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Abstract. Many classical Computer Vision problems, such as essential
matrix computation and pose estimation from 3D to 2D correspondences,
can be solved by finding the eigenvector corresponding to the smallest,
or zero, eigenvalue of a matrix representing a linear system. Incorpo-
rating this in deep learning frameworks would allow us to explicitly en-
code known notions of geometry, instead of having the network implicitly
learn them from data. However, performing eigendecomposition within
a network requires the ability to differentiate this operation. While theo-
retically doable, this introduces numerical instability in the optimization
process in practice.

In this paper, we introduce an eigendecomposition-free approach to train-
ing a deep network whose loss depends on the eigenvector corresponding
to a zero eigenvalue of a matrix predicted by the network. We demon-
strate on several tasks, including keypoint matching and 3D pose esti-
mation, that our approach is much more robust than explicit differentia-
tion of the eigendecomposition. It has better convergence properties and
yields state-of-the-art results on both tasks.

Keywords: End-to-end learning, eigendecomposition, singular value de-
composition, geometric vision.

1 Introduction

In traditional Computer Vision, many tasks can be solved by finding the singular-
or eigen-vector corresponding to the smallest, often zero, singular- or eigen-value
of the matrix encoding a linear system. Examples include estimating essential
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matrices or homographies from matched keypoints and computing pose from 3D
to 2D correspondences.

In the era of Deep Learning, there is growing interest in embedding these
methods within a deep architecture to allow end-to-end training. For example,
it has recently been shown that such an approach can be used to train networks
to detect and match keypoints in image pairs while accounting for the global
consistency of the correspondences [37]. More generally, this approach would
allow us to explicitly encode notions of geometry within deep networks, thus
sparing the network the need to re-learn what has been known for decades and
making it possible to learn from smaller amounts of training data.

One way to implement this approach is to design a network whose output
defines a matrix and train it so that the smallest singluar- or eigen-vector of
the matrices it produces are as close as possible to ground-truth ones. This
is the strategy used in [37] to simultaneously establish correspondences and
compute the corresponding Essential Matrix: The network’s outputs are weights
discriminating inlier correspondences from outliers and are used to assemble an
auxiliary matrix whose smallest eigenvector is the sought-for Essential Matrix.

The main obstacle to implementing this approach is that it requires being
able to differentiate the singular value decomposition (SVD) or the eigendecom-
position (ED) in a stable manner to train the network, a non-trivial problem
that has already received considerable attention [26,9,16]. As a result, these
decompositions are already part of standard Deep Learning frameworks, such
as TensorFlow [1] or PyTorch [27]. However, they ignore two key practical is-
sues. First, when optimizing with respect to the matrix itself or with respect to
parameters defining it, the vector corresponding to the smallest singular value
or eigenvalue may switch abruptly as the relative magnitudes of these values
change, which is essentially non-differentiable. This is illustrated in the exam-
ple of Fig. 1, discussed in detail in Section 2. Second, computing the gradient
requires dividing by the difference between two singular values or eigenvalues,
which could be zero. While a solution to the latter was proposed in [26], the
former is unavoidable.

In this paper, we therefore introduce an approach to training a deep network
whose loss depends on the eigenvector corresponding to a zero eigenvalue of
a matrix M, which is either the output of the network or a function of it,
without explicitly performing an SVD or ED. Our loss is fully differentiable,
does not suffer from the instabilities the above-mentioned problems can cause,
and can be naturally incorporated in a deep learning architecture. In practice,
because image measurements are never perfect, the eigenvalue is never strictly
zero. This, however, does not affect the computation either, which makes our
approach robust to noise.

To demonstrate this in a Deep Learning context, we evaluate our approach on
the tasks of training a network to find globally-consistent keypoint correspon-
dences using the essential matrix and training another to remove outliers for
pose estimation when solving the Perspective-n-Point (PnP) problem. In both
cases, our approach delivers state-of-the-art results, whereas using the standard
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(a) (b)

Fig. 1: Eigenvector switching. (a) 3D points lying on a plane in black and
distant outlier in red. (b)When the weights assigned to all the points are one, the
eigenvector corresponding to the smallest eigenvalue is esub, the vector shown
in blue in (a), and on the right in the top portion of (b), where we sort the
eigenvectors by decreasing eigenvalue. As the optimization progresses and the
weight assigned to the outlier decreases, the eigenvector corresponding to the
smallest eigenvalue switches to enoise, the vector shown in green in (a), which
introduces a sharp change in the gradient values.

implementation of singular- and eigen-value decomposition provided in Tensor-
Flow results in either the learning procedure not converging or in significantly
worse performance.

2 Motivation

To illustrate the problems associated with differentiating eigenvectors and eigen-
values, consider the outlier rejection toy example depicted by Fig. 1. The inputs
are 3D points lying on a plane and drawn in black, and an outlier 3D point
shown in red, which we assume to be very far from the plane. Suppose we want
to assign a binary weight to each point (1 for inliers, 0 for outliers) such that
the eigenvector corresponding to the smallest eigenvalue of the weighted covari-
ance matrix is close to the ground-truth one in the least-square sense. When the
weight assigned to the outlier is 0, it would be enoise, which is also the normal
to the plane and is shown in green. However, if at some point during optimiza-
tion, typically at initialization, we assign the weight 1 to the outlier, enoise will
correspond to the largest eigenvalue instead of the smallest, and the eigenvector
corresponding to the smallest eigenvalue will be the vector esub shown in blue,
which is perpendicular to enoise. As a result, if we initially set all weights to 1
and optimize them so that the smallest eigenvector approaches the plane normal,
the gradient values will depend on the coordinates of esub. At one point dur-
ing the optimization, if everything goes well, the weight assigned to the outlier
will become small enough so that the smallest eigenvector switches from being
esub to being enoise, which introduces a large jump in the gradient vector whose
values will now depend on the coordinates of enoise instead of esub.
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In this simple case, this kind of instability does not preclude eventual conver-
gence. However, in more complex situations, we found that it does, as evidenced
by our experiments. This problem was already noted in [37] in the context of
learning keypoint correspondences. To circumvent this issue, the algorithm in [37]
had to first rely on a classification loss to determine the potential inlier corre-
spondences before incorporating the loss based on the essential matrix to impose
geometric constraints, which requires eigendecomposition. This ensured that the
network weights were already good enough to prevent eigenvector switching when
starting to minimize the geometry-based loss.

3 Related Work

In recent years, the need to integrate geometric methods and mathematical tools
into Deep Learning frameworks has led to the reformulation of a number of them
in network terms. For example, [17] considers spatial transformations of image
regions with CNNs. The set of such transformations is extended in [10]. In a
different context, [24] derives a differentiation of the Cholesky decomposition
that could be integrated in Deep Learning frameworks.

Unfortunately, the set of geometric Computer Vision problems that these
methods can handle remains relatively limited. In particular, there is no widely
accepted deep-learning way to solve the many geometric problems that reduce
to finding least-square solution of linear systems. In this work, we consider two
such problems: Computing the essential matrix from keypoint correspondences
in an image pair and estimating the 3D pose of an object from 3D-to-2D corre-
spondences, both of which we briefly discuss below.

Estimating the Essential matrix from correspondences. The eigenvalue-
based solution to this problem has been known for decades [23,12,11] and remains
the standard way to compute Essential matrices [25]. The real focus of research
in this area has been to establish reliable keypoint correspondences and to elim-
inate outliers. In this context, variations of RANSAC [7], such as MLESAC [33]
and Least median of squared (LMeds) [29], and very recently GMS [2], have
become popular. For a comprehensive study of such methods, we refer the in-
terested reader to [28]. With the emergence of Deep Learning, there has been a
trend towards moving away from this decades-old knowledge and apply instead
a black-box approach where a Deep Network is trained to directly estimate the
rotation and translation matrices [38,34] without a priori geometrical knowl-
edge. The very recent work of [37] attempts to reconcile these two opposing
trends by embedding the geometric constraints into a Deep Net and has demon-
strated superior performance for this task when the correspondences are hard to
establish.

Estimating 3D pose from 3D-to-2D correspondences. This is known as
the Perspective-n-Point (PnP) problem. It has also been investigated for decades
and is also amenable to an eigendecomposition-based solution [11], many vari-
ations of which have been proposed over the years [21,19,40,6]. DSAC [3] is
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the only approach we know of that integrates the PnP solver into a Deep Net-
work. As explicitly differentiating through the PnP solver is not optimization
friendly, the authors apply the log trick used in the reinforcement learning liter-
ature. This amounts to using a numerical approximation of the derivative from
random samples, which is not ideal, given that an analytical alternative exists.
Moreover, DSAC only works for grid configurations and known scenes. By con-
trast, the method we propose in this work has an analytical form, with no need
for stochastic sampling.

Differentiating the eigen- and singular value decomposition Whether
computing the essential matrix, estimating 3D pose, or solving any other least-
squares problem, incorporating an eigendecomposition-solver into a deep net-
work requires differentiating the eigendecomposition. Expressions for such deriva-
tives have been given in [26,9] and reformulated in terms that are compatible
with back-propagation in [16]. Specifically, as shown in [16], for a matrix M
written as M = UΣUT , the variations of the eigenvectors U with respect to
the matrix, used to compute derivatives, are

dU = 2U
(

K⊙ (UT dMU)sym
)

, (1)

where Ssym = 1
2 (S

T + S), and

Kij =

{

1
σi−σj

, i 6= j

0, i = j
. (2)

As can be seen from Eq. 2, if two eigenvalues are equal, that is, σi = σj , the
denominator becomes 0, thus creating numerical instabilities. The same can be
said about singular value decomposition.

A solution to this was proposed in [26], and singular- and eigen-value de-
composition have been used within deep networks for problems where all the
singular values are used and their order is irrelevant [14,15]. In the context of
spectral clustering, the approach of [20] also proposed a solution that eliminates
the need for explicit eigendecomposition. This solution, however, was dedicated
to the scenario where one seeks to use all non-zero eigenvalues, assuming a matrix
of constant rank.

Here, by contrast, we tackle problems where what matters is a single eigen- or
singular-value. In this case, the order of the eigenvalues is important. However,
this order can change during training, which results in a non-differentiable switch
from one eigenvector to another, as in the toy example of Section 2. In turn,
this leads to numerical instabilities, which can prevent convergence. In [37], this
problem is finessed by first training the network using a classification loss that
does not depend on eigenvectors. Only once a sufficiently good solution is found,
that is, a solution close enough to the correct one for vector switching not to
happen anymore, is the loss term that depends on the eigenvector associated to
the smallest eigenvalue turned on. As we will show later, we can achieve state-of-
the-art results without the need for such a heuristic, by deriving a more robust,
eigendecomposition-free loss function.
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4 Our Approach

We introduce an approach that enables us to work with eigenvectors correspond-
ing to zero eigenvalues within an end-to-end learning formalism, while being
subject to neither the gradient instabilities due to vector switching discussed in
Section 2 nor to difficulties caused by repeated eigenvalues. To this end, we de-
rive a loss function that directly operates on the matrix whose eigen- or singular-
vectors we are interested in but without explicitly performing an SVD or ED.

Below, we first discuss the generic scenario in which the matrix of inter-
est directly is the output of the network. We then consider the slightly more
involved case where the network predicts weights that themselves define the ma-
trix, which corresponds to our application scenarios. Note that, while we discuss
our approach in the context of Deep Learning, it is applicable to any optimiza-
tion framework where one seeks to optimize a loss function based on the smallest
eigenvector of a matrix with respect to the parameters that defining this matrix.

4.1 Generic Scenario

Given an input measurement x, let us denote by fθ(x) the output of a deep
network with parameters θ. Here, we consider the case where the output of the
network is a matrix, which we write asAθ = fθ(x). Our goal is to tackle problems
where the loss function of the network depends on the smallest eigenvector eθ
of AT

θ Aθ, which ensures that the matrix is symmetric.
Typically, one can use an ℓ2 loss of the form ‖eθ− ẽ‖2, where ẽ is the ground-

truth smallest eigenvector. The standard approach to addressing this, as followed
in [16,37], consists of explicitly differentiating this loss w.r.t. eθ, then eθ w.r.t.
Aθ and finally Aθ w.r.t. θ via backpropagation. As discussed above, however,
this is not optimization friendly.

To overcome this, we propose to define a new loss motivated by the linear
equation that defines eigenvectors and eigenvalues. Specifically, if eθ is an eigen-
vector of AT

θ Aθ with eigenvalue λ, it satisfies AT
θ Aθeθ = λeθ. Since eigenvectors

have unit-norm, i.e., eTθ eθ = 1, multiplying both sides of this equation from the
left by eTθ yields

eTθ A
T
θ Aθeθ = λ . (3)

In this paper, we consider zero eigenvalue problems, that is, λ = 0. Since
AT

θ Aθ is positive semi-definite, we have that eTAT
θ Aθe ≥ 0 for any e. Given

the ground-truth eigenvector ẽ that we seek to predict, this lets us define the
loss function

Leig(θ) = ẽTAT
θ Aθẽ . (4)

Intuitively, this loss aims to find the parameters θ such that ẽ is an eigenvector of
the resulting matrix AT

θ Aθ with minimum eigenvalue, that is, zero in our case,
assuming that we can truly reach the global minimum of our loss. However,
this loss alone has multiple, globally-optimal solutions, including the trivial one
Aθ = 0.
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To address this, we note that this trivial solution has not only one zero eigen-
value corresponding to eigenvector ẽ, but that all its eigenvalues are zero. Since,
in practice, we typically search for matrices that have a single zero eigenvalue,
we propose to maximize the projection of the data along the directions orthog-
onal to ẽ. Such a projection can be achieved by making use of the orthogonal
complement to ẽ, given by (I− ẽẽT ), where I is the identity matrix. By defining
Āθ = Aθ(I− ẽẽT ), we can then re-write our loss function as

L̃(θ) = ẽTAT
θ Aθẽ− αtr

(

ĀT
θ Āθ

)

, (5)

where tr(·) computes the trace of a matrix and α sets the relative influence of the
two terms. Note that we can apply the same strategy to cases where multiple
eigenvalues are zero, by reducing the orthogonal space to only the directions
corresponding to non-zero eigenvalues, and introducing the first term for all
eigenvectors whose eigenvalues we want to be zero.

For numerical stability, we further propose to bound the second term in the
range [0, 1]. To do so, we therefore re-write our loss as

L(θ) = ẽTAT
θ Aθẽ+ α exp

(

−βtr
(

ĀT
θ Āθ

))

, (6)

where β is a scalar. This loss is fully differentiable, and can thus be used to
learn the parameters θ of a deep network. Since it does not explicitly depend
on performing an eigendecomposition at every iteration of the optimization,
it suffers from neither the eigenvector switching problem, nor the non-unique
eigenvalue problem.

4.2 Learning to Predict Weights

In practice, the problem of interest is often more constrained than training a
network to directly output a matrix Aθ. In particular, in this paper, we con-
sider problems where the goal is to predict a weight wi for each element of the
input. This typically leads to formulations where AT

θ Aθ has the form XTWX,
with X a data matrix and W a diagonal matrix whose elements are the wis. Be-
low, we introduce the formulation for each of the applications in our experiments.

Outlier Rejection with 3D Points. To show that we can indeed back-
propagate nicely through the proposed loss formulation where directly using
the analytical gradient fails, we first briefly revisit the toy outlier rejection prob-
lem used to motivate our approach in Section 1. For this experiment, we do not
train a Deep Network, or perform any learning procedure. Instead, given N 3D
points xi, including inliers and outliers, we directly optimize the weight wi of
each point. At every step of optimization, given the current weight values, we
compute the weighted mean of the points µ = 1∑

N
i=1

wi

∑N

i=1 wixi. Let X be the

3 × N matrix of mean-subtracted 3D points. We then compute the weighted
covariance matrix C = XTWX, where W is a diagonal matrix whose elements
are the wis. The smallest eigenvector of C then defines the direction of noise.
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Given the ground-truth such eigenvector ẽ, let X̄ = I − ẽẽT . We adapt the
general formulation of Eq. 6 and formulate the outlier rejection problem as

minimize
w

ẽTXTWXẽ + α exp
(

−βtr(X̄TWX̄)
)

. (7)

Note that this translates directly to Eq. 6 by defining Aθ = W
1

2 X̄, where W
1

2

is a diagonal matrix with elements
√
wi.

Keypoint Matching with the Essential Matrix. For this task, to isolate the
effect of the loss function only, we followed the same setup as in [37]. Specifically,
we used the same network architecture as in [37], which takes C correspondences
between two 2D points as input and outputs a C-dimensional vector of weights,
that is, one weight for each correspondence. Formally, let

qi = [ui, vi, u
′

i, v
′

i]
T

, (8)

encode the coordinates of correspondence i in the two images. Following the 8
points algorithm [23], we construct as matrix X ∈ R

C×9, each row of which is
computed from one correspondence vector qi as

X(i) = [uiu
′

i, uivi, ui, viu
′

i, viv
′

i, vi, u
′

i, v
′

i, 1] , (9)

where X(i) denotes row i of X. A weighted version of the 8 points algorithm [39]
then computes the essential matrix as the smallest eigenvector of XTWX, with
W the diagonal matrix of weights.

Let X̄ = X(I − ẽẽT ), where ẽ is the ground-truth eigenvector representing
the true essential matrix. We write our eigendecomposition-free essential loss as

L(W) = ẽTXTWXẽ+ α exp
(

−βtr
(

X̄TWX̄
))

. (10)

Given a set of training samples, consisting of N image pairs with ground-truth
essential matrices, we can then use this loss, instead of the classification loss or
essential loss of [37], to train a network to predict the weights.

Note that, as suggested by [11] and done in [37], we use the 2D coordinates
normalized to [−1, 1] using the camera intrinsics as input to the network.

When calculating the loss, as suggested by [12], we move the centroid of the
reference points to the origin of the coordinate system and scale the points so
that their RMS distance to the origin is equal to

√
2. This means that we also

have to scale and translate ẽ accordingly.

3D-to-2D Correspondences for Pose Estimation. The goal of this problem,
also known as the Perspective-n-Point (PnP) problem [21], is to determine the
absolute pose (rotation and translation) of a calibrated camera, given known 3D
points and corresponding 2D image points.

For this task, as we are still dealing with sparse correspondences, we use the
same network architecture as for 2D-to-2D correspondences, except that we now
have one additional input dimension, since we have 3D-to-2D correspondences.
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This network takes C correspondences between 3D and 2D points as input and
outputs a C-dimensional vector of weights, one for each correspondence.

Mathematically, we can denote the input correspondences as

qi = [xi, yi, zi, ui, vi]
T , (11)

where xi, yi, zi are the coordinates of a 3D point, and ui, vi denote the corre-
sponding image location. According to [11], we have

fscale





ui

vi
1



 =
[

R, t
]









xi

yi
zi
1









=





p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12













xi

yi
zi
1









. (12)

To recover the pose, we then follow the Direct Linear Transform (DLT) method [11].
This consists of constructing the matrix X ∈ R

2C×12, every two rows of which
are computed from one correspondence qi as

[

X(2i−1)

X(2i)

]

=

[

xi yi zi 1 0 0 0 0 −uixi −uiyi −uizi −ui

0 0 0 0 xi yi zi 1 −vixi −viyi −vizi −vi

]

, (13)

where X(i) denotes row i of X. Then, the solution of the weighted PnP problem
can be obtained as the eigenvector of XTWX corresponding to the smallest
eigenvalue. Therefore, we can define a PnP loss similar to the one of Eq. 10 for
2D-to-2D correspondences, but with X defined as discussed above, and, given
N training samples, each consisting of a set of 3D-to-2D correspondences with
corresponding ground-truth eigenvector encoding the pose, train a network to
predict weights such that we obtain the correct pose via DLT. As in the 2D-to-2D
case, we use the normalized coordinate system for the 2D coordinates.

Note that the characteristics of the rotation matrix, that is, orthogonality
and determinant 1, are not preserved by the DLT solution. Therefore, to make
the result a valid rotation matrix, we refine the DLT results by the generalized
Procrustes algorithm [8,30], which is a common post-processing technique for
PnP algorithms. Note that this step is not involved during training, but only in
the validation process to select the best model and at test time.

5 Experiments

We now present our results for the three tasks discussed above, that is, plane
fitting as in Section 2, distinguishing good keypoint correspondences from bad
ones, and solving the Perspective-n-Point (PnP) problem. We rely on a Ten-
sorFlow implementation using the Adam [18] optimizer, with a learning rate of
10−4, unless stated otherwise, and default parameters. When training a network
for keypoint matching and PnP, we used mini-batches of 32 samples and, in the
plane fitting case, we also tested vanilla gradient descent.
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(a) Loss evolution with
SVD in the toy example. (b) Inliers with SVD (c) Inliers with Ours

Fig. 2: Plane fitting in the presence of one or multiple outliers.We report
results for Singular Value Decomposition (SVD), self-adjoint Eigendecomposi-
tion (Eigh), and for our loss function. For each loss, we tried multiple learning
rates within the range [10−5, 1] and report the best results in terms of conver-
gence. (a) Loss evolution with a single outlier. (b) With multiple outliers, the
SVD baseline discards many inliers (Positions 1 to 100 are true inliers), while
accepting outliers. By contrast, as shown in (c), our approach correctly rejects
the outliers and accepts the inliers.

Plane Fitting. The setup is the one discussed in Section 2. We randomly sam-
pled 100 3D points on the z = 1 plane. Specifically, we uniformly sampled
x ∈ [0, 40] and y ∈ [0, 2]. We then added zero-mean Gaussian noise with stan-
dard deviation 0.001 in the z dimension. We also generated outliers in a similar
way, where x and y are uniformly sampled in the same range, and z is sampled
from a Gaussian distribution with mean 50 and standard deviation 5. For the
baselines that directly use the analytical gradients of SVD and ED, we take the
objective function to be min ‖emin(w)± egt‖2, where emin(w) is the minimum
eigenvector of X⊤WX in Eq. 7 and egt is the ground-truth noise direction,
which is also the plane normal and is the vector [0, 0, 1] in this case. Note that
we consider both +egt and −egt and take the minimum distance, denoted by the
± and the min in the loss function. For this problem, both solutions are correct
due to the sign ambiguity of ED, which should be taken into account.

We consider two ways of computing analytical gradients, one using the SVD
and the other the self-adjoint eigendecomposition (Eigh), which both yield math-
ematically valid solutions. To implement our approach, we rely on Eq. 7.

Fig. 2(a) shows the evolution of the loss as the optimization proceeds when
using vanilla gradient descent and with a single outlier. Note that SVD and Eigh
have exactly the same behavior because they constitute two equivalent ways of
solving the same problem. Using gradient descent in conjunction with either one
initially yields a very slow decrease in the loss function, until it suddenly drops
to zero after millions of iterations, when a switch of the eigenvector with the
smallest eigenvalue occurs. By contrast, our approach produces a much more
gradual decrease in the loss.

We also evaluate the behavior of our method and the baselines in the presence
of more outliers. Both our method and the baseline present the same convergence
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patterns as before, but, as shown in Fig. 2 (b,c), our approach correctly recov-
ers the inliers and outliers, while the SVD baseline discards many outliers and
even accepts outliers. Note that, while in this example the SVD- or Eigh-based
methods converge, in the more complex cases below, this is not always true.

Keypoint Matching. To evaluate our method on a real-world problem, we use
the SUN3D dataset [36]. For a fair comparison, we trained our network on the
same data as [37], that is, the “brown-bm-3-05” sequence, and evaluate it on
the test sequences used for testing in [34,37] . Additionally, to show that our
method is not overfitting, we also test on a completely different dataset, the
“fountain-P11” and “Herz-Jesus-P8” sequences of [32].

We follow the evaluation protocol of [37], which constitutes the state-of-the-
art in keypoint matching, and only change the loss function to our own loss of
Eq. 10. We use α = 10 and β = 10−3, which we empirically found to work well
for 2D-to-2D keypoint matching. We compare our method against that of [37],
both in its original implementation that involves minimizing a classification loss
first and then without that initial step, which we denote as “Essential Only”.
The latter is designed to show how critical the initial classification-based mini-
mization of [37] is. In addition, we also compare against standard RANSAC [4],
LMeds [31], MLESAC [33], and GMS [2] to provide additional reference points.
We do this in terms of the performance metric used in [37] and referred to as
mean Average Precision (mAP). This metric is computed by observing the ratio
of accurately recovered poses given a certain maximum threshold, and taking
the area under the curve of this graph.

We summarize the results in Fig. 3. Our approach performs on par with [37],
the state-of-the-art method for keypoint matching, and outperforms all the other
baselines, without the need of any pre-training. Importantly, “Essential Only”
severely underperforms and even often fails completely. In short, instead of hav-
ing to find a workaround to the eigenvector switching problem as in [37], we can
directly optimize our objective function, which is far more generally applicable.
Furthermore, the workaround in [37] would converge to a sub-optimal solution,
as it the classification loss depends on a user-selected decision boundary, that
is, a heuristic definition of inliers. By contrast, our method can simply discover
the inliers automatically while training, thanks to the second term in Eq. 6.

In the bottom row of Fig. 3, we compare the correspondences classified as
inlier by our method to those of RANSAC on image pairs from the dataset
of [32] and SUN3D, respectively. Note that even the correspondences that are
misclassified as inliers by our approach are very close to being inliers. By con-
trast, RANSAC yields much larger errors.

PnP. Following standard practice for evaluating PnP algorithms [21,6], we gen-
erate a synthetic dataset composed of 3D-to-2D correspondences with noise and
outliers. Each training example comprises two thousand 3D points, and we set
the ground-truth translation of the camera pose tgt to be their centroid. We
then create a random ground-truth rotation Rgt, and project the 3D points to
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(a) Ours (b) RANSAC (c) Ours (d) RANSAC

Fig. 3: Results for the keypoint matching task. Note the significant per-
formance gap between “Essential Only”, which utilizes eigendecomposition di-
rectly, and our approach. (Bottom left two images) Comparison of our results
with RANSAC results on the “fountain-P11” image pair of [32]. (Bottom right
two images) Similar comparison on the “brown-bm-3-05” image pair of SUN3D.
We display the correspondences that the algorithms labeled as inliers. True posi-
tives are shown in green and false ones in red. The false positives of our approach
are still close to being correct, while those of RANSAC are truly wrong.

the image plane of our virtual camera. As in REPPnP [6], we apply Gaussian
noise with a standard deviation of 5 to these projections. We generate random
outliers by assigning 3D points to arbitrary valid 2D image positions.

We train a neural network with the same architecture as in the keypoint
matching case, except that it now takes 3D-to-2D correspondences as input. We
empirically found that α = 1 and β = 5× 10−3 works well for this task. During
training, to learn to be robust to outliers, we randomly select between 100 and
1000 of the two thousand matches and turn them into outliers. In other words,
the two thousand training matches will contain a random number of outliers
that our network will learn to filter out.

We compare our method against modern PnP methods, EPnP [21], OPnP [40],
PPnP [8], RPnP [22] and REPPnP [6]. We also evaluate the DLT [11], since our
loss formulation is based on it. Among these methods, REPPnP is the one most
specifically designed to handle outliers. As in the keypoint matching case, we
tried to compute the results of a network relying explicitly on eigendecompo-
sition and minimizing the ℓ2 norm of the difference between the ground-truth
eigenvector and the predicted one. However, we found that such a network was
unable to converge. We also report the performance of two commonly used base-
lines that leverage RANSAC [7], P3P [19]+RANSAC and EPnP+RANSAC. For
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(a) Rotation error (degrees) (b) Translation error

Fig. 4: Quantitative PnP results. Rotation and translation errors for our
method and several baselines. Our method gives extremely stable results despite
the abundance of outliers, whereas all compared methods perform significantly
worse as the number of outliers increases. Even when these methods perform well
on either rotation or translation, they do not perform well on both. By contrast,
Ours yields near zero errors for both measures up to 130 outliers (i.e., 65%).

other methods, RANSAC did not bring noticeable improvements, and we omit-
ted them in the graph for better visual clarity.

For this comparison, we use standard rotation and translation error met-
rics [5]. Specifically, we report the closest arc distance in radians for the rotation
matrix measured using quaternions, and the distance between the translation
vectors normalized by the ground truth. To demonstrate the effect of outliers at
test time, we fix the number of matches to 200 and vary the number of outliers
from 10 to 150. We run each experiment 100 times and report the average.

Fig. 4 summarizes the results. We outperform all other methods significantly,
especially when the number of outliers increases. REPPnP is the one competing
method that seems least affected. As long as the number of outliers is small,
it is on a par with us but passed a certain point—when there are more than
40 outliers, that is, 20% of the total—its performance, particularly in terms of
rotation error, decreases quickly whereas ours does not.

We evaluated our PnP approach on the real dataset of [13]. Specifically, the
3D points in this dataset were obtained using the SfM algorithm of [35], which
also provides a rotation matrix and translation vector for each image. We treat
these rotations and translations as ground truth to compare different PnP algo-
rithms. Given a pair of images, we extract SIFT features at the reprojection of
the 3D points in one image, and match these features to SIFT keypoints detected
in the other image. This procedure produces erroneous correspondences, which a
robust PnP algorithm should discard. In this example, we used the model trained
on the synthetic data described before. Note that we apply the model without
any fine-tuning, that is, the model is only trained with purely synthetic data.
We observed that, except for EPnP+RANSAC, OPnP and P3P+RANSAC, the
predictions of the baselines are far from the ground truth, which led to points
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Fig. 5: Qualitive PnP results. Top: Two pairs of images (Left: Reichstag,
Right: Notre-dame). For each pair, we seek to estimate the pose in the second
image. Bottom: For each pair, we show in gray the reprojection of the 3D point
cloud after applying the rotation and translation predicted by our model and
EPnP+RANSAC, respectively. The red dots correspond to the ground-truth
locations. Note that our model’s predictions cover the ground truth much more
closely than the baseline.

reprojecting outside the image. In Fig. 5, we compare the reprojection of the 3D
points on the input image after applying the rotation and translation obtained
with our model and with EPnP+RANSAC. Note our better accuracy.

6 Conclusion

We have introduced a novel approach to training deep networks that rely on
losses computed from an eigenvector corresponding to a zero eigenvalue of a ma-
trix defined by the network’s output. Our loss does not suffer from the numerical
instabilities of analytical differentiation of eigendecomposition, and converges to
the correct solution much faster. Our approach achieves the state-of-the-art re-
sults on the tasks of keypoint matching and outlier rejection for the PnP problem.

Many Computer Vision tasks rely on least-square solutions to linear systems.
We will therefore investigate the use of our approach for other ones. Furthermore,
we hope that our work will contribute to imbuing Deep Learning techniques
with traditional Computer Vision knowledge, thus avoiding discarding decades
of valuable research, and develop more principled frameworks.
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