
A brief example of our results is shown in Fig. 1.

Our framework, shown in Fig. 2, takes a sequential image pair with color
and depth (RGBD) as the input and mainly focuses on dynamic scenes with a
moving camera (e.g., panning), where camera motion and objects motions are
entangled in each observation. To solve for 2D correspondences, our framework
relies on 2D optical flow, and is not tied to any particular algorithm. We use the
method by Sun et al. [33], which we evaluate together with the rigidity network
to estimate both ego-motion and scene-motions. The network that learns the
per-pixel rigidity also solves for the relative camera pose between two images,
and we can accurately refine the pose as a least square problem with the learned
dense flow correspondences and rigidity region. To provide better supervision
during training and encourage generalization, we develop a tool and methodology
that enables the creation of a scalable semi-synthetic RGB-D dynamic scene
dataset, which we call REFRESH. This dataset combines real-world static rigid
background with non-rigid synthetic human motions [36] and provides ground
truth color, depth, rigidity, optical flow and camera pose.

In summary, our major contributions are:

1. A learning-based rigidity and pose estimation algorithm for dynamic scenes
with a moving camera.

2. An RGBD 3D motion field estimation framework that builds on inference
from rigidity, pose, and existing 2D optical flow, which outperforms the
state-of-the-art methods.

3. A new semi-synthetic dynamic scene data and its creation tool: REal 3D
From REconstruction with Synthetic Humans (REFRESH).
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Fig. 2: An overview of our proposed inference architecture for 3D mo-
tion field estimation. Our method takes two RGB-D frames as inputs inde-
pendently processed by two networks. The Rigidity Transform Network (RTN)
estimates the relative camera transform and rigid/non-rigid regions. The flow
network [33] computes dense flow correspondences. We further refine the rela-
tive pose with dense flow over the rigid region. With the refined pose, we compute
3D motion field and projected scene flow from the egomotion flow.

2 Related Work

Scene Flow: Scene flow estimation in dynamic scenes brings together funda-
mental computer vision algorithms in optical flow, and pose estimation of camera
and objects. Vedula et al. [37] defined the 3D motion field as scene flow, and
proposed a method to compute dense non-rigid 3D motion fields from a fixed
multi-view set-up. Its extension to a moving camera case needs to disambiguate
the camera ego-motion from object scene motions in 3D. Due to the intrinsic
complexity of such task, existing methods often address it with known camera
parameters [1,35] or assume scene motions are piecewise rigid [19,21,9,39,40,42].
When depth is known, scene flow can be more accurately estimated. Quiroga
et al. estimates RGB-D scene flow as a rigid flow composited with a non-rigid
6DoF transforms [25]. Sun et al. estimates scene flow as a composition of fi-
nite rigid moving objects [32]. Jaimez et al. separately solve rigid region as
visual odometry and non-rigid regions as moving clustered patches conditioned
on rigidity segmentation [16]. They solve the rigidity segmentation based on the
robust residuals of two frame alignment, similar to [23,18] for camera tracking in
dynamic environments. All of these approaches use rigidity as a prior, but can
fail as the complexity of the dynamic scene increases. None of these methods
use learned models. We show that the 3D motion field can be more accurately
estimated using learned models for rigidity and optical flow.
Learning Camera Transform and Rigidity: Recently, various learning-
based methods have been introduced for the joint estimation of camera transform
and depth (or rigid structure) [34,38,49], and rigid motion tracking [3]. Most of
them assume that the scene is either static [34], quasi-static (scene motions are
minimal and can be dealt as outliers) [49], or that the camera remains static when
a rigid scene motion occurs [3]. More recently, a few approaches[45,47] demon-
strated the importance of learning rigidity to handle dynamic scenes. Wulff et al.
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[45] assume the rigidity can be learned by finetuning the semantic segmentation
network from a single image, while we posit that rigidity correlates spatially to
the epipolar geometry. Yin and Shi [47] unsupervised learn the non-rigid flow
residual in the 3D urban scene. We are interested in more general dynamic scenes
with unconstrained scene motions observed from moving cameras, and we ad-
dress this by directly learning the per-pixel rigidity in the supervised manner
which can generalize to unseen scenes.

3 Rigidity, Scene Flow and Moving Camera

We focus on solving for the 3D motion field in the physical scene observed from
a moving camera, commonly termed as scene flow [16,37]. Here we define the
relationship between 2D image correspondences and scene flow in physical 3D
scenes with object motions and camera motion derived from relative camera
poses between two temporal views.

Let xt ∈ R
3 be the location of a point x on a non-rigid surface Ωt of a mov-

ing object with respect to a fixed world coordinate system at time t. We define
δxt→t+1 as the 3D motion vector of x from time t to time t + 1, also referred
as scene flow in this paper. When xt is observed by a camera with known in-
trinsics, we define π(xt) to be the projection of xt to image coordinates ut, and
π−1(ut, zt) the inverse projection into 3D camera coordinates given the known
depth zt in the camera reference frame.
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Fig. 3: The geometry of two-frame scene flow, where the camera moves
from I0 to I1, and point x0 moves to x1 (green circles), and their projections in
the two images are shown as u0,u1 respectively (red circles). Note that u′

0 is a
projected location of x0 in I1, as if x0 were observed by I1, and can be computed
by camera motion as δucm

0→1, and u0 in I1 is visualizing the pixel location it had
in I0. If the camera was static and observed both x0 and x1 at the position of
I1, optical flow δuof

0→1 would be same to a projected scene flow δusf1
0→1. The right

image shows each flow in I1 of dynamic scene under camera panning.
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Scene flow, 2D Optical Flow, and Camera Pose Optical flow offers direct
2D associations of measurements in It and It+1. Suppose Ct is the known camera
extrinsics matrix for It, then the optical flow δut→t+1 from It to It+1 can be
defined as follows:

δuof
t→t+1 = π(Ct+1(xt + δxt→t+1))− π(Ctxt) (1)

Equation 1 states the two-view geometric relationship between 2D optical flow
and 3D scene flow. We can simplify it by considering the camera’s relative motion
from I0 to I1, i.e. assuming t = 0 and setting C0 to identity:

δuof
0→1 = π(C1(x0 + δx0→1))− π(x0) (2)

Given the optical flow δuof
0→1 and the depth from the RGBD data, the 3D scene

flow vector can be computed as:

δx0→1 = C
−1
1 π−1(u0 + δuof

0→1, z1)− π−1(u0, z0) (3)

Note that C1 can be computed from 2D correspondences that follow two-view
epipolar geometry [11], and the corresponding points should lie on the rigid and
static background structure. This is especially challenging when the scene con-
tains dynamic components (moving objects) as well as a rigid and stationary
background structure. As such, identifying inliers and outliers using rigidity is a
key element for successful relative camera pose estimation, and thus is necessary
to achieve reaching accurate scene flow estimation in a dynamic scene [16], which
we will discuss in Sec. 4.

Egomotion Flow from a Moving Camera in a Static Scene: When an
observed x in a scene remains static between the two frames, δx0→1 = 0 and
therefore x1 = x0. Then, the observed optical flow is purely induced by the
camera motion and we refer it as a camera egomotion flow:

δucm
0→1 = π(C1x0)− π(x0) (4)

Projected Scene Flow and Rigidity: As described in Fig. 3, the projected
scene flow is a projection of a 3D scene flow δx0→1 in I1 if x0 was observed from
I1, which can be computed from camera ego-motion and optical flow:

δusf
0→1 = δuof

0→1 − δucm
0→1 (5)

The projected scene flow (in a novel view) is also referred as non-rigid residual
[25,47]. All locations with zero values in projected scene flow indicate the rigidity
region in ground truth data. As demonstrated in Fig. 3, the projected scene flow
is a useful tool to evaluate the results of dense scene flow estimation in the 2D
domain which requires accurate estimation of both camera pose and optical flow.
Thus, we use it as the evaluation metric in Sec. 6.
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4 3D Motion Field Estimation Pipeline

We introduce a framework that refines the relative camera transform and the
optical flow with a rigidity mask for accurate scene flow estimation. Fig. 2 shows
the overview of our proposed pipeline. Given a temporal pair of RGB-D images,
we concurrently run the optical flow and rigidity-transform network. The optical
flow network [33] offers the 2D correspondence association between frames, and
our proposed rigidity-transform network provides an estimate of the camera
transform and the rigidity mask.

4.1 Rigidity-Transform Network

Previous work on camera pose estimation using CNNs focused on either static
or quasi-static scenes, where scene motions are absent or their amount is mini-
mal [34,38,49]. In dynamic scenes with a moving camera, camera pose estimation
can be challenging due to the ambiguity induced by the camera motion and scene
(object) motion. Although existing approaches leverage prior information in mo-
tion or semantic knowledge [16,32,25,28] to disambiguate the two, the priors are
usually not general for different scenes.

We propose to infer the rigidity from epipolar geometry by a fully-convolutional
network that jointly learns camera motion and segmentation of the scene into
dynamic and static regions from RGB-D inputs. We represent this rigidity seg-
mentation as a binary mask with the static scene masked as rigid. The rigid
scene components will obey the rigid transform constraints induced by the cam-
era ego-motion and serve as the regions of attention of the camera transform.
We name it rigidity-transform network (RTN), shown in Fig. 4.

RTN: Given a pair of RGB-D frames, we pre-process each frame into a 6 chan-
nel tensor [(u− cx)/fx, (v− cy)/fy, 1/d, r, g, b], from camera intrinsic parameters
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Fig. 4: Rigidity-Transform network (RTN) architecture The inputs to the
RTN are 12 channel tensors encoded with [(u − cx)/fx, (v − cy)/fy, 1/d, r, g, b]
computed from a pair of RGB-D images and their intrinsics. It is a fully convo-
lutional encoder-decoder architecture predicting pose as a translation and euler
angles, and scene rigidity as a binary mask.



Learning Rigidity in Dynamic Scenes for 3D Motion Field Estimation 7

[fx, fy, cx, cy] and the depth d. Due to the range of depth values, this representa-
tion is numerical stable in training and delivers good generalization performance.
We truncate 1/d to the range [1e−4, 10], which can cover scenes of various scales.
We concatenate the two-frame tensors to a 12-channel tensor as input to our net-
work. The network is composed of an encoder followed by pose regression and a
decoder followed by the rigidity segmentation.
Encoder: We use five stride-2 conv-layers which gradually reduce spatial resolu-
tion and one stride-1 convolution as the conv-6 layer. Each convolution is followed
by a batchnorm and ReLU layer. In the bottleneck layer, the target is to predict
the camera relative translation t and rotation Θ. After the conv-6 layer, we use
a spatial-average pooling (SAP) to reduce the feature into a 1024D vector. With
two 1× 1 convolution layers that output 3 channels, we separately estimate the
t and Θ. We assume the relative camera transformation between two frames is
small and thus we represent the rotation R(α, β, γ) = Rx(α)Ry(β)Rz(γ) with
Euler angles Θ = [α, β, γ]. The regression loss is a weighted combination of the
robust Huber loss ρ(·) for translation and rotation as:

Lp = ρ(t− t⋆) + wΘρ(Θ −Θ⋆) (6)

Decoder: The decoder network is composed of five deconvolution (transpose
convolution) layers which gradually upsample the conv-6 feature into input image
scale and reshape it into the original image resolution. We estimate the rigidity
attention as a binary segmentation problem with binary cross-entropy loss Lr.
The overall loss is a weighted sum of both loss functions: Lc = wpLp + Lr.
Enforcing Learning from Two Views: We enforce the network to capture
both scene structures and epipolar constraints using two views rather than a
single-view short-cut. First, our network is fully convolutional, and we regress the
camera pose from the SAP layer which preserves feature distributions spatially.
Features for rigidity segmentation and pose regression can interact directly with
each other spatially across each feature map. We do not use any skip layer
connections. Our experiments in Sec. 6 show that joint learning of camera pose
and rigidity can help RTN to achieve better generalization in complex scenes.
Second, we randomly use two identical views as input, and a fully rigid mask
as output with 20% probability during data augmentation, which prevents the
network from only using a single view for its prediction.

4.2 Pose Refinement from Rigidity and Flow

To solve for the 3D motion field accurately from two views from equation 3, we
require a precise camera transformation. Moreover, the pose output from RTN
may not always precisely generalize to new test scenes. To overcome this, we
propose a refinement step based on the estimated rigidity B and bidirectional
dense optical flow δuof

0→1 and δuof
1→0 (with forward and backward pass). We view

the estimation of C1 as a robust least square problem as:

argmin
C1

∑

{x0,x1}∈Ω(B)

[I]ρ(C1x0 − x1) (7)
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where xi = π−1(ui, zi) in all background regions B, predicted by the RTN. [I]
is an Iverson bracket for all the inlier correspondences. We filter the inlier corre-
spondences in several steps. We first use forward-backward consistency check for
bidirectional optical flow with a threshold of 0.75 to remove all flow correspon-
dences which are not consistent. The removed region approximates the occlusion
map O. We use a morphological operator with patch size 10 to dilate B and O
to further remove the outliers on boundaries. From all correspondences, we uni-
formly sample bidirectional flow correspondences with a stride of 4 and select
1e4 points among them that are closest to the camera viewpoint. These help
to solves the optimization more efficiently and numerically stable. We also use
the Huber norm ρ(·) as a robust way to handle the remaining outliers. We solve
equation 7 efficiently via Gauss-Newton with C1 initialized from the RTN output.
Note that in most cases correspondences are mostly accurate, the initialization
step trivially helps but can also be replaced by an identity initialization.

5 REFRESH Dataset

Training our network requires a sufficient amount of dynamic RGB-D images
over scenes and ground truth in the form of known camera pose, rigidity mask,
and optical flow. However, acquiring such ground truth from the real-world data
is difficult or even infeasible. Existing dataset acquisition tools include rendered
animations like SINTEL[2] and Monka[20], and frames captured from games [26].
SINTEL [2] has a small number of frames, so we use it for testing instead of
training. Most approaches render scenes using rigid 3D object models [31,7,20]
with the concept. Among all existing tools and datasets, only Things3D[20]
provides sufficient 3D training samples for learning 3D flow with moving camera
ground truth. However, it only uses a small set of 3D objects with textured
images at infinity as static scene context and rigid objects as the dynamic scene,
which does not provide realistic 3D scene structure for motion estimation that
can generalize well.

To overcome the dataset issue, we propose a semi-synthetic scene flow dataset:
REal 3D from REconstruction with Synthetic Humans, which we name as RE-
FRESH. For this task we leverage the success of state of the art 3D reconstruc-
tion systems [5,10,46], which directly provide dense 3D meshes and optimized
camera trajectories. We use a pre-captured RGB-D dataset and create dynamic
4D scenes by rendering non-rigid 3D moving objects with pre-defined trajecto-
ries. We overlay synthetic objects over the original footage to obtain a composite
image with the ground truth as shown in Fig. 5.
Real 3D Reconstructed Scenes: We use the 3D meshes created with Bundle-
Fusion [5]. The authors released eight reference 3D meshes with the 25K input
RGB-D images, camera intrinsic and extrinsic parameters.
Synthetic humans: We create non-rigid scene elements with the method in-
troduced in SURREAL [36]. Each synthetic body is created from realistic ar-
ticulated human body models [17] and pose actions are from the CMU MoCap
database [15] with more than 20K sequences of 23 action categories. The human
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(a) reconstructed 3D mesh (b) raw color image (c) raw depth image (d) synthetic humans

(e) rendered rigidity (f) composited color (g) composited depth (h) composited gt flow

Fig. 5: REFRESH dataset creation pipeline With a captured RGB-D tra-
jectory, the scene is reconstructed as a 3D mesh by BundleFusion [5] (a), with
raw RGB-D input as (b) and (c). With sampled frames from the camera tra-
jectory, we load synthetic human models [36] with motions randomly into the
3D as (d), and render the rigidity mask (e), Finally we composite the rendered
synthetic ground truth with its corresponding rendered 3D views and the final
semi-synthetic RGB-D views (f) and (h), with optical flow ground truth as (i).

textures are composed of SMPL CAESAR scans and real clothing registered with
4Cap [24]. We create each synthetic human with random gender, body shape,
cloth texture, action and their positions in the 3D scene which guarantees the
diversity of dynamic scenes. We control the visibility of human models along the
trajectory by putting the pelvis point of each human model in the free space
w.r.t. the ego-centric viewpoint from a selected frame along the trajectory. The
free space is sampled by the corresponding depth. For every 100 frames, we select
n frames (n sample from ∼ N (15, 5)) and insert n human models into the scene.

Rendering and ground-truth generation: We use Cycles from the Blender 3

suite as our rendering engine. The lighting is created using spherical harmonics,
as in Varol et al. [36]. First, we set the virtual camera using the same 3D scene
camera intrinsic and spatial resolution. The camera extrinsic follows the real-data
trajectory (computed from BundleFusion [5]). Thus, we can use the raw color
image rather than rendered image as background texture which is photo-realistic
and contains artifacts such as motion blur. With the same camera settings, we
separately render the 3D reconstructed static mesh and the synthetic humans,
and composite them using alpha-matting. Different from the color image, the
depth map is rendered from the 3D mesh, which is less noisy and more complete
than raw depth. Since the camera movement during the 3D acquisition is small
between frames, we sub-sample frames at intervals of [1,2,5,10,20] to create larger
motions. We employ a multi-pass rendering approach to generate depth, optical
flow and rigidity mask as our ground truth.

3 Blender: https://www.blender.org/
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6 Experiments

We implemented the RTN in PyTorch, and the pose refinement in C++ with
GTSAM 4.0 [6]. The PWCNet [33] is trained in Caffe. We integrate all the
modules through Python. We use 68K images from our REFRESH dataset for
training 4. We train RTN from scratch using weight initialization from He et
al.[12] and Adam optimizer (β1 = 0.9 and β2 = 0.999, learning rate of 2e−4) on
3 GPUs for 12 epochs. During training, the rigidity mask loss is accumulated
over 5 different scales with balanced weights, and we choose wΘ = 100. We follow
the same training as PWC-net Sun et al. [33]. We will release our code, datasets
and REFRESH toolkit 5.

We evaluate our approach under various settings to show the performance
of rigidity and pose estimation and their influence on scene flow estimation.
For the effective analysis in scenes with different levels of non-rigid motions, we
create a new test split from SINTEL data [2] based on the non-rigid number of
pixels percentage. In Sec. 6.1, we provide a comparison of the performance with
different settings for RTN, refinement and other state-of-the-arts methods. In
Sec. 6.2, we qualitative evaluate of our method using real world images. Please
also refer to our video for more qualitative evaluations.

6.1 Quantitative Evaluations

We first evaluate our approach on the challenging SINTEL dataset [2], which
is a 3D rendered animation containing a sequence of 23 dynamic scenes with
cinematic camera motion. The dataset has two versions with different render-
ing settings: clean and final. The latter set contains motion blur and depth of
field effects, which are not present in the clean set. Since the official SINTEL
test dataset does not provide RGB-D 3D flow evaluation, we split the SINTEL
training set into train, validation, and test split. For the test split, to effec-
tively evaluate and analyze the impact of different levels of non-rigid motions
in the estimation, we choose alley 2 (1.8%), temp 2 (5.8%), market 5 (27.04%),
ambush 6 (38.96%), cave 4 (47.10%), where (·) indicates the average non-rigid
regions in each scene sequence. These examples also contain a sufficient amount
of camera motion. We use the first 5 frames in the rest of the 18 scenes as a
validation set, and the remaining images for training in our finetuning setting.

We show our quantitative evaluations using flow metric in Table 1, rel-
ative pose metric in Table 2, and the rigidity IOU in Table 3. We list the
end-point-error (EPE) in the ego-motion flow (EF) and projected scene flow
(PSF) as defined in Sec.3. Our proposed metrics overcomes the traditional dif-
ficulty of 3D motion flow evaluation. We compare our method to two state-of-
art optimization-based RGB-D scene flow solutions: SRSF [25] and VO-SF [16]
which estimate the camera pose as part of the solution to flow correspondence.

4 More details about the dataset are included in the supplementary materials.
5 Code repository: https://github.com/NVlabs/learningrigidity.git

https://youtu.be/MnTHkOCY790
https://github.com/NVlabs/learningrigidity.git
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Semantic Rigidity [45] (No Finetuning)

Ground Truth Projected Scene Flow

Our Projected Scene Flow (No Finetuning)

VOSF[16]

Fig. 6: Qualitative visualization on our SINTEL test split. We compare our
rigidity prediction with the output using semantic rigidity [45] trained on our
REFRESH dataset and our projected scene flow with output of VOSF [16].

In addition, we evaluate three types of baselines. The first one solves the refine-
ment stage from flow without any inputs from RTN (Refine Only), which as-
sumes rigidity often dominates the scene [23,16,18]. Secondly, we use three-point
RANSAC to calculate the camera pose from the flow. Third, to fairly evaluate
the rigidity of (RTN) and its generalization, we compare it to semantic rigidity
estimation [45], which assumes that the non-rigid motion can be predicted from
its semantic labeling. We follow Wulff et al [45] and use the DeepLab [4] archi-
tecture initialized from the pre-trained MS-COCO model, but trained over the
same data we used for our model. In the pose refinement stage, we substitute
our rigidity from RTN with the semantic rigidity. For the fine-tuned evaluation
on SINTEL, we re-train both our RTN and the semantic rigidity network. All
methods use the same optical flow network and weights, and all use the same
depth from SINTEL ground truth. The qualitative comparison is shown in Fig.6.

The Flow Metrics in Table 1 show that: (1) compared to SRSF[25] and
VOSF [16], our proposed algorithm with learned rigidity can improve scene flow
accuracy by a significant margin with no further fine-tuning (NO FT) (rows
(a),(b)vs(h); (k),(l)vs(r)); (2) the rigidity mask from our RTN performs bet-
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Table 1: Quantitative evaluation in flow residuals using SINTEL dataset on our
test split. The ratio of Nonrigid (NR) Region indicates the average ratio of pixels
in the scene which represents the complexity of dynamic motion in the scene.
We report the EPE in egomotion flow (EF) and projected scene flow (PSF). For
all the baseline methods in both non-finetuning (NO FT) and finetuning (FT)
setting, we use the same optical flow network trained as our method. The lowest
residual under the same setting (e.g. NO FT, clean set) is highlighted as bold.

NR Region<10% NR Region 10%-40% NR Region>40% All Test

alley 2 temple 2 market 5 ambush 6 cave4 Average

EF PSF EF PSF EF PSF EF PSF EF PSF EF PSF

CLEAN (no motion blur)

(a) SRSF [25] 4.24 7.25 7.59 16.55 25.26 31.67 17.84 37.21 10.77 11.82 12.47 18.57

(b) VOSF [16] 6.53 1.13 5.13 10.36 16.02 35.24 13.39 28.31 6.05 9.30 8.86 15.24

NO
FT

(c) Refine only 0.29 0.48 0.90 2.95 8.81 22.34 3.59 14.39 2.18 5.88 3.09 8.47

(d) Semantic[45]+Refine 0.25 0.53 1.07 3.87 5.77 15.74 1.70 9.58 0.85 4.34 1.96 6.42

(e) RANSAC+Flow 0.31 0.57 0.47 2.73 7.36 19.19 3.86 14.89 2.17 5.94 2.69 7.78

(f) RTN(use Things[20])+Refine 0.34 0.60 1.47 3.98 7.21 18.73 21.84 23.97 1.17 4.90 4.20 5.85

(g) RTN(no-pose)+Refine 0.13 0.45 0.49 2.79 5.78 16.24 3.72 16.92 1.67 5.37 2.07 7.09

(h) RTN+Refine 0.18 0.48 0.46 2.72 1.61 11.86 0.97 8.61 0.63 4.05 0.74 5.10

FT
(i) Semantic[45]+Refine 0.19 0.46 0.50 2.73 2.73 13.45 1.13 9.94 2.07 5.87 1.35 5.98

(j) RTN+Refine 0.18 0.47 0.42 2.64 1.69 11.53 0.47 7.74 0.91 4.34 0.77 5.03

FINAL (with motion blur)

(k) SRSF [25] 4.33 7.78 7.59 15.51 24.93 31.29 17.26 39.08 10.80 13.29 12.37 18.86

(l) VOSF [16] 6.29 1.54 5.69 8.91 15.99 35.17 13.37 24.02 6.23 9.28 8.96 14.61

NO
FT

(m) Refine only 0.28 0.57 0.90 3.77 8.80 20.64 3.59 20.41 2.18 6.52 3.09 8.95

(n) Semantic[45]+refine 0.25 0.52 0.96 3.83 >100 >100 20.23 35.46 11.05 12.81 >100 >100

(o) RANSAC+Flow 0.36 0.61 0.62 3.41 4.68 18.69 5.79 20.86 2.28 6.55 2.31 8.47

(p) RTN(use Things[20])+Refine 0.25 0.52 5.06 9.82 4.88 16.99 33.44 52.21 1.05 5.07 5.44 11.88

(q) RTN(no-pose)+Refine 0.19 0.48 0.82 3.58 2.15 13.97 3.34 20.02 1.52 5.72 1.36 7.14

(r) RTN+Refine 0.18 0.47 0.88 3.93 0.79 11.87 2.82 19.42 0.66 4.66 0.82 6.29

FT
(s) Semantic[45]+Refine 0.19 0.48 1.91 5.19 1.58 13.02 2.58 19.11 2.13 6.50 1.55 7.39

(t) RTN+Refine 0.21 0.48 0.66 3.27 0.97 11.35 2.34 19.08 0.74 4.75 0.79 6.12

ter than the single-view semantic segmentation based approach [45], partic-
ularly in the more realistic final pass with no fine-tuning (row (d)vs(g),(h);
(n)vs(q),(r)); (3) as shown in RTN+refine, the simultaneous learning of rigidity
with pose transform achieves better generalization than learning rigidity alone
(row (g)vs(h); (q)vs(r)); (4) RTN trained on our dataset generalizes better com-
pared to the same RTN trained using Things3D[20] (row (f)vs(h); (p)vs(r)); and
(5) the final approaches consistently outperforms all baselines. Note that the
semantic rigidity [45] can achieve better performance (from Table 1) relying on
fine-tuning on SINTEL, our learned rigidity can generalize to unseen complex
scenes and perform as well as the fine-tuned model. Our rigidity prediction can
capture unseen objects well, as shown by the dragon in Fig. 6.

The Pose Metrics evaluations in Table 2 include two other baselines: depth-
based ORB-SLAM[22] and point cloud registration [48]. As mentioned, the ac-
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Table 2: Quantitative evaluation in relative camera transfrom using on our SIN-
TEL test split. We report the relative pose error [30] (RPE) composed of trans-
lation (t) error and rotation error (r) in Euler angles (degree) in SINTEL depth
metric averaged on from outputs using clean and final pass.

NR Region <10% NR Region 10% - 40% NR Region >40% All Test

alley 2 temple 2 market 5 ambush 6 cave4 AVERAGE

RPE(t) RPE(r) RPE(t) RPE(r) RPE(t) RPE(r) RPE(t) RPE(r) RPE(t) RPE(r) RPE(t) RPE(r)

ORB-SLAM [22] 0.0300 0.0190 0.1740 0.0220 0.1500 0.0160 0.0550 0.0280 0.0167 0.0277 0.0894 0.0218

SRSF [25] 0.0487 0.0141 0.1763 0.0117 0.1566 0.0105 0.0672 0.0729 0.0218 0.0150 0.0980 0.0180

VOSF[16] 0.1043 0.0316 0.1055 0.0155 0.0605 0.0006 0.0375 0.0190 0.0438 0.0046 0.0750 0.0136

Registration [1] 0.0400 0.0094 0.3990 0.0381 0.0269 0.0073 0.0698 0.0225 0.0551 0.0076 0.1251 0.0162

RANSAC+Flow 0.0026 0.0047 0.0258 0.0033 0.0446 0.0043 0.0318 0.0082 0.0318 0.0411 0.0267 0.0039

Our RTN Pose 0.0349 0.0237 0.1589 0.0120 0.1520 0.0208 0.0455 0.0493 0.0233 0.0212 0.0883 0.0220

Ours (no ft) 0.0015 0.0036 0.0215 0.0010 0.0059 0.0009 0.0153 0.0061 0.0053 0.0009 0.0091 0.0020

Table 3: Evaluation of rigidity using mean IOU of rigid and nonrigid scenes.

mean IOU REFRESH val SINTEL clean val SINTEL final val

Semantic Rigidity [2] trained on REFRESH 0.934 0.392 0.446
RTN trained on Things [4] - 0.283 0.286

RTN trained on our REFRESH 0.956 0.542 0.627

curacy of all relevant methods in dynamic scenes with moving camera highly
relies on the ability ignore the non-rigid surfaces. As shown in the table, our
pose directly predicted from RTN can achieve same or better accuracy with all
relevant methods, and our final solution without fine-tunning can out-perform
all state-of-the-art methods by a significant margin.

The Rigidity Metric in Table 3 further shows the generalization in rigidity
estimation. Our approach trained on our dataset generalizes significant better
compared to the same approach trained using Things3D[20] and the semantic
rigidity[45] using the same data.

6.2 Evaluation on Real-world Images

To test our algorithm in real-world dynamic scenarios, we use three TUM RGB-D
sequences [30] which contains dynamic motions observed from a moving Kinect
camera. The depth input is noisy with missing observations and the color images
contain severe motion blur. We use the raw color and depth input with provided
calibrated camera intrinsics as input, and mark the regions as invalid region when
the depth value is not within [0.1, 8]. In invalid regions, we ignore the rigidity
prediction and treat the flow correspondence as outliers. Considering there is no
3D motion flow ground truth for our real data, we visualize the rigidity prediction
and projected scene flow to qualitatively show the performance in Fig. 7. Our
results show that our trained model on semi-synthetic data can also generalize
well to real noisy RGB-D data with significant motion blur.
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(a) Two-frame
overlay

(b) Depth of the
first frame

(c) Rigidity (red) (d) Optical flow (e) Ego-motion
flow

(f) Projected
scene flow

Fig. 7:Qualitative visualization of dynamic sequences in TUM [30] sequences.

7 Conclusion and Future Work

We have presented a learning-based approach to estimate the rigid regions in dy-
namic scenes observed by a moving camera. Furthermore, we have shown that
our framework can accurately compute the 3D motion field (scene flow), and the
relative camera transform between two views. To provide better supervision to
the rigidity learning task and encourage the generalization of our model, we cre-
ated a novel semi-synthetic dynamic scene dataset, REFRESH, which contains
real-world background scenes together with synthetic foreground moving objects.
Through various tests, we have shown that our proposed method can outperform
state-of-the-art solutions. We also included a new guideline for dynamic scene
evaluation regarding the amount of scene motion and camera motion.

We observed some cases where the rigidity mask deviates from the ground-
truth. We noticed that in these situations the moving object size is small, or the
temporal motions between the two frames are small. In these cases, the error
and deviations scales are small, which does not significantly affect the 3D scene
flow computed as a result. Note that the success of this method also depends
on the accuracy of optical flow. In scenarios when the optical flow fails or pro-
duces a noisy result, the errors in the correspondences will also propagate to 3D
motion field. In future work, we can address these problems by exploiting ren-
dering more diverse datasets to encourage generalization in different scenes. We
will also incorporate both rigidity and optical flow to refine the correspondence
estimation and explore performance improvements with end-to-end learning, in-
cluding correspondence refinement and depth estimation from RGB inputs.

Acknowledgment This work was partially supported by the National Science
Foundation and National Robotics Initiative (Grant # IIS-1426998).



Learning Rigidity in Dynamic Scenes for 3D Motion Field Estimation 15

References

1. Basha, T., Moses, Y., Kiryati, N.: Multi-view scene flow estimation: A view cen-
tered variational approach. In: IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR). pp. 1506–1513 (2010)

2. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: European Conf. on Computer Vision (ECCV). pp.
611–625. The Royal Society (2012)

3. Byravan, A., Fox, D.: SE3-Nets: Learning rigid body motion using deep neural
networks. In: IEEE Intl. Conf. on Robotics and Automation (ICRA). pp. 173–180.
IEEE (2017)

4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. arXiv:1606.00915 (2016)
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27. Scharwächter, T., Enzweiler, M., Franke, U., Roth, S.: Stixmantics: A medium-
level model for real-time semantic scene understanding. In: European Conf. on
Computer Vision (ECCV) (2014)

28. Sevilla-Lara, L., Sun, D., Jampani, V., Black, M.J.: Optical flow with semantic
segmentation and localized layers. In: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) (Jun 2016)

29. Shashua, A., Gdalyahu, Y., Hayun, G.: Pedestrian detection for driving assistance
systems: Single-frame classification and system level performance. In: IEEE Intel-
ligent Vehicles Symposium (IV). pp. 1–6 (June 2004)

30. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark
for the evaluation of rgb-d slam systems. In: IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS) (Oct 2012)

31. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation
in images using cnns trained with rendered 3d model views. In: Intl. Conf. on
Computer Vision (ICCV) (December 2015)

32. Sun, D., Sudderth, E.B., Pfister, H.: Layered rgbd scene flow estimation. In: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR). pp. 548–556. IEEE
(2015)

33. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow us-
ing pyramid, warping, and cost volume. In: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR) (2018)

34. Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., Brox, T.:
DeMoN: depth and motion network for learning monocular stereo. In: IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR) (2017)

https://doi.org/10.1109/TRO.2017.2705103


Learning Rigidity in Dynamic Scenes for 3D Motion Field Estimation 17

35. Valgaerts, L., Bruhn, A., Zimmer, H., Weickert, J., Stoll, C., Theobalt, C.: Joint
estimation of motion, structure and geometry from stereo sequences. In: European
Conf. on Computer Vision (ECCV). vol. 6314 LNCS, pp. 568–581 (2010)

36. Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M.J., Laptev, I., Schmid,
C.: Learning from Synthetic Humans. In: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR) (2017)

37. Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene
flow. In: Intl. Conf. on Computer Vision (ICCV). vol. 2, pp. 722–729 vol.2 (1999)

38. Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R., Fragkiadaki, K.: SfM-
Net: learning of structure and motion from video. arXiv abs/1704.07804 (2017)

39. Vogel, C., Schindler, K., Roth, S.: 3D scene flow estimation with a rigid motion
prior. In: Intl. Conf. on Computer Vision (ICCV). pp. 1291–1298 (2011)

40. Vogel, C., Schindler, K., Roth, S.: Piecewise rigid scene flow. In: Intl. Conf. on
Computer Vision (ICCV). pp. 1377–1384 (2013)

41. Vogel, C., Schindler, K., Roth, S.: 3d scene flow estimation with a piecewise rigid
scene model. Intl. J. of Computer Vision 115(1), 1–28 (2015)

42. Vogel, C., Schindler, K., Roth, S.: View-consistent 3d scene flow estimation over
multiple frames. In: European Conf. on Computer Vision (ECCV). vol. 8692, pp.
263–278 (2014)

43. Wang, P., Li, W., Gao, Z., Zhang, Y., Tang, C., Ogunbona, P.: Scene Flow to Action
Map: A new representation for RGB-D based action recognition with convolutional
neural networks. In: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (July 2017)

44. Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D.: Stereoscopic
scene flow computation for 3D motion understanding. Intl. J. of Computer Vision
95(1), 29–51 (2011)

45. Wulff, J., Sevilla-Lara, L., Black, M.J.: Optical flow in mostly rigid scenes. In:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (July 2017)

46. Xiao, J., Owens, A., Torralba, A.: SUN3D: a database of big spaces reconstructed
using SfM and object labels. In: Intl. Conf. on Computer Vision (ICCV). pp. 1625–
1632. IEEE Computer Society, Los Alamitos, CA, USA (2013)

47. Yin, Z., Shi, J.: GeoNet: Unsupervised Learning of Dense Depth, Optical Flow
and Camera Pose. In: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2018)

48. Zhou, Q., Park, J., Koltun, V.: Fast global registration. In: European Conf. on
Computer Vision (ECCV). pp. 766–782 (2016)

49. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and
ego-motion from video. In: IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR) (2017)


