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Abstract. This paper aims to improve privacy-preserving visual recog-
nition, an increasingly demanded feature in smart camera applications,
by formulating a unique adversarial training framework. The proposed
framework explicitly learns a degradation transform for the original video
inputs, in order to optimize the trade-off between target task perfor-
mance and the associated privacy budgets on the degraded video. A
notable challenge is that the privacy budget, often defined and measured
in task-driven contexts, cannot be reliably indicated using any single
model performance, because a strong protection of privacy has to sus-
tain against any possible model that tries to hack privacy information.
Such an uncommon situation has motivated us to propose two strategies,
i.e., budget model restarting and ensemble, to enhance the general-
ization of the learned degradation on protecting privacy against unseen
hacker models. Novel training strategies, evaluation protocols, and result
visualization methods have been designed accordingly. Two experiments
on privacy-preserving action recognition, with privacy budgets defined
in various ways, manifest the compelling effectiveness of the proposed
framework in simultaneously maintaining high target task (action recog-
nition) performance while suppressing the privacy breach risk. The code
is available at https://github.com/wuzhenyusjtu/Privacy-AdversarialLearning
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1 Introduction

Smart surveillance or smart home cameras, such as Amazon Echo and Nest Cam,
are now found in millions of locations to remotely link users to their homes or
offices, providing monitoring services to enhance security and/or notify environ-
ment changes, as well as lifelogging and intelligent services. Such a prevalence of
smart cameras has reinvigorated the privacy debate, since most of them require
to upload device-captured visual data to the centralized cloud for analytics. This
paper seeks to explore: how to make sure that those smart computer vision de-
vices are only seeing the things that we want them to see (and how to define
what we want)? Is it at all possible to alleviate the privacy concerns, without
compromising on user convenience?

https://github.com/wuzhenyusjtu/Privacy-AdversarialLearning
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At the first glance, the question itself is posed as a dilemma: we would like a
camera system to recognize important events and assist human daily life by un-
derstanding its videos, while preventing it from obtaining sensitive visual infor-
mation (such as faces) that can intrude people’s privacy. Classical cryptographic
solutions secure the communication against unauthorized access from attackers.
However, they are not immediately applicable to preventing authorized agents
(such as the backend analytics) from the unauthorized abuse of information, that
causes privacy breach concerns. The popular concept of differential privacy has
been introduced to prevent an adversary from gaining additional knowledge by
inclusion/exclusion of a subject, but not from gaining knowledge from released
data itself [8]. In other words, an adversary can still accurately infer sensitive
attributes from any sanitized sample available, which does not violate any of the
(proven) properties of differential privacy [18]. It thus becomes a new and appeal-
ing problem, to find an appropriate transform on the collected raw visual data at
the local camera end, so that the transformed data itself will only enable certain
target tasks while obstructing other undesired privacy-related tasks. Recently,
some new video acquisition approaches [3,9,47] proposed to intentionally cap-
ture or process videos in extremely low-resolution to create privacy-preserving
“anonymized videos”, and showed promising empirical results.

In contrast, we formulate the privacy-preserving visual recognition in a unique
adversarial training framework. The framework explicitly optimizes the trade-
off between target task performance and associated privacy budgets, by learning
active degradations to transform the video inputs. We investigate a novel way
to model privacy budget in a task-driven context. Different from the standard
adversarial training where two individual models compete, the privacy budget in
our framework cannot be simply defined with one single model, as the ideal pro-
tection of privacy has to be universal and model-agnostic, i.e., obstructing every
possible model from predicting privacy information. To resolve the so-called “∀
challenge”, we propose two strategies, i.e., restarting and ensembling budget
model(s), to enhance the generalization capability of the learned degradation to
defend against unseen models. Novel training strategies and evaluation protocols
have been proposed accordingly. Two experiments on privacy-preserving action
recognition, with privacy budgets defined in different ways, manifest the effec-
tiveness of the proposed framework. With many problems left open and large
improvement room existing, we hope this pilot study to attract more interests
from the community.

2 Related Work

2.1 Privacy Protection in Computer Vision

With pervasive camera for surveillance or smart home devices, privacy-preserving
visual recognition has draw increasing interests from both industry and academia,
since (1) due to their computationally demanding nature, it is often impracti-
cal to run visual recognition tasks all at the resource-limited local device end.
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Communicating (part of) data to the cloud is indispensable; (2) while tradi-
tional privacy concerns mostly arise from the unsecured channel between cloud
and device (e.g, malicious third-party eavesdropping), customers now possess
increasing concerns against sharing their private visual information to the cloud
(which might turn malicious itself).

A few cryptographic solutions [13,66] were developed to locally encrypt visual
information in a homomorphic way, i.e., the cryptosystems allow for basic arith-
metic classifiers over encrypted data. However, many encryptions-based solution
will incur high computational costs at the local platforms. It is also challeng-
ing to generalize the cryptosystems to more complicated classifiers. [4] combined
the detection of regions of interest and the real encryption techniques to improve
privacy while allowing general surveillance to continue. A seemingly reasonable,
and computationally cheaper option is to extract and transmit feature descrip-
tors from raw images, and transmit those features only. Unfortunately, a previous
study [31] revealed that considerable information of original images could still be
recovered from standard HOG or SIFT features (even they look visually distinct
from natural images), making them fragile to privacy hacking too.

An alternative toward a privacy-preserving vision system concerns the con-
cept of anonymized videos. Such videos are intentionally captured or processed
to be in special low quality conditions, that only allow for the recognition of
some target events or activities, while avoiding the unwanted leak of the iden-
tity information for the human subjects in the video [3,9,47]. Typical examples
of anonymized videos are videos made to have extreme low resolution (e.g.,
16×12) by using low resolution camera hardware [9], based on image operations
like blurring and superpixel clustering [3], or introducing cartoon-like effects with
a customized version of mean shift filtering [63]. [41,42] proposed to use privacy
preserving optics to filter sensitive information from the incident light-field be-
fore sensor measurements are made, by k-anonymity and defocus blur. Earlier
work [23] explored privacy-preserving tracking and coarse pose estimation using
a network of ceiling-mounted time-of-flight low-resolution sensors. [58] adopted a
network of ceiling-mounted binary passive infrared sensors. However, both works
handled only a limited set of activities performed at specific constrained areas
in the room. Later, [47] showed that even at the extreme low resolutions, reli-
able action recognition could be achieved by learning appropriate downsampling
transforms, with neither unrealistic activity-location assumptions nor extra spe-
cific hardware resources. The authors empirically verified that conventional face
recognition easily failed on the generated low-resolution videos. The usage of
low-resolution anonymized videos [9,47] is computationally cheaper, and is also
compatible with sensor and bandwidth constraints. However, [9,47] remain em-
pirical in protecting privacy. In particular, neither were their models learned
towards protecting any visual privacy, nor were the privacy-preserving effects
carefully analyzed and evaluated. In other words, privacy protection in [9,47]
came as a “side product” of down-sampling, and was not a result of any opti-
mization. The authors of [9,47] also did not extend their efforts to studying deep
learning-based recognition, making their task performance less competitive.



4 Zhenyu Wu, Zhangyang Wang, Zhaowen Wang and Hailin Jin

Very recently, a few learning-based approaches have come into play to ensure
better privacy protection. [53] defined a utility metric and a privacy metric for
a task entity, and then designed a data sanitization function to achieve privacy
while providing utility. However, they considered only simple sanitization func-
tions such as linear projection and maximum mean discrepancy transformation.
In [43], the authors proposed a game-theoretic framework between an obfusca-
tor and an attacker, in order to hide visual secrets in the camera feed without
significantly affecting the functionality of the target application. This seems to
be the most relevant work to the proposed one: however, [43] only discussed a
toy task to hide QR codes while preserving the overall structure of the image.
Another relevant work [18] addressed the optimal utility-privacy tradeoff by for-
mulating it as a min-diff-max optimization problem. Nonetheless, The empirical
quantification of privacy budgets in existing works [53,43,18] only considered to
protect privacy against one hacker model, and was thus insufficient, for which
we will explain more in Section 3.1.

2.2 Privacy Protection in Social Media and Photo Sharing

User privacy protection is also a topic of extensive interests in the social me-
dia field, especially for photo sharing. The most common means to protect user
privacy in a uploaded photo is to add empirical obfuscations, such as blurring,
mosaicing or cropping out certain regions (usually faces) [26]. However, extensive
research showed that such an empirical means can be easily hacked too [37,32].
A latest work [38] described a game-theoretical system in which the photo owner
and the recognition model strive for antagonistic goals of dis-/enabling recog-
nition, and better obfuscation ways could be learned from their competition.
However, it was only designed to confuse one specific recognition model, via
finding its “adversarial perturbations” [36]. That can caused obvious overfitting
as simply changing to another recognition model will likely put the learning ef-
forts in vain: such perturbations even cannot protect privacy from human eyes.
Their problem setting thus deviated far away from our target problem. An-
other notable difference is that in social photo sharing, we usually hope to cause
minimum perceptual quality loss to those photos, after applying any privacy-
preserving transform to them. The same concern does not exist in our scenario,
allowing us to explore much more free, even aggressive image distortions.

A useful resource to us was found in [39], which defined concrete privacy
attributes and correlated them to image content. The authors categorized possi-
ble private information in images, and then run a user study to understand the
privacy preferences. They then provided a sizable set of 22k images annotated
with 68 privacy attributes, on which they trained privacy attribute predictors.

2.3 Recognition from Visually Degraded Data

To enable the usage of anonymized videos, one important challenge is to ensure
reliable performance of the target tasks on those lower-quality videos, besides
suppressing the undesired privacy leak. Among all low visual quality scenarios,
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visual recognition in low resolution is probably best studied. [61,28,7] showed
that low resolution object recognition could be significantly enhanced through
proper pre-training and domain adaption. Low-resolution action recognition has
also drawn growing interests: [46] proposed a two-stream multi-Siamese CNN
that learns the embedding space to be shared by low resolution videos down
sampled in different ways, on top of which a transform-robust action classifier was
trained. [6] leveraged a semi-coupled filter-sharing two stream network to learn
a mapping between the low- and high-resolution feature space. In comparison,
the “low-quality” anonymized videos in our case are generated by learned and
more complicated degradations, other than simple downsampling [61,6].

3 Technical Approach

3.1 Problem Definition

Assume our training dataX (raw visual data captured by camera) are associated
with a target task T and a privacy budget B. We mathematically express the
goal of privacy-preserving visual recognition as below (γ is a weight coefficient):

minfT ,fd LT (fT (fd(X)), YT ) + γLB(fd(X)), (1)

where fT denotes the model to perform the target task T on its input data.
Since T is usually a supervised task, e.g., action recognition or visual tracking,
a label set YT is provided on X, and a standard cost function LT (e.g., softmax)
is defined to evaluate the task performance on T . On the other hand, we need
to define a budget cost function LB to evaluate the privacy leak risk of its input
data: the larger LB , the higher privacy leak risk. Our goal is to seek such an
active degradation function fd to transform the original X as the common input
for both LT and LB , such that:

– The target task performance LT is minimally affected compare to when using
the raw data, i.e., minfT ,fd LT (fT (fd(X)), YT ) ≈ minf ′

T
LT (f

′
T (X), YT ).

– The privacy budget LB is greatly suppressed compared to raw data, i.e.,
LB(fd(X)) ≪ LB(X).

The definition of the privacy budget cost LB is not straightforward. Practically,
it needs to be placed in concrete application contexts, often in a task-driven
way. For example, in smart workplaces or smart homes with video surveillance,
one might often want to avoid a disclosure of the face or identity of persons.
Therefore, to reduce LB could be interpreted as to suppress the success rate
of identity recognition or verification on the transformed video fd(X). Other
privacy-related attributes, such as race, gender, or age, can be similarly de-
fined too. We denote the privacy-related annotations (such as identity label) as
YB , and rewrite LB(fd(X)) as LB(fb(fd(X)), YB), where fb denotes the bud-
get model to predict the corresponding privacy information. Different from LT ,
minimizing LB will encourage fb(fd(X)) to diverge from YB as much as possible.
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Such a supervised, task-driven definition of LB poses at least two-fold chal-
lenges: (1) the privacy budget-related annotations, denoted as YB , often have
less availability than target task labels. Specifically, it is often challenging to
have both YT and YB ready on the same X; (2) considering the nature of pri-
vacy protection, it is not sufficient to merely suppress the success rate of one
fb model. Instead, define a privacy prediction function family P: fd(X) → YB ,
the ideal privacy protection of fd should be reflected as suppressing every
possible model fb from P. That diverts from the common supervised training

goal, where one only needs to find one model to successfully fulfill the target
task. We re-write the general form (1) with the task-driven definition of LB :

minfT ,fd LT (fT (fd(X), YT ) + γmaxfb∈P LB(fb(fd(X)), YB). (2)

For the solved fd, the two goals should be simultaneously satisfied: (1) there
exists (“∃”) at least one fT function that can predict YT from fd(X) well; (2)
for all (“∀”) fb functions ∈ P, none of them (even the best one) can reliably
predict YB from fd(X). Most existing works chose an empirical fd (e.g., simple
downsampling) and solved minfT LT (fT (fd(X), YT ) [9,61]. [47] essentially solved
minfT ,fd LT (fT (fd(X), YT ) to jointly adapted fd and fT , after which the authors
empirically verified the effect of fd on LB (defined as face recognition error rates).
Those approaches lack the explicit optimization towards privacy budgets, and
thus have no guaranteed privacy-protection effects.

Comparison to Standard Adversarial Training The most notable difference be-
tween (2) and existing works based on standard adversarial training [43,38] lies
in whether the adversarial perturbations are optimized for “fooling” one specific

fb, or all possible fbs. We believe the latter to be necessary, as it considers gener-
alization ability to suppressing unseen privacy breach. Moreover, most existing
works seek perturbations with minimal human visual impacts, e.g, by enforcing
ℓp norm constraint on the pixel domain. That is clearly unaligned with our pur-
pose. In fact, our model could be viewed as to minimize the perturbation in the
(learned) feature domain of target utility task.

3.2 Basic Framework

Overview Figure 1 depicts a model architecture to implement the proposed
formulation (2). It first takes the original video data X as the input, and passes
it through the active degradation module fd to generate the anonymized video
fd(X). During training, the anonymized video simultaneously goes through a
target task model fT and a privacy prediction model fb. All three modules, fd,
fT and fb, are learnable and can be implemented by neural networks. The en-
tire model is trained under the hybrid loss of LT and LB . By tuning the entire
pipeline from end to end, fd(X) will find the optimal task-specific transforma-
tion, to the advantage of target task but to the disadvantage of privacy breach,
fulfilling the goal of privacy-preserving visual recognition. After training, we can
apply the learned active degradation at the local device (e.g., camera) to con-
vert incoming video to its anonymized version, which is then transmitted to the
backend (e.g., cloud) for target task analysis.
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The proposed framework leads to an adaptive and end-to-end manageable

Raw Video

Active 
Degradation fd

fd(X) 
Target Task 

Model fT

Privacy 
Prediction 
Model fb

   LT
   LB

min (LT+  LB)

X 

Anonymized
Video

LT LB 

fT (fd(X)) fb (fd(X))

Fig. 1: Basic adversarial training framework
for privacy-preserving visual recognition.

pipeline for privacy-preserving vi-
sual recognition. Its methodol-
ogy is related to the emerging
research of feature disentangle-
ment [64]. That technique leads to
non-overlapped groups of factor-
ized latent representations, each
of which would properly describe
information corresponding to par-
ticular attributes of interest. Pre-
viously it was applied to genera-
tive models [10,51] and reinforce-
ment learning [20].

Similar to GANs [16] and
other adversarial models, our
training is prone to collapse
and/or bad local minimums. We
thus propose a carefully-designed training algorithm with three-module alter-
nating update strategy, explained in the supplementary, which could be in-
terpreted as a three-party game. In principle, we strive to avoid any of the three
module fd, fT , and fb to change “too quickly”, and thus keep monitoring LT

and Lb to decide which of the three modules to be updated next.

Choices of fd, fT and fb The choices of the three modules will significantly
impact the performance. As [47] pointed out, fd can be constructed as a nonlinear
mapping by filtering. The form of fd can be flexible, and its output fd(X) is
unnecessary to be a natural image. For simplicity, we choose fd to be a “learnable
filtering” in the form of 2-D convolutional neural network (CNN), whose the
output fd(X) will be a 2-D feature map of the same resolution as the input video
frame. Such a choice is only to facilitate the initial concatenation of building
blocks, e.g., fT and fb often start with pre-trained models on natural images.
Besides, fd(X) should preferably be in a compact form and light to transmit,
considering it will be sent to the cloud through (limited-bandwidth) channels.

To ensure the effectiveness of fd, it is necessary to choose sufficiently strong
fT and fb models and let them compete. We employ state-of-the-art video recog-
nition CNNs for corresponding tasks, and adapt them for the degraded input
fd(X) using the robust pre-training strategy proposed in [61].

Particular attentions should be paid towards the budget cost (second term)
defined in (2), which we refer as “the ∀ Challenge”: if we use fb with some
pre-defined CNN architecture, how could we be sure that it is the “best pos-
sible” privacy prediction model? That is to say, even we are able to find a fd
function that manages to fail one fb model, is it possible that some other f ′

b ∈ P
would still be able to predict YB from fd(X), thus leaking privacy? While it
is computationally intractable to exhaustively search over P, a naive empirical
solution would be to chose a very strong privacy prediction model, hoping that
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a fd function that can confuse this strong one will be able to fool other possible
functions as well. However, the resulting fd(X) may still overfit the artifacts
of one specific fb and fails to generalize. Section 3.3 will introduce two more
advanced and feasible recipes.
Choices of LT and LB Without loss of generality, we assume both target task
fT and privacy prediction fb to be classification models and output class labels.
To optimize the target task performance, LT could be simply chosen as the KL
divergence: KL(fT (fd(X), YT ).

Choosing LB is non-standard and tricky since we require minimizing the
privacy budget LB(fb(fd(X)), YB) to enlarge the divergence between fb(fd(X))
and YB . One possible choice is the negative KL divergence between the predicted
class vector and the ground truth label; but minimizing a concave funcion will
cause a ton of numerical instabilities (often explosions). Instead, we use the
negative entropy function of the predicted class vector, and minimizing it to
encourage “uncertain” predictions. Meanwhile, we will use YB to ensure a suf-
ficiently strong fb at the initialization (see 4.1.2). Furthermore, YB will play a
critical role in model restarting (see 3.3).

3.3 Addressing the ∀ Challenge

To improve the generalization of learned fd over all possible fb ∈ P (i.e, pri-
vacy cannot be reliably predicted by any model), we hereby discuss two simple
and easy-to-implement options. Other more sophisticated model re-sampling or
model-search approaches, e.g., [68], will be explored in future work.

Budget Model Restarting At certain point of training (e.g., when the
privacy budget LB(fb(fd(X))) stops decreasing any further), we replace the
current weights in fb with random weights. Such a random re-starting aims to
avoid trivial overfitting between fb and fd (i.e., fd is only specialized at confusing
the current fb), without incurring more parameters. We then start to train the
new model fb to be a strong competitor, w.r.t. the current fd(X): specifically, we
freeze the training of fd and fT , and change to minimizing KL(fb(fd(X)), YB),
until the new fb has been trained from scratch to become a strong privacy
prediction model over current fd(X). We then resume adversarial training by
unfreezing fd and fT , as well as replacing the loss for fb back to the negative
entropy. It can repeat several times.

Budget Model Ensemble The other strategy proposes to approximate the
continuous P with a discrete set of M sample functions. Assuming the budget
model ensemble {f i

b}
M
i=1

, we turn to minimizing the following discretized surro-
gate of (2):

minfT ,fd LT (fT (fd(X), YT ) + γmaxi∈{1,2,...,M} LB(f
i
b(fd(X))). (3)

At each iteration (mini-batch), minimizing (3) will only suppress the model f i
b

with the largest LB cost, e.g., the “most confident” one about its current privacy
prediction. The previous basic framework is a special case of (3) with M = 1.
The ensemble strategy can easily be combined with re-starting.
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3.4 Two-Fold Evaluation Protocol

Apart from training data X, assume we have an evaluation set Xe, accompanied
with both target task labels Y e

T and privacy annotations Y e
B . Our evaluation is

significantly more complicated than classical visual recognition problems. Af-
ter applying the learned active degradation, we need to examine in two folds:
(1) whether the learned target task model maintains satisfactory performance;
(2) whether the performance of an arbitrary privacy prediction model will de-
teriorate. The first one can follow the standard routine: applying the learned
fd and fT to Xe, and computing the classification accuracy AT via comparing
fT (fd(X

e)) w.r.t. Y e
T : the higher the better.

For the second evaluation, it is apparently insufficient if we only observe that
the learned fd and fb lead to poor classification accuracy on Xe, because of the
∀ challenge. In other words, fd needs to generalize not only in the data space,
but also w.r.t. the fb model space. To empirically verify that fb prohibits reliable
privacy prediction for other possible models, we propose a novel procedure: we
first re-sample a different set of N models {f j

b }
N
j=1

from P; none of them will
be overlapped with the M budget models used in training. We then train each
of them to predict privacy information, over the degraded training data X by

applying the learned fd, i.e., minimizing f
j
b (fd(X)), j = 1, ..., N . Eventually, we

apply each trained f
j
b and fd on Xe and compute the classification accuracy

for the j-th model. The highest accuracy achieved among the N models on
fd(X

e), denoted as AN
b , will be by default used to indicate the privacy protection

capability of fd: the lower the better.

4 Experiments

We present two experiments on privacy-preserving action recognition, as proof-
of-concepts for our proposed general framework. For the target task, we choose
video-based action recognition, because it is a highly demanded feature in many
smart homes and smart workplaces. The definition of privacy will vary by con-
texts, and we will study two settings: (1) avoiding the leak of person identities
present in the current work; and (2) avoiding the leak of multiple privacy at-
tributes, e.g., multiple crowdsoursed attributes studied in [39]. We emphasize
that the generality of the proposed framework (2) can fit in a vast more variety
of target task and privacy information compositions.

4.1 Identity-Preserving Action Recognition on SBU

Problem Setting The SBU Kinect Interaction Dataset [67] is a two-person inter-
action dataset for video-based action recognition, with 8 types of actions and 13
different actor pairs annotated. We define action recognition as the target task
T , and the privacy budget task B as reducing the correct identification rates of
the actor pairs in the same video. We note that the target trade-off is highly
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challenging to achieve. As can be seen from the first Table in the supple-
mentary, the actor pair recognition task easily achieves over 98% accuracy on
the original dataset, and stands robust even when the frames are downsampled
28 times, while the action recognition performance already starts to deteriorate
significantly. We compare the following five methods:
– Method 1 (naive downsampling): using raw RGB frames under different
down-sampling rates .
– Method 2 (proposed w/o re-starting): applying the proposed adversarial
training to RGB frames, using budget model ensemble without restarting .
– Method 3 (proposed): applying the proposed adversarial training to RGB
frames, using budget model ensemble with restarting .
– Method 4: detecting and cropping out faces from RGB frames.
– Method 5: detecting and cropping out whole actor bodies from RGB frames.
Method 1 follows [47], while Methods 4 and 5 are inspired by [26].

Implementation Details We segment video sequences into groups of 16 frames,
and use those frame groups as our default input data X. We use the C3D net [60]
as the default action recognition model, i.e. fT . For the fb identity recognition
model, we choose MobileNet [21] to identify actor pair in each frame, and use
average pooling to aggregate the frame-wise predictions. The active degradation
module fd adopts the image transformation network in [24].

We choose γ = 2.0 to suppress the identity recognition performance on SBU.
We first initialize the active degradation module fd as reconstruction of the
input. We next take the pre-trained version of C3D net and concatenate it with
fd, and jointly train them for action recognition on the SBU dataset, to initialize
fT . We then freeze them both, and start initializing fb (MobileNet) for the actor
pair identification task, by adapting it to the output of the currently trained fd.
Experiments show that such initializations provide robust starting points for the
follow-up adversarial training. If budget model restarting is adopted, we set to
“re-start” MobileNet from random initialization after every 100 iterations. The
number of ensemble budget models M varies in {1, 2, 4, 6, 8, 10, 12, 14, 16, 18}.
Different budget models can be obtained via setting different depth-multiplier
parameter [21] of MobileNet.

Evaluation Procedure We will follow the procedure described in Section 3.4, for
two-fold evaluations on the SBU testing set. For the set of models used towards
privacy-protection examination, we sample N = 10 popular image classification
CNNs, a list of which can be found in the supplementary. Among them, 8
models start from ImageNet-pretrained versions, including MobileNet (different
from those used in training) [21], ResNet [19] and Inception [55]. To eliminate
the possibility that the initialization might prohibit privacy prediction, we also
intentionally try another 2 models trained from scratch (random initialization).
We did not choose any non-CNN image classification model for two reasons:
(1) CNNs have state-of-the-art performance and also strong fitting capability
when re-trained; (2) most non-CNN image classification models rely on effective
feature descriptors, that are designed for natural images. Since fd(X)/fd(Xe)
are no longer natural images, the effectiveness of such models is in jeopardy too.
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Fig. 2: Target and Budget Task Performance
Trade-off on SBU Dataset.

Results and Analysis We present
an innovative visualization in Fig-
ure 2, to display the trade-off be-
tween the action recognition accu-
racy AT and the actor pair recog-
nition accuracy AN

b , in an easy-to-
interpret way. All accuracy num-
bers for both task evaluation can
be found in the supplemen-
tary. To read the figure, note that
a desirable trade-off should incur
minimal loss of AT (y-axis) when
reducing AN

b (x-axis). Therefore,
a point closer to the upper
left corner denotes a more desir-
able fd model that achieves better
trade-off, since it incurs less util-
ity performance loss (larger AT )
while suppressing more even the best of N unseen privacy prediction models
(smaller AN

b ). For Method 1, a larger marker (circle) size represents a larger
downsampling rate. For Methods 2 and 3, a larger marker (star) size denotes
more budget models used in ensemble (i.e., larger M). Both Methods 4 and 5
give single points. Observations can be summarized below:

1. Methods 2 and 3 has obvious advantages over naive downsampling (Method
1) in terms of more compelling trade-off between AT and AN

b .
2. Method 3 achieves much better individual model performance than Methods

2, showing the significance of re-starting in overcoming over-fitting.
3. For Method 3 (similarly for Method 2), adding more fb models into the budget

model ensemble (i.e., increasing M) consistently leads to points closer to the
desired upper left (despite small randomness caused by training). The results
show that proposed budget model ensemble technique effectively alleviates
the ∀ challenge, making fd generalize better to unseen fbs.

4. Neither Methods 4 nor 5 performs competitively. Cropping out faces does not
add to protection of identity privacy (its AN

b is almost the same as using raw
RGB frames without downsampling), since body shape and clothing styles
reveal significant amounts of identity information too. Cropping out body not
only removes identity information, but also deteriorates action recognition.

In brief, Method 3 (the proposed, with both restarting and ensemble) is able
to achieve most compelling results on SBU, the best (M = 18) at AT = 82.3%
and AN

b = 41.8%, without relying on extra hardware (e.g., depth camera). A
few visualized examples of learned fd(X) can be found in Figure 4.

4.2 Protecting Multiple Privacy Attributes on UCF-101/VISPR

Problem Setting The UCF101 dataset [54] is a more challenging action recog-
nition benchmark with 101 different action classes and much richer scenes than
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SBU. The newly-released Visual Privacy (VISPR) dataset [39] is a collection of
22, 167 images annotated with 68 privacy attributes, e.g. semi-nudity, hobbies,
face, race, gender, skin color, and so on.

Either alone cannot be used for our adversarial training because neither
dataset has the pair of competing tasks/labels. However, we show the possi-
bility of jointly utilizing UCF101 and VISPR to train one fd function, such that
it simultaneously enables effective action recognition (as measured on UCF-101)
and suppresses multiple privacy attribute prediction (as measured on VISPR),
via a novel cross-dataset training and evaluation strategy.

Cross-Dataset Training and Evaluation fd and fT are the same as the SBU
one. Regarding fb for the task of multiple privacy attribute prediction, we adopt
budget models from {ResNet-V1-50, ResNet-V2-50, MobileNet-1.0, MobileNet-
0.75} and vary the number of M in {1, 2, 3, 4}. They are trained with a multi-
label classification loss with sigmoid activations, identically to [39]. γ is chosen as
0.5. Rather than recognition accuracy, the multiple privacy attribute prediction
is evaluated by Class-based Mean Average Precision (C-MAP), whose definition
can be referred to [39].

The major hassle is the unavailability of T and B on the same dataset: since
UCF-101 does not have privacy attributes annotated, we cannot directly per-
form adversarial training and evaluate privacy protection on it; similarly for
VISPR. We notice that [39] trained the model on VISPR to be a privacy pre-
dictor for general images. We also visually observe that the VISPR model can
correctly detect privacy attribute occurring in UCF-101 videos (examples in the
supplementary). Therefore, we hypothesize that the privacy attributes have
good “transferability” between UCF-101 and VISPR, and hence use a privacy
prediction model trained on VISPR to assess the privacy leak risk on UCF-101.

Instead of using all 68 attributes in [39], we find that many of them rarely
appear in UCF-101 (shown in the supplementary). We thus create two sub-
sets for training and evaluating budget models here: one VISPR-17 set consists
of 17 attributes that occurs most in UCF-101 and their associated images in
VISPR; the other VISPR-7 set is further a subset of VISPR-17, that include
7 privacy attributes out of 17 that are most common in smart home settings.
Their attribute lists are in the supplementary.

During training, we have two pipelines: one is fd + fT trained on UCF-101
for action recognition; the other is fd + fb trained on VISPR to suppress mul-
tiple privacy attribute prediction. The two pipelines share the same parameters

for fd. The initialization and alternating training strategy remain unchanged
from SBU. During evaluation, we perform the first part of two-fold evaluation,
e.g., action recognition, on UCF-101 testing set. We then evaluate the perfor-
mance of the N -model examination on privacy protection, using the VISPR-17/7
testing sets. Such cross-dataset training and evaluation sheds on new possibili-
ties on training privacy-preserving recognition models, even under the practical
shortages of datasets that have been annotated for both tasks.

Results and Analysis We choose Methods 1, 2,and 3 for comparison, defined
the same as SBU. All the quantitative results, as well as visualized examples of
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Fig. 3: Performance Trade-off on UCF-101/VISPR dataset. The left one is on
VISPR-17 and the right one on VISPR-7.

fd(X) on UCF-101, are shown in the supplementary. Similarly to the SBU
case, simply downsamping video frames (even with the aid of super resolution as
we tried) will not lead to any competitive trade-off between action recognition
(at UCF-101) and privacy prediction suppression (at VISPR). As is shown in
Figure 3, our proposed adversarial training again leads to more favorable trade-
offs on VISPR-17 and VISPR-7, with major conclusions concur with SBU: both
ensemble and restarting help fd generalize better against privacy breach.

5 Limitations and Discussions

As noted by one anonymous reviewer, a possible alternative to avoid leaking vi-
sual privacy to the cloud is to perform action recognition completely at the local
device. In comparison, our proposed solution is motivated by at least three folds:
i) for single utility task (which is not just limited to action recognition), running
fd on device is much more compact and efficient than full fT For example, our
fT model (11-layer C3D net) has over 70 million parameters, while fd is a much
more compact 3-layer CNN with 1.3 million parameters. At the inference, the
total time cost of running fT over the SBU testing set is 45 times more than
running fd. It also facilitates upgrading to more sophisticated fT models; ii) The
smart home scenario calls for the scalability to multiple utility tasks (computer
vision functions). It is not economic to load all utility models in the device. In-
stead, we can train one fd to work with multiple utility models, and only store
and run fd at the device. More utility models (if no overlap with privacy) could
be possibly added in the cloud by training on fd(X); iii) We further point out
that the proposed approach can further have a wider practical application scope
beyond smart home, e.g, de-identified data sharing.

The current pilot study is preliminary in many ways, and there is large perfor-
mance room to improve until achieving practical usefulness. First, the definition
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Original RGB Frame from UCF-101 (Label: Pushing)

Method 2, M=1 Method 2, M=4 Method 2, M=8 Method 2, M=14

Method 3, M=1 Method 3, M=4 Method 3, M=8 Method 3, M=14

Fig. 4: Example frames after applying the learned degradation on SBU.

of B and LB is core to the framework. Considering the ∀ challenge, the current
budget model ensemble is a rough discretized approximation of P. More elegant
ways to tackle this ∀ optimization can lead to further breakthroughs in universal
privacy protection. Second, adversarial training is well-known to be difficult and
instable. Improved training tricks, such as [48], will be useful. Third, a lack of re-
lated benchmark datasets, on which T and B are both appropriately defined, has
become a bottleneck. We see that more concrete and precise privacy definitions,
such as VISPR attributes, can certainly result in better feature disentanglement
and T -B performance trade-offs. Current cross-dataset training and evaluation
partially alleviate the absence of dedicated datasets. However, the inevitable do-
main mismatch between two datasets can still hurdle the performance. We plan
to refer to crowdsourcing to identify and annotate privacy-related attributes
on existing action recognition or other benchmarks, which we hope could help
promote this research direction.



Privacy-Preserving Visual Recognition via Adversarial Training 15

References

1. Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 308–318. ACM, 2016.

2. Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia, and Atilla
Baskurt. Sequential deep learning for human action recognition. In International
Workshop on Human Behavior Understanding, pages 29–39. Springer, 2011.

3. Daniel J Butler, Justin Huang, Franziska Roesner, and Maya Cakmak. The privacy-
utility tradeoff for remotely teleoperated robots. In Proceedings of the Tenth An-
nual ACM/IEEE International Conference on Human-Robot Interaction, pages 27–
34. ACM, 2015.

4. Ankur Chattopadhyay and Terrance E Boult. Privacycam: a privacy preserving
camera using uclinux on the blackfin dsp. In Computer Vision and Pattern Recog-
nition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

5. Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. Action recognition from
depth sequences using depth motion maps-based local binary patterns. In Appli-
cations of Computer Vision (WACV), 2015 IEEE Winter Conference on, pages
1092–1099. IEEE, 2015.

6. Jiawei Chen, Jonathan Wu, Janusz Konrad, and Prakash Ishwar. Semi-coupled
two-stream fusion convnets for action recognition at extremely low resolutions.
arXiv preprint arXiv:1610.03898, 2016.

7. Bowen Cheng, Zhangyang Wang, Zhaobin Zhang, Zhu Li, Ding Liu, Jianchao Yang,
Shuai Huang, and Thomas S Huang. Robust emotion recognition from low quality
and low bit rate video: A deep learning approach. In Affective Computing and
Intelligent Interaction (ACII), 2017 Seventh International Conference on, pages
65–70. IEEE, 2017.

8. Graham Cormode. Individual privacy vs population privacy: Learning to attack
anonymization. arXiv preprint arXiv:1011.2511, 2010.

9. Ji Dai, Behrouz Saghafi, Jonathan Wu, Janusz Konrad, and Prakash Ishwar. To-
wards privacy-preserving recognition of human activities. In Image Processing
(ICIP), 2015 IEEE International Conference on, pages 4238–4242. IEEE, 2015.

10. Guillaume Desjardins, Aaron Courville, and Yoshua Bengio. Disentangling factors
of variation via generative entangling. arXiv preprint arXiv:1210.5474, 2012.

11. Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural network
for skeleton based action recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1110–1118, 2015.

12. Cynthia Dwork. Differential privacy: A survey of results. In International Confer-
ence on Theory and Applications of Models of Computation, pages 1–19. Springer,
2008.

13. Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald La-
gendijk, and Tomas Toft. Privacy-preserving face recognition. In International
Symposium on Privacy Enhancing Technologies Symposium, 2009.

14. Farhad Farokhi and Henrik Sandberg. Fisher information as a measure of pri-
vacy: Preserving privacy of households with smart meters using batteries. IEEE
Transactions on Smart Grid, 2017.

15. Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monoc-
ular depth estimation with left-right consistency. In CVPR, volume 2, page 7,
2017.



16 Zhenyu Wu, Zhangyang Wang, Zhaowen Wang and Hailin Jin

16. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Advances in neural information processing systems, pages 2672–2680, 2014.

17. Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

18. Jihun Hamm. Minimax filter: learning to preserve privacy from inference attacks.
The Journal of Machine Learning Research, 18(1):4704–4734, 2017.

19. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385, 2015.

20. Irina Higgins, Arka Pal, Andrei A Rusu, Loic Matthey, Christopher P Burgess,
Alexander Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Lerchner.
Darla: Improving zero-shot transfer in reinforcement learning. arXiv:1707.08475,
2017.

21. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

22. Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks
for human action recognition. IEEE transactions on pattern analysis and machine
intelligence, 35(1):221–231, 2013.

23. Li Jia and Richard J Radke. Using time-of-flight measurements for privacy-
preserving tracking in a smart room. IEEE Transactions on Industrial Informatics,
10(1):689–696, 2014.

24. Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time
style transfer and super-resolution. In European Conference on Computer Vision,
2016.

25. Jing Li, Stan Z Li, Quan Pan, and Tao Yang. Illumination and motion-based video
enhancement for night surveillance. In Visual Surveillance and Performance Evalu-
ation of Tracking and Surveillance, 2005. 2nd Joint IEEE International Workshop
on, pages 169–175. IEEE, 2005.

26. Yifang Li, Nishant Vishwamitra, Bart P Knijnenburg, Hongxin Hu, and Kelly
Caine. Blur vs. block: Investigating the effectiveness of privacy-enhancing ob-
fuscation for images. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2017 IEEE Conference on, pages 1343–1351. IEEE, 2017.

27. Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

28. Ding Liu, Bowen Cheng, Zhangyang Wang, Haichao Zhang, and Thomas S Huang.
Enhance visual recognition under adverse conditions via deep networks. arXiv
preprint arXiv:1712.07732, 2017.

29. Ping Liu, Joey Tianyi Zhou, Ivor Wai-Hung Tsang, Zibo Meng, Shizhong Han, and
Yan Tong. Feature disentangling machine-a novel approach of feature selection and
disentangling in facial expression analysis. In European Conference on Computer
Vision, pages 151–166. Springer, 2014.

30. Behrooz Mahasseni, Sinisa Todorovic, and Alan Fern. Budget-aware deep semantic
video segmentation.

31. Aravindh Mahendran and Andrea Vedaldi. Visualizing deep convolutional neural
networks using natural pre-images. International Journal of Computer Vision,
2016.

32. Richard McPherson, Reza Shokri, and Vitaly Shmatikov. Defeating image obfus-
cation with deep learning. arXiv preprint arXiv:1609.00408, 2016.



Privacy-Preserving Visual Recognition via Adversarial Training 17

33. Alan Mislove, Bimal Viswanath, Krishna P Gummadi, and Peter Druschel. You
are who you know: inferring user profiles in online social networks. In Proceedings
of the third ACM international conference on Web search and data mining, pages
251–260. ACM, 2010.

34. Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In
Security and Privacy, 2009 30th IEEE Symposium on, pages 173–187. IEEE, 2009.

35. Shree K Nayar and Srinivasa G Narasimhan. Vision in bad weather. In Computer
Vision, 1999. The Proceedings of the Seventh IEEE International Conference on,
volume 2, pages 820–827. IEEE, 1999.

36. Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 427–436,
2015.

37. Seong Joon Oh, Rodrigo Benenson, Mario Fritz, and Bernt Schiele. Faceless per-
son recognition: Privacy implications in social media. In European Conference on
Computer Vision, pages 19–35. Springer, 2016.

38. Seong Joon Oh, Mario Fritz, and Bernt Schiele. Adversarial image perturbation
for privacy protection–a game theory perspective. In International Conference on
Computer Vision (ICCV), 2017.

39. Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Towards a visual privacy
advisor: Understanding and predicting privacy risks in images. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2017.

40. Tribhuvanesh Orekondy, Bernt Schiele, Mario Fritz, and Saarland Informatics
Campus. Towards a visual privacy advisor: Understanding and predicting privacy
risks in images. arXiv preprint arXiv:1703.10660, 2017.

41. Francesco Pittaluga and Sanjeev J Koppal. Privacy preserving optics for miniature
vision sensors. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 314–324, 2015.

42. Francesco Pittaluga and Sanjeev Jagannatha Koppal. Pre-capture privacy for small
vision sensors. IEEE transactions on pattern analysis and machine intelligence,
39(11):2215–2226, 2017.

43. Nisarg Raval, Ashwin Machanavajjhala, and Landon P Cox. Protecting visual
secrets using adversarial nets. In Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2017 IEEE Conference on, pages 1329–1332. IEEE, 2017.

44. M. S. Ryoo, T. J. Fuchs, L. Xia, J. K. Aggarwal, and L. Matthies. Robot-centric ac-
tivity prediction from first-person videos: What will they do to me? In ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 295–302, Port-
land, OR, March 2015.

45. M. S. Ryoo and L. Matthies. First-person activity recognition: What are they
doing to me? In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Portland, OR, June 2013.

46. Michael S Ryoo, Kiyoon Kim, and Hyun Jong Yang. Extreme low resolu-
tion activity recognition with multi-siamese embedding learning. arXiv preprint
arXiv:1708.00999, 2017.

47. Michael S Ryoo, Brandon Rothrock, Charles Fleming, and Hyun Jong Yang.
Privacy-preserving human activity recognition from extreme low resolution. 2017.

48. Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training gans. In Advances in Neural
Information Processing Systems, pages 2234–2242, 2016.



18 Zhenyu Wu, Zhangyang Wang, Zhaowen Wang and Hailin Jin

49. Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions:
a local svm approach. In Pattern Recognition, 2004. ICPR 2004. Proceedings of
the 17th International Conference on, volume 3, pages 32–36. IEEE, 2004.

50. Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. Action recognition using
visual attention. arXiv preprint arXiv:1511.04119, 2015.

51. N Siddharth, Brooks Paige, Alban Desmaison, Jan-Willem van de Meent, Frank
Wood, Noah D Goodman, Pushmeet Kohli, and Philip HS Torr. Learning disen-
tangled representations in deep generative models. 2016.

52. Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for
action recognition in videos. In Advances in neural information processing systems,
pages 568–576, 2014.

53. Jure Sokolic, Qiang Qiu, Miguel RD Rodrigues, and Guillermo Sapiro. Learning to
succeed while teaching to fail: Privacy in closed machine learning systems. arXiv
preprint arXiv:1705.08197, 2017.

54. Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of
101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402,
2012.

55. Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818–
2826, 2016.

56. Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

57. Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface:
Closing the gap to human-level performance in face verification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2014.

58. Shuai Tao, Mineichi Kudo, and Hidetoshi Nonaka. Privacy-preserved behav-
ior analysis and fall detection by an infrared ceiling sensor network. Sensors,
12(12):16920–16936, 2012.

59. TechCrunch. Amazon’s camera-equipped echo look raises new questions about
smart home privacy. http://alturl.com/7ewnu.

60. Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3d convolutional networks. In Computer
Vision (ICCV), 2015 IEEE International Conference on, pages 4489–4497. IEEE,
2015.

61. Zhangyang Wang, Shiyu Chang, Yingzhen Yang, Ding Liu, and Thomas S Huang.
Studying very low resolution recognition using deep networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

62. Daniel Weinland, Remi Ronfard, and Edmond Boyer. Free viewpoint action recog-
nition using motion history volumes. Computer vision and image understanding,
104(2):249–257, 2006.
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