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Abstract. Current two-stage object detectors, which consists of a re-
gion proposal stage and a refinement stage, may produce unreliable re-
sults due to ill-localized proposed regions. To address this problem, we
propose a context refinement algorithm that explores rich contextual in-
formation to better refine each proposed region. In particular, we first
identify neighboring regions that may contain useful contexts and then
perform refinement based on the extracted and unified contextual in-
formation. In practice, our method effectively improves the quality of
the final detection results as well as region proposals. Empirical studies
show that context refinement yields substantial and consistent improve-
ments over different baseline detectors. Moreover, the proposed algorithm
brings around 3% performance gain on PASCAL VOC benchmark and
around 6% gain on MS COCO benchmark respectively.

Keywords: Object Detection · Context Analysis · Deep Convolutional
Neural Network

1 Introduction

Recent top-performing object detectors, such as Faster RCNN [29] and Mask
RCNN [16], are mostly based on a two-stage paradigm which first generates
a sparse set of object proposals and then refines the proposals by adjusting
their coordinates and predicting their categories. Despite great success, these
methods tend to produce inaccurate bounding boxes and false labels after the
refinement because of the poor-quality proposals generated in the first stage. As
illustrated in Figure 1, if a proposed region has a partial overlap with a true
object, existing methods would suffer refinement failures since this region does
not contain sufficient information for holistic object perception. Although much
effort such as [21] has been dedicated to enhance the quality of object proposals,
it still cannot guarantee that the proposed regions can have a satisfactory overlap
for each ground truth.

To tackle the aforementioned issue, we augment the representation for each
proposed region by leveraging its surrounding regions. This is motivated by the
fact that surrounding regions usually contain complementary information on
object appearance and high-level characteristics, e.g., semantics and geometric
relationships, for a proposed region. Different from related approaches [36, 12, 37,
26] that mainly include additional visual features from manually picked regions
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Fig. 1. Overview of the pipeline for the proposed context refinement algorithm compar-
ing to existing refinement pipeline. Existing pipeline (b) refines each proposed region
by performing classification and regression only based on visual features, while the
proposed algorithm (c) can achieve a more reliable refinement by making use of both
visual cues and contexts brought by surrounding regions.

to help refinement, our method is based on off-the-shelf proposals that are more
natural and more reliable than hand-designed regions. Furthermore, by using
a weighting strategy, our method can also take better advantage of contextual
information comparing to other existing methods.

In this paper, we propose a learning-based context refinement algorithm
to augment the existing refinement procedure. More specifically, our proposed
method follows an iterative procedure which consists of three processing steps
in each iteration. In the first processing step, we select a candidate region from
the proposed regions and identify its surrounding regions. Next, we gather the
contextual information from the surrounding regions and then aggregate these
collected contexts into a unified contextual representation based on an adaptive
weighting strategy. Lastly, we perform context refinement for the selected re-
gion based on both the visual features and the corresponding unified contextual
representation. In practice, since the proposed method requires minor modifi-
cation in detection pipeline, we can implement our algorithm by introducing
additional small networks that can be directly embedded in existing two-stage
detectors. With such simplicity of design and ease of implementation, our method
can further improve the region proposal stage for two-stage detectors. Extensive
experimental results show that the proposed method consistently boosts the per-
formance for different baseline detectors, such as Faster RCNN [29], Deformable
R-FCN [9], and Mask RCNN [16], with diversified backbone networks, such as
VGG [32] and ResNet [17]. The proposed algorithm also achieves around 3% im-
provement on PASCAL VOC benchmark and around 6% improvement on MS
COCO benchmark over baseline detectors.
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2 Related Work

Object detection is the key task in many computer vision problems [7, 5, 18, 6].
Recently, researchers mainly adopt single-stage detectors or two-stage detectors
to tackle detection problems. Compared with single-stage detectors [27, 24, 30],
two-stage detectors are usually slower but with better detection performance
[20]. With a refinement stage, two-stage detectors are shown to be powerful on
COCO detection benchmark [23] that contains many small-sized objects and
deformed objects. Over recent years, several typical algorithms [15, 29, 8, 9] have
been proposed to improve the two-stage detectors. For example, [22] developed
the feature pyramid network to address the challenge of small object detection.
[16] proposes a novel feature warping method to improve the performance of the
final refinement procedure. However, these methods are highly sensitive to the
quality of object proposals and thereby may produce false labels and inaccurate
bounding boxes on poor-quality object proposals.

To relieve this issue, post-processing methods have been widely used in two-
stage detection systems. One of the most popular among them is the iterative
bounding box refinement method [12, 37, 17]. This method repeatedly refines the
proposed regions and performs a voting and suppressing procedure to obtain
the final results. Meanwhile, rather than using a manually designed iterative
refinement method, some studies [13, 14] recursively perform regression to the
proposed regions so that they can learn to gradually adapt the ground-truth
boxes. Although better performance could be achieved with more iterations of
processing, these methods are commonly computational costly. In addition, some
other studies adopt a re-scoring strategy. For example, the paper [2] tends to
progressively decrease the detection score of overlapped bounding boxes, lowering
the risk of keeping false positive results rather than more reliable ones, while
Hosang et al. [19] re-scores detection with a learning-based algorithm. However,
the re-scoring methods do not consider contexts, thus only offering limited help
in improving the performance.

More related studies refer visual contexts to improve object detection. Even
without the powerful deep convolutional neural networks (DCNNs), the advan-
tages of using contexts for object detection have already been demonstrated in
[10, 35, 25]. In recent years, many studies [36, 12, 37, 26] attempt to further incor-
porate contexts in DCNN. In general, they propose to utilize additional visual
features from context windows to facilitate detection. A context window is com-
monly selected based on a slightly larger or smaller region comparing to the
corresponding proposed regions. The visual features inside each context window
will be extracted and used as contextual information for the final refinement of
each region. However, since context windows are commonly selected by hand,
the considered regions still have a limited range and surrounding contexts may
not be fully exploited. Instead of using context windows, some studies [1, 28, 4]
attempt to employ recurrent neural networks to encode contextual information.
For example, the ION detector [1] attempts to collect contexts by introducing
multi-directional recurrent neural network, but the resulting network becomes
much more complicated and it requires careful initialization for stable training.
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Fig. 2. The detailed working flow of the proposed context refinement algorithm for im-
proving the original refinement (best view in color). Regarding each selected region, our
algorithm first identifies its surrounding regions that may carry useful context based
on a correlation estimation procedure. Afterwards, all the contextual information is
aggregated to form a unified representation based on an adaptive weighting strategy.
Using both the aggregated contexts and visual features extracted from DCNN, the pro-
posed context refinement algorithm is able to improve the quality of detection results.
The detailed definitions of the math symbols can be found in Section 3.

Nevertheless, most of the prevailing context-aware object detectors only con-
sider contextual features extracted from DCNNs, lacking the consideration of
higher-level surrounding contexts such as semantic information and geometric
relationship.

3 Context Refinement for Object Detection

Different from existing studies that mainly extract visual contexts from manu-
ally picked regions or RNNs, we propose to extensively incorporate contextual
information brought by surrounding regions to improve the original refinement.

Mathematically, we define that the status of a region r is described by its four
coordinates b = (x1, y1, x2, y2) and a confidence score s. Suppose vi represents
visual features extracted from the region ri bounded by bi, then original refine-
ment procedure of existing two-stage detectors commonly perform the following
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operations to refine the region ri:
{

si = fcls(vi)
bi = freg(b

0

i ,vi)
(1)

where b
0

i is the original coordinates of the proposed region, fcls and freg re-
spectively represent the classification and regression operations. In a two-stage
detector, fcls is usually a soft-max operation and freg is generally a linear
regression operation. Both operations perform refinement based on the inner
product between the input vector and the weight vector. The classification op-
eration actually assigns a pre-defined box (namely anchor box) with a fore-
ground/background label and assigns a proposal with a category-aware label;
the regression operation estimates the adjustment of the coordinates for the
region. As mentioned previously, two-stage detectors which refine proposed re-
gions based on Eq. 1 suffer from the issue that ill-localized proposed regions
would result in unreliable refinement, if not considering context. Based on the
observation that surrounding regions can deliver informative clues for describing
the accurate status of an object, we introduce context refinement algorithm to
tackle the partial detection issue and thus improve the original refinement.

The processing flow of the proposed algorithm can be described as an iter-
ative three-stage procedure. In particular, the three processing stages for each
iteration include: 1) selecting candidate region and identifying its context re-
gions; 2) aggregating contextual features; and 3) conducting context refinement.
Formally, we make ri represent the selected region in current iteration and fur-
ther define the surrounding regions of ri that may carry useful contexts as its
context region. In the first stage, we select a candidate region ri and then the
context regions of ri can be properly obtained by collecting other regions that
are in the neighbourhood and closely related to the selected region. We use the
symbol Rc

i to represent the set of the obtained context regions for ri. Afterwards,
in the second stage, we extract contextual features from Rc

i and fuse these con-
texts into a unified representation, v̂c

i , based on an adaptive weighting strategy.
For the last stage, based on both vi and v̂

c
i , we perform context refinement using

the following operations:
{

s′i = f c
cls(si,vi, v̂

c
i )

b
′

i = f c
reg(bi,vi, v̂

c
i )

(2)

where b
′

i and s′i are the results of context refinement, and f c
cls and f c

reg are the
context refinement functions for classification and regression respectively. The
detailed workflow of context refinement for improving the detection is illustrated
in Eq. 2.

3.1 Selecting Regions

In our proposed algorithm, the first step is to select a candidate region and iden-
tify its context regions for refinement. According to Eq. 2, we perform original
refinement before the first step of our algorithm so that the regions can be first
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enriched with semantics and meaningful geometry information. This can also
make the regions tend to cluster themselves around true objects and thus can
convey helpful context.

After the original refinement, the estimated confidence score can indicate the
quality of a region to some extents. In this study, we adopt a greedy strategy
to select regions in each iteration, which means that regions of higher scores
will be refined with contexts earlier. When a region is selected, we then identify
its context regions for extracting contextual information. In our algorithm, the
context regions represent closely related regions, considering that these regions
could cover the same object with the selected region. In order to obtain an
adequate set of context regions, we estimate the closeness between the selected
region and the other regions. Therefore, the regions that are closer to the selected
region can form an adequate set of context regions Rc

i .
We introduce the concept of correlation level to define the closeness between

a selected region and other regions. The correlation level represents the strength
of the relationship between any two regions. We use ρ(ri, rj) to describe the
correlation level between ri and rj . Using this notation, we describe the set of
context regions for ri as:

Rc
i = {rj |ρ(ri, rj) > τ} (3)

where τ is a threshold. In our implementation, we measure the correlation
level between two regions based on their Intersect-over-Union (IoU) score, thus
ρ(ri, rj) = IoU(bi, bj). The detailed setting for τ is defined in Section 5.

3.2 Fusing Context

Context extracted from Rc
i can provide complementary information that could

be beneficial for rectifying the coordinates and improving the estimated class
probabilities for the selected candidate regions. However, a major issue of using
the collected contextual information is that the number of context regions is not
fixed and can range from zero to hundreds. Using an arbitrary amount of con-
textual information, it will be difficult for an algorithm to conduct appropriate
refinement for ri. To tackle this issue, we introduce the aggregation function g to
fuse all the collected contextual information into a unified representation based
on an adaptive weighting strategy, thus facilitating the context refinement.

We use vc
ji to denote the contextual information carried by rj w.r.t ri. Then

we can build a set of contextual representation V c
i by collecting all the v

c
ji from

Rc
i :

V c
i = {vc

ji|v
c
ji for rj ∈ Rc

i}. (4)

Since the size of V c
i will vary according to different selected regions, we at-

tempt to aggregate all the contexts in V c
i into a unified representation. In order

to properly realize the aggregation operation, we propose that the more related
context regions should make major contributions to the unified contextual rep-
resentation. This can further reduce the risk of distracting the refinement if
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surrounding regions are scattered. In particular, we adopt the use of an adaptive
weighting strategy to help define the aggregation function g.

Mathematically, we refer ωji as the weight of v
c
ji ∈ V c

i that can be adaptively
computed according to different selected regions. Since we are assigning larger
weights to more related context regions, we attempt to estimate the relation score
between rj and ri and make ωji depend on the estimated score. Considering that
we are using semantics (i.e. classification results) and geometry information to
define regions, it is appropriate to describe ωji as a combination of semantic
relation score ωs

ji and geometric relation score ω
g
ji:

ωji = ωs
ji · ω

g
ji. (5)

We instantiate the semantic relation score ωs
ji and geometry relation score ω

g
ji

using the following settings:

{

ωs
ji = ✶(lj = li) · sj

ω
g
ji = IoU(bi, bj)

(6)

where ✶(·) is a bool function and li, lj represent the predicted labels for corre-
sponding regions. Using this setting, the context regions with lower confidence
and lower overlap scores w.r.t the selected region will make minor contributions
to the unified contextual representation.

By denoting Ωi as the set of estimated ωji for v
c
ji ∈ V c

i , we introduce an av-
eraging operation to consolidate all the weighted contextual information brought
by a variable number of context regions. Recall that the unified contextual repre-
sentation is v̂c

i , we implement the aggregation operation g based on the following
equation:

v̂
c
i = g({vc

ji, ωji|v
c
ji ∈ V c

i , ωji ∈ Ωi}) (7)

where:

g({vc
ji, ωji}) =

∑

j ωji · v
c
ji

∑

j ωji

. (8)

3.3 Learning-based Refinement

After v̂c
i is computed by Eq. 7, we are then able to perform context refinement

for each selected regions based on Eq. 2. In this paper, we introduce a learning-
based scheme to fulfill the context refinement. More specifically, we employ fully
connected neural network layers to realize the functions f c

cls and f c
reg. By con-

catenating together the vi and v̂
c
i , the employed fully connected layers will learn

to estimate a context refined classification score s′i and coordinates b
′

i. These
fully connected layers can be trained together with original refinement network.

Overall, Algorithm 1 describes the detailed processing flow of the proposed
context refinement algorithm over an original refinement procedure. The pro-
posed algorithm is further visualized by Figure. 2.
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Algorithm 1 Context Refinement

Require: A set of regions, R = {ri = (li, bi)}, that has been first refined by Eq. 1;
Ensure: A set of context refined regions R′ = {r′

i = (l′i, b
′
i)};

1: R′ ← {}
2: for each selected originally refined region ri ∈ R do

3: find the set of context regions Rc

i based on Eq. 3;
4: collect contextual representation V c

i based on Eq. 4;
5: aggregate contexts and obtain the unified contextual representation v̂

c

i based on
Eq. 5 - Eq. 8;

6: perform learning-based context refinement for ri based on Eq. 2, obtaining l′i
and b

′
i;

7: R′ ← R′ ∪ (l′i, b
′
i);

8: end for

9: return R′

4 Embedded Architecture

Since the proposed method only alters refinement operations, such as classifi-
cation and regression, of current two-stage detectors, it is straightforward to
implement the proposed method by introducing an additional network that can
be directly embedded into existing two-stage object detection pipelines. Such
design is lightweight and can enable us to perform context refinement for both
the final detection results and the region proposals because the proposals can be
considered as the refined results of pre-defined anchor boxes.

As shown in Figure 3, we can directly attach the context refinement module
to both the proposal generation stage and final refinement stage compatibly.
As mentioned previously, we attach networks for context refinement after the
original refinement operations. It is especially necessary to perform original re-
finement prior to our context refinement for proposal generation stage because
pre-defined anchor map does not contain semantic or geometric information that
can indicate the existence of objects. Moreover, such embedding design does not
revise the form of a detection result, which means that it is still possible to use
post-processing algorithms.

5 Implementation Details and Discussions

To embed context refinement network in different phases of a two-stage ob-
ject detector, we apply the following implementation. In the first stage that
produces region proposals, we attach the network of context refinement to the
top-6k proposals without performing NMS. We re-use original visual features as
useful information and also include relative geometry information (i.e. coordi-
nates offsets) and semantics to enrich the instance-level contextual information
for context refinement. The resulting context feature vector then has a length
of (C + 4+K) where C is the channel dimension of visual feature and K is the
number of categories. The threshold for defining context regions for proposals is
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Fig. 3. Embedded architecture of the proposed algorithm. This design makes the con-
text refinement algorithm compatible for both region proposal generation stage and
final refinement stage in existing two-stage detection pipeline.

set as 0.5. In addition, f c
cls and f c

reg are conducted on the output of two consecu-
tive fully connected layers with ReLU non-linear activation for the first layer. In
the second refinement stage, we additionally involve the semantics estimated in
the first context refinement stage. The f c

cls and f c
reg of this stage are performed

with one fully connected layer. Other settings are kept the same. When training
the context refinement network, since we are using an embedded architecture, it
is possible to fix the weights of other parts of a detector to achieve much higher
training speed, which would not sacrifice much accuracy. The loss functions used
for training are cross entropy loss for classification and smooth L1 loss for regres-
sion. Except that in the second stage, we additionally penalize the redundant
detection results following the strategy proposed by [19] and thus can relieve the
impacts of unnecessary detection results.

Model Complexity With the embedded design, the increase in model com-
plexity brought by context refinement mainly comes from extracting and unifying
contexts brought by context regions. Therefore, the required extra complexity
would be at most O(M2D) for using M candidate regions with the unified con-
textual feature of length D. In practice, our method will only use a small portion
of proposals for context refinement. More specifically, based on Eq. 3, we can
ignore a large number of proposals with a low correlation level when performing
context refinement for each candidate region. In addition, we further conduct
a thresholding procedure to eliminate the proposals with low confidence scores.
As a result, our method only costs around 0.11s extra processing time when
processing 2000 proposals.
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Context Refinement for Single-stage Detectors Although it is possi-
ble to realize context refinement for single-stage detectors, we find that these
detectors (e.g. SSD [24]) usually perform refinement on a smaller number of re-
gions, meaning that there would not be sufficient surrounding contexts to access
considerable improvements.

Failure Cases In general, our method brings limited improvements in two
cases. The first one is that the context regions are inaccurate. In this case, the
extracted contexts are not helping improve the performance. The second one is
that the number of context regions is too small to provide sufficient contextual
information for improvement.

6 Experiments

To evaluate the effectiveness of the proposed context refinement method for two-
stage object detectors, we perform comprehensive evaluations on the well-known
object detection benchmarks, including PASCAL VOC[11] and MS COCO[23].
We estimate the effects of our method on final detection results as well as region
proposals, comparing to original refinement method and other state-of-the-art
detection algorithms.

6.1 PASCAL VOC

PASCAL VOC benchmark [11] is a commonly used detection benchmark which
contains 20 categories of objects for evaluating detectors. For all the following
evaluation, we train models on both VOC 07 + 12 trainval datasets and perform
the evaluation on VOC 07 test set, where mean Average Precision (mAP) will
be majorly reported as detection performance.

In this section, we apply context refinement for both regional proposals and
the second refinement stage in the Faster RCNN (FRCNN) detector [29]. Consid-
ering that this detector adopts region proposal network (RPN) to refine anchors,
we abbreviate the context refined RPN as C-RPN. We further use C-FRCNN
to represent the FRCNN whose RPN and the second refinement stage are both
refined with contexts. We re-implement the FRCNN following the protocol of [3]
and use † to represent this re-implemented FRCNN in following experiments.

Effects on Region Proposals We first evaluate the effectiveness of the pro-
posed algorithm for region proposal network (RPN). The improvements in recall
rates w.r.t the ground-truth objects will illustrate the efficacy of our method.
In this part, recall rates will be reported based on different IoU thresholds and
different number of proposals. It is worth noting that our method is not a novel
region proposal algorithm, thus we do not compare with SelectiveSearch [34] and
EdgeBox[38]. We only report the performance gain with respect to the original
refinement performed by region proposal network.

Using different IoU thresholds as the criteria, we report the recall rates by
fixing the number of proposals in each plot, as illustrated in Figure 4. From the
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presented plots, we can find that although all the curves change slightly with
the number of proposals increases, the proposed context refinement procedure
can consistently boost recalls rates of original refinement. Especially, context
refinement is able to improve the recall rates of original RPN with around 45% at
an IoU threshold of 0.8 in each plot, which validates that the proposed algorithm
is advantageous for improving the quality of region proposals.

In addition, we report the recall rates for adopting different numbers of pro-
posals in Figure 5. In these plots, we can observe that the context refinement
bring more improvements when using higher IoU thresholds as criteria. Starting
from the IoU threshold of 0.8 for computing the recall rates, the improvements
of the proposed method becomes obvious, out-performing the original refine-
ment method in RPN with around 2 points for using more than 100 proposals.
With a more strict IoU threshold (i.e. 0.9), the proposals refined with surround-
ing contexts can still capture 20% to 30% of ground-truth boxes, while original
refinement only facilitates RPN to cover only around 7% ground-truth.

Effects on Detection With the help of context refinement, we not only can
boost recall rates of proposals but also can promisingly promote the final de-
tection performance. Table 1 briefly shows the ablation results of the context
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Method AP@0.5 AP@0.7 AP@0.8

FRCNN† with RPN 0.796 0.633 0.442

FRCNN† with C-RPN 0.804 0.650 0.469

C-FRCNN† 0.822 0.685 0.485

Table 1. Ablation study on VOC 07 test set for using context refinement to improve
different refinement stages in Faster RCNN (FRCNN) detector. “C-RPN” refers to
the context refinement improved region proposal network (RPN). “C-FRCNN” means
the FRCNN whose both refinement stages are improved with contexts. †: the FRCNN
implemented following the protocol suggested by [3].

Method Network aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

HyperNet [21] VGG 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7 71.4
ION [1] VGG 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87.0 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4 75.6
CC [26] BN-incep 80.9 84.8 83.0 75.9 72.3 88.9 88.4 90.3 66.2 87.6 74.0 89.5 89.3 83.6 79.6 55.2 83.4 81.0 87.8 80.7 81.1
R-FCN [8] Res101 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9 80.5

FRCNN† [3, 29] VGG 76.1 82.5 75.3 65.3 65.6 84.8 87.5 87.5 57.7 82.4 67.7 83.3 85.3 77.1 78.4 44.1 76.9 70.1 82.6 77.0 75.3

C-FRCNN† (ours) VGG 79.5 83.7 77.6 69.3 67.2 84.9 87.5 87.6 61.3 83.9 72.3 85.3 85.7 80.8 83.5 49.9 79.2 73.4 83.2 76.7 77.6

FRCNN† [3, 29] Res101 83.1 86.0 79.7 74.2 68.3 87.7 88.0 88.4 62.3 86.8 70.4 88.5 87.3 82.9 82.9 52.8 81.0 77.7 84.5 79.3 79.6

C-FRCNN† (ours) Res101 84.7 88.2 83.1 76.2 71.1 87.9 88.7 89.5 68.7 88.6 78.2 89.5 88.7 84.8 86.2 55.4 84.7 82.0 86.0 81.7 82.2

Table 2. Performance of context refinement improved Faster RCNN (C-FRCNN) de-
tector compared to other cutting-edge detectors on VOC 07 test set. †: the Faster
RCNN implemented following the protocol suggested by [3].

refinement algorithm for improving performance in different refinement stages.
In particular, by improving the recall rates of generated proposals, context re-
finement brings 0.8 point’s gain in final mAP using 0.5 as IoU threshold. When
further employing the proposed refinement to the final refinement stage of FR-
CNN, there is another 1.6 points’ improvement using the same metric. The
presented statistics reveal that the proposed context refinement is effective in
improving detection performance, especially for the final refinement stage in
two-stage detectors.

Moreover, by well-considering the contextual information carried with sur-
rounding regions, the proposed method is supposed to greatly improve the detec-
tion results comparing to original detectors no matter what backbone network
is used. To verify this, we evaluate the enhancement in detection performance
of adopting the use of context refinement for using different backbone networks
such as VGG and ResNet in FRCNN detector, comparing to other state-of-
the-art two-stage detectors. All the other compared algorithms are processed as
described in original papers, using VOC 07+12 dataset as training set.

Table 2 presents the detailed results of C-FRCNN based on different back-
bone networks, comparing to other state-of-the-art two-stage detectors based
on similar backbone networks. According to the results, context refinement re-
spectively achieves 2.3 points higher mAP for VGG-based FRCNN detector and
2.6 points higher mAP for ResNet101-based FRCNN detector. ResNet101-based
C-FRCNN helps FRCNN surpass other state-of-the-art detectors, including the
context-aware algorithms such as [1] and [26].
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Method Network AP mAP@0.5 mAP@0.7 mAP(small) mAP(medium) mAP(large)

TDM[31] Inception-ResNet-v2 36.8 57.7 39.2 16.2 39.8 52.1
GRMI [20] Inception-ResNet-v2 34.8 55.5 36.7 13.5 38.1 52.0
FPN [22] Res101 36.2 59.1 39.0 18.2 39.0 48.2

FRCNN† [3, 29] Res101 37.5 58.7 40.5 18.8 41.0 51.1
DRFCN [9] Res101 37.1 58.9 39.8 17.1 40.3 51.3
Mask RCNN∗ [16] Res101 40.2 62.0 43.9 22.8 43.0 51.1

C-FRCNN† (ours) Res101 39.0 59.7 42.8 19.4 42.4 53.0
C-DRFCN (ours) Res101 39.1 60.9 42.5 19.0 42.4 53.2
C-Mask RCNN ∗ (ours) [16] Res101 42.0 62.9 46.4 23.4 44.7 53.8

Table 3. Performance of context refinement improved Faster RCNN (C-FRCNN), De-
formable RFCN (C-DRFCN), and Mask RCNN (C-MaskRCNN) detectors compared
to other cutting-edge detectors on MS COCO test-dev results. †: the FRCNN im-
plemented following the protocol suggested by [3]. ∗: Mask RCNN trained with an
end-to-end scheme.

original refinement context refinement original refinement context refinement

Fig. 6. Qualitative Results. Context refinement has shown to improve the coordinates
as well as the labels of originally refined results. Best illustrated in color.

6.2 MS COCO

We further evaluate our approach on MS COCO benchmark. The MS COCO
benchmark contains 80 objects of various sizes and is more challenging than the
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PASCAL VOC benchmark. This dataset has 80k images as train set. We report
the performance gain brought by context refinement on the test-dev set with
20k images. In this part, besides FRCNN detector, we also embed the context
refinement module to the compelling deformable RFCN (DRFCN) detector and
Mask RCNN detector and report enhancement in their detection performance.
We use C-DRFCN and C-Mask RCNN to respectively represent the relating
detectors refined by our algorithm.

Table 3 illustrates the detailed performance of AP in different conditions for
the evaluated methods. From it, we can find that the context refinement gener-
ally brings 1.5 to 2.0 points improvement over original detectors. It shows that
the performance for detecting objects of all the scales can be boosted to a bet-
ter score using our algorithm, proving the effectiveness of the proposed method.
Furthermore, the C-FRCNN and C-DRFCN detectors have outperformed FPN,
by around 3 points. By improving the state-of-the-art detector, Mask RCNN,
C-Mask RCNN detector achieves the highest AP among all the evaluated meth-
ods even compared to the models with a more powerful backbone network, i.e.
InceptionResNetv2 [33]. This result also suggests that the proposed context re-
finement is insensitive to different two-stage detection pipelines.

6.3 Qualitative Evaluation

Figure 6 presents qualitative results of the proposed context refinement algo-
rithm. The illustrated images show that our algorithm is effective in reducing
the false positive predictions based on the contexts carried by surrounding re-
gions. The context refined results also provide better coverage about the objects.

7 Conclusion

In this study, we investigate the effects of contextual information brought by
surrounding regions to improve the refinement of a specific region. In order to
properly exploit the informative surrounding context, we propose the context re-
finement algorithm which attempts to identify context regions, extract and fuse
context based on adaptive weighting strategy, and perform refinement. We im-
plement the proposed algorithm with an embedded architecture in both proposal
generation stage and final refinement stage of the two-stage detectors. Experi-
ments illustrate the effectiveness of the proposed method. Notably, the two-stage
detectors improved by context refinement achieve compelling performance on
well-known detection benchmarks against other state-of-the-art detectors.
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