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Abstract. In this paper, we propose the 3DFeat-Net which learns both
3D feature detector and descriptor for point cloud matching using weak
supervision. Unlike many existing works, we do not require manual anno-
tation of matching point clusters. Instead, we leverage on alignment and
attention mechanisms to learn feature correspondences from GPS/INS
tagged 3D point clouds without explicitly specifying them. We create
training and benchmark outdoor Lidar datasets, and experiments show
that 3DFeat-Net obtains state-of-the-art performance on these gravity-
aligned datasets.
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1 Introduction

3D point cloud registration plays an important role in many real-world applica-
tions such as 3D Lidar-based mapping and localization for autonomous robots,
and 3D model acquisition for archaeological studies, geo-surveying and architec-
tural inspections etc. Compared to images, point clouds exhibit less variation and
can be matched under strong lighting changes, i.e. day and night, or summer and
winter (Fig. 1). A two-step process is commonly used to solve the point cloud
registration problem - (1) establishing 3D-3D point correspondences between
the source and target point clouds, and (2) finding the optimal rigid transforma-
tion between the two point clouds that minimizes the total Euclidean distance
between all point correspondences. Unfortunately, the critical step of establish-
ing 3D-3D point correspondences is non-trivial. Even though many handcrafted
3D feature detectors [35,5] and descriptors [26,25,13,30,28] have been proposed
over the years, the performance of establishing 3D-3D point correspondences
remains unsatisfactory. As a result, iterative algorithms, e.g. Iterative Closest
Point (ICP) [3], that circumvent the need for wide-baseline 3D-3D point corre-
spondences with good initialization and nearest neighbors, are often used. This
severely limits usage in applications such as global localization / pose estimation
[16] and loop-closures [7] that require wide-baseline correspondences.

Inspired by the success of deep learning for computer vision tasks such as
image-based object recognition [21], several deep learning based works that learn
3D feature descriptors for finding wide-baseline 3D-3D point matches have been
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proposed in the recent years. Regardless of the improvements of these deep
learning based 3D descriptors over the traditional handcrafted 3D descriptors,
none of them proposed a full pipeline that uses deep learning to concurrently
learn both the 3D feature detector and descriptor. This is because the existing
deep learning approaches are mostly based on supervised learning that requires
huge amounts of hand-labeled data for training. It is impossible for anyone to
manually identify and label salient 3D features from a point cloud. Hence, most
existing approaches focused only on learning the 3D descriptors, while the detec-
tion of the 3D features are done with random selection [34,8]. On the other hand,
it is interesting to note the availability of an abundance of GPS/INS tagged 3D
point cloud based datasets collected over large environments, e.g. the Oxford
RobotCar [19] and KITTI [9] datasets etc. This naturally leads us into the ques-
tion: “Can we design a deep learning framework that concurrently learns the 3D
feature detector and descriptor from the GPS/INS tagged 3D point clouds?”

In view of the difficulty to get datasets of accurately labeled salient 3D fea-
tures for training the deep networks, we propose a weakly supervised deep learn-
ing framework - the 3DFeat-Net to holistically learn a 3D feature detector and
descriptor from GPS/INS tagged 3D point clouds. Specifically, our 3DFeat-Net
is a Siamese architecture [4] that learns to recognize whether two given 3D point
clouds are taken from the same location. We leverage on the recently proposed
PointNet [23,24] to enable us to directly use the 3D point cloud as input to
our network. The output of our 3DFeat-Net is a set of local descriptor vectors.
The network is trained by minimizing a Triplet loss [29] where the positive and
“hardest” negative samples are chosen from the similarity measures between all
pairs of descriptors [14] from two input point clouds. Furthermore, we add an
attention layer [20] that learns importance weights that weigh the contribution
of each input descriptor towards the Triplet loss. During inference, we use the
output from the attention layer to determine the saliency likelihood of an input
3D point. Additionally, we take the output descriptor vector from our network
as the descriptor for finding good 3D-3D correspondences. Experimental results
from real-world datasets [19,9,22] validates the feasibility of our 3DFeat-Net.

Our contributions in this paper can be summarized as follows:

• Propose a weakly supervised network that holistically learns a 3D feature
detector and descriptor using only GPS/INS tagged 3D point clouds.

• Use an attention layer [20] that allows our network to learn the saliency
likelihood of an input 3D point.

• Create training and benchmark datasets from Oxford RobotCar dataset [19].

We have made our source code and dataset available online.1

2 Related Work

Existing approaches of the local 3D feature detectors and descriptors are heav-
ily influenced by the widely studied 2D local features methods [17,2], and can

1 https://github.com/yewzijian/3DFeatNet

https://github.com/yewzijian/3DFeatNet
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Fig. 1. Left: 2D images from the Oxford dataset at different times of the day (top) or
seasons of the year (bottom) give mostly wrong matches even after RANSAC. Right:
3D point cloud of the same scene remains largely the same and can be matched easily.

be broadly categorized into handcrafted [35,5,26,25,13,30,28] and learning ap-
proaches [34,8,15,27,6] - i.e. pre- and post- deep learning approaches.

Handcrafted 3D Features Several handcrafted 3D features are proposed be-
fore the popularity of deep learning. The design of these features are largely based
on the domain knowledge of 3D point clouds by the researchers. The authors of
[35] and [5] detects salient keypoints which have large variations in the principal
direction [35], or unique curvatures [5]. The similarity between keypoints can
then be estimated using descriptors. PFH [26] and FPFH [25] consider pairwise
combinations of surface normals to describe the curvature around a keypoint.
Other 3D descriptors [13,30] build histograms based on the number of points
falling into each spatial bin around the keypoint. A comprehensive evaluation of
the common handcrafted 3D detectors and descriptors can be found in [11]. As
we show in our evaluation, many of these handcrafted detectors and descriptors
do not work well on real world point clouds, which can be noisy and low density.

Learned 2D Features Some recent works have applied deep learning to learn
detectors and descriptors on images for 2D-2D correspondences. LIFT [32] learns
to distinguish between matching and non-matching pairs with a Siamese CNN,
where the matching pairs are obtained from feature matches that survive the
Structure from Motion (SfM) pipeline. TILDE [31] learns to detect keypoints
that can be reliably matched over different lighting conditions. These works
rely on the matches provided by handcrafted 2D features, e.g. SIFT [17], but
unfortunately handcrafted 3D features are less robust and do not provide as good
a starting point to learn better features. On the other hand, a recently proposed
work - DELF [20] uses a weakly supervised framework to learn salient local
2D image features through an attention mechanism in a landmark classification
task. This motivates our work in using an attention mechanism to identify good
3D local keypoints and descriptors for matching.

Learned 3D Features The increasing success and popularity of deep learn-
ing has recently inspired many learned 3D features. 3DMatch [34] uses a 3D
convolutional network to learn local descriptors for indoor RGB-D matching
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by training on matching and non-matching pairs. PPFNet [6] operates on raw
points, incorporating point pair features and global context to improve the de-
scriptor representation. Other works such as CGF [15] and LORAX [8] utilize
deep learning to reduce the dimension of their handcrafted descriptors. Despite
the good performance of these works, none of them learns to detect keypoints.
The descriptors are either computed on all or random sampled points. On the
other hand, [27] learns to detect keypoints that give good matching performance
with handcrafted SHOT [28] descriptors. This provides the intuition for our
work, i.e. a good keypoint is one that gives a good descriptor performance.

3 Problem Formulation

A point cloud P is represented as a set of N 3D points {xi|i = 1, ..., N}. Each
point cloud P (m) is cropped to a ball with fixed radius R around its centroid
cm. We assume the absolute pose of the point cloud is available during training,
e.g. from GPS/INS, but is not sufficiently accurate to infer point-to-point cor-
respondences. We define the distance between two point clouds d(m,n) as the
Euclidean distance between their centroids, i.e. d(m,n) = ‖cm − cn‖2.

We train our network using a set of triplets containing an anchor, positive and
negative point cloud {P (anc), P (pos), P (neg)}, similar to typical instance retrieval
approaches [1,10]. We define positive instances as point clouds with distance to
the anchor below a threshold, d(anc, pos) < τp. Similarly, negative instances are
point clouds far away from the anchor, i.e. d(anc, neg) > τn. The thresholds τp
and τn are chosen such that positive and negative point clouds have large and
small overlaps with the anchor point cloud respectively.

The objective of our network is to learn to find a set of correspondences
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subset of points in two point clouds P (m) and P (n). Our network learning is
weakly supervised in two ways. Firstly, only model level annotations in the form
of relative poses of the point clouds are provided, and we do not explicitly specify
which subset of points to choose for the 3D features. Secondly, the ground truth
poses are not accurate enough to infer point-to-point correspondences.

4 Our 3DFeat-Net

4.1 Network Architecture

Fig. 2 shows the three-branch Siamese architecture of our 3DFeat-Net. Each
branch takes an entire point cloud P as input. Point clusters {C1, ..., CK} are
sampled from the point cloud in a clustering layer. For each cluster Ck, an
orientation θk and attention wk [20] are predicted by a detector network. A
descriptor network then rotates the cluster Ck to a canonical configuration using
the predicted orientation θk and computes a descriptor fk ∈ R

d.
We train our network with the triplet loss to minimize the difference between

the anchor and positive point clouds, while maximizing the difference between
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Fig. 2. (a) Network architecture of our 3DFeat-Net. The three-branch Siamese archi-
tecture uses a training tuple of an anchor, positive and negative point cloud to compute
a triplet loss. (b) and (c) show detailed view of the detector and descriptor networks.

anchor and negative point clouds. To allow the loss to take individual cluster
descriptors into account, we use an alignment model [14] to align each descriptor
to its best match before aggregating the loss. Since not all sampled clusters have
the same distinctiveness, the predicted attention wk from the detector is used
to weigh the contribution of each cluster descriptor in the training loss. These
attention weights are learned on arbitrarily sampled clusters during training, and
later used to detect distinctive keypoints in the point cloud during inference.

Clustering The first stage of the network is to sample clusters from the point
cloud. To this end, we use the sample and grouping layers in PointNet++ [24].
The sampling layer samples a set of points {xi1 , xi2 , . . . , xiK} from an input point
cloud P . The coordinates of these sampled points and the point cloud are then
passed into the grouping layer that outputs K clusters of points. Each cluster
Ck is a collection of points in a local region of a predefined radius rcluster around
the sampled point xik . These clusters are used as support regions to compute
local descriptors, analogous to 2D image patches around detected keypoints in
2D feature matching frameworks. We use the iterative farthest point sampling
scheme as in PointNet++ for sampling, but any form of sampling that can suffi-
ciently cover the point cloud (e.g. Random Sphere Cover Set [8]) is also suitable.
Such sampling schemes increases the likelihood that each sampled cluster in an
anchor point cloud has a nearby cluster in the positive point cloud.
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Detector Each cluster Ck sampled by the clustering step is passed to the de-
tector network that predicts an orientation θk and an attention score wk. The
attention score wk is a positive number that indicates the saliency of the input
cluster Ck. This design is inspired by typical 2D feature detectors, e.g. SIFT [17].
The predicted orientation is used to rotate the cluster to a canonical orientation,
so that the final descriptor is invariant to the cluster’s original orientation.

We construct our detector network using point symmetric functions defined
in PointNet [23], which is defined as f({x1, ..., xn}) = g(h(x1), ..., h(xn)), where
h(.) is a shared function that transforms each individual point xi, and g(.) is a
symmetric function on all transformed elements. These functions are invariant
to point ordering and generates fixed length features given arbitrary sized point
clouds. We use a three fully connected layers (64-128-256 nodes) for the imple-
mentation of h(.). The symmetric function g(.) is implemented as a max-pooling
followed by two fully connected layers (128-64 nodes), before branching into two
1-layer paths for orientation and attention predictions.

We only predict a single 1D rotation angle θi, avoiding unnecessary equiv-
ariances to retain higher discriminating power. This is reasonable since point
clouds are usually aligned to the gravity direction due to the sensor setup (e.g.
a Velodyne Lidar mounted upright on a car); for other cases, the gravity vector
obtained from an IMU can be used to rotate the point clouds into the upright ori-
entation. Similar to [33], we do not regress the angle directly. Instead, we regress
two separate values θk1

and θk2
that denote the sine and cosine of the angle. We

use a ℓ2 normalization layer to add a constraint of θ2k1
+ θ2k2

= 1 to ensure valid
sine and cosine values. The final angle can be computed as θk = arctan2(θk1

, θk2
).

For the attention weights wi’s, we use the softplus activation as suggested by
[20] to prevent the network from learning negative attention weights.

Descriptor Our descriptor network takes each cluster Ck from the clustering
layer and orientation θk from the detector network as inputs, and generates a de-
scriptor fk ∈ R

d for each cluster. More specifically, θk is first used to rotate clus-
ter Ck into a canonical configuration, before they are passed into another point
symmetric function to generate the descriptor. In practice, we find it helpful to
aggregate contextual information in the computation of the descriptor. Hence,
after applying max-pooling to obtain a cluster feature vector, we concatenate
this cluster feature vector with the individual point features to incorporate con-
text. We then apply a single fully connected layer with d′ nodes before another
max-pooling. Finally, we apply another fully connected layer and l2 normaliza-
tion to produce a final cluster descriptor fk ∈ R

d for cluster Ck. The addition of
the contextual information improves the discriminating power of the descriptor.

Feature Alignment Triplet Loss The output from the descriptor network in
the previous stage is a set of features fi for each cluster. We use the alignment
objective introduced in [14] to compare individual descriptors since the super-
vision is given as model-level annotations. Instead of the dot product similarity
measure used in [14], we adopt the Euclidean distance measure which is more
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commonly used for comparing feature descriptors. Specifically, the distance be-
tween all pairs of descriptors between the two point clouds P (m) and P (n) with
clusters C(m) and C(n) is given by:

Dm,n =
∑

Ci∈C(m)

(

w′

i · min
Cj∈C(n)

‖fi − fj‖2

)

, w′

i =
wi

∑

j∈P (m) wj

, (1)

where w′

i is the normalized attention weight. Under this formulation, every de-
scriptor from the first point cloud aligns to its closest descriptor in the sec-
ond one. Intuitively, in a matching point cloud pair, clusters in the first point
cloud should have a similar cluster in the second point cloud. For non-matching
pairs, the above distance simply aligns a descriptor to one which is most simi-
lar to itself, i.e. its hardest negative. This consideration of the hardest negative
descriptor in the non-matching image provides the advantage that no explicit
mining for hard negatives is required. Our model trains well with randomly sam-
pled negative point clouds. We formulate the triplet loss for each training tuple
{P (anc), P (pos), P (neg)} as:

Ltriplet = [Danc,pos −Danc,neg + γ]+, (2)

where [z]+ = max(z, 0) denotes the hinge loss, and γ denotes the margin which
is enforced between the positive and negative pairs.

4.2 Inference Pipeline

The keypoints and descriptors are computed in two separate stages during in-
ference. In the first stage, the attention scores of all points in a given point
cloud are computed. We apply non-maximal suppression over a fixed radius
rnms around each point, and keep the remaining M points with the highest
attention weights. Furthermore, points with low attention are filtered out by re-
jecting those with attention wi < β ∗max(w1, w2, ..., wN ). The remaining points
are our detected keypoints. In the next stage, the descriptor network computes
the descriptors only for these keypoints. The separation of the inference into two
detector-descriptor stages is computationally and memory efficient since only
the detector network needs to process all the points while the descriptor net-
work processes only the clusters that correspond to the selected keypoints. As a
result, our network can scale up to larger point clouds.

5 Evaluations and Results

5.1 Benchmark Datasets

Oxford RobotCar We use the open-source Oxford RobotCar dataset [19] for
training and evaluation. This dataset consists of a large number of traversals
over the same route in central Oxford, UK, at different times over a year. The
push-broom 2D scans are accumulated into 3D point clouds using the associated
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GPS/INS poses. For each traversal, we create a 3D point cloud with 30m radius
for every 10m interval whenever good GPS/INS poses are available. Each point
cloud is then downsampled using a VoxelGrid filter with a grid size of 0.2m.
We split the data into two disjoint sets for training and testing. The first 35
traversals are used for training and the last 5 traversals are used for testing. We
obtain a total of 21,875 training and initially 828 testing point cloud sets.

We make use of the pairwise relative poses computed from the GPS/INS
poses as ground truth to evaluate the performance on the test set. However, the
GPS/INS poses may contain errors in the order of several meters. To improve
the fidelity of our test set, we refine these poses using ICP [3]. We set one of
the test traversals as reference, and register all test point clouds within 10m
to their respective point clouds in the reference. We retain matches with an
estimated Root Mean Square Error (RMSE) of < 0.5m, and perform manual
visual inspection to filter out bad matches. We get 794/828 good point clouds
that give us 3426 pairwise relative poses for testing. Lastly, we randomly rotate
each point cloud around the vertical axis to evaluate rotational equivariances
and randomly downsample each test point cloud to 16,384 points.

Table 1. Breakdown of Oxford RobotCar Data for Training and Testing

# Traversals # Point clouds # Matched pairs

Train 35 21875 -

Test 5 828 -
Test (after registration) 5 794 3426

KITTI Dataset We evaluate the performance of our trained network on the
11 training sequences of the KITTI Odometry dataset [9] to understand how
well our trained detector and descriptor generalizes to point clouds captured in
a different city using a different sensor. The KITTI dataset contains point clouds
captured on a Velodyne-64 3D Lidar scaner in Karlsruhe, Germany. We sample
the Lidar scans at 10m intervals to obtain 2369 point clouds, and downsample
them using a VoxelGrid filter with a grid size of 0.2m. We consider the 2831
point cloud pairs that are captured within 10m range of each other. We use the
provided GPS/INS pose as ground truth.

ETH Dataset Our network is also evaluated on the “challenging dataset for
point cloud registration algorithms” [22]. This dataset is captured on a ground
Lidar scanner, and contains largely unstructured vegetation unlike the previous
two datasets. Following [8], we accumulate point clouds captured in one season
of the Gazebo and Wood scenes to build a global point cloud, and register local
point clouds captured in the other season to it. We take the liberty to build the
global point cloud for both scenes using the summer data since [8] did not state
the season that was used. During pre-procesing, we downsample the point clouds
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using a VoxelGrid filter of 0.1m grid size. We choose a finer resolution because
of the finer features in the vegetation in this dataset.

5.2 Experimental Setup

We train using a batch size of 6 triplets, and use the ADAM optimizer with a
constant learning rate of 1e-5. We use points within a radius of R = 20m from
the centroid of the point cloud for training, and sample K = 512 clusters with
a radius of rcluster = 2.0m. The thresholds for defining positive and negative
point clouds are set to τp = 5m and τn = 50m. We randomly downsample each
point cloud to 4096 points on the fly during training. We found that training
with this random input dropout leads to better generalization behavior as also
observed by [24]. We apply the following data augmentations during training
time: random jitter to the individual points, random shifts and small rotations.
Random rotations are also applied around the z-axis, i.e. upright axis in order
to learn rotation equivariance. Note that our training data is already oriented in
the upright direction using its GPS/INS pose.

Our network is end-to-end differentiable, but in practice, we find it some-
times hard to train. Hence, we train in two phases to improve stability. We first
pretrain the network without the detector for 2 epochs, i.e. the clusters are fed
directly into the descriptor network without rotation, and all clusters have equal
attention weights. During this phase, we apply all data augmentations except
for large 1D rotations. We use these learned weights to initialize the descriptor
in the second phase, where we train the entire network and apply all the above
data augmentation. Training took 34 hours on a Nvidia Geforce GTX1080Ti.

For inference, we use the following parameters for both the Oxford and KITTI
odometry datasets: rnms = 0.5m, β = 0.01. For the ETH dataset, we use rnms =
0.3m, β = 0.005 to boost the number of detected keypoints in the semi-structured
environments. We limit the number of keypoints M to 1024 for all cases, except
for the global model in the ETH dataset which we use 2048 due to its larger size.
Inference took around 0.8s for a point cloud with 16,384 points.

5.3 Baseline Algorithms

We compare our algorithm with three commonly used handcrafted 3D feature
descriptors: Fast Point Feature Histograms (FPFH) [25] (33 dimensions), Spin-
Image (SI) [13] (153 dimensions), and Unique Shape Context (USC) [30] (1980
dimensions). We use the implementation provided in the Point Cloud Library
(PCL) [12] for all the handcrafted descriptors. In addition, we include two re-
cent learned 3D descriptors: Compact Geometric Features (CGF) [15] (32 di-
mensions) and 3DMatch [34] (512 dimensions) in our comparisons. Note that
our comparisons are done using their provided weights that were pretrained on
indoor datasets. This is because we are unable to train CGF and 3DMatch on
the weakly supervised Oxford dataset as these networks require strong supervi-
sion. We also train a modified PointNet++ (PN++) [24] in a weakly supervised
manner on a retrieval task, which we use as a baseline to show the importance
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of descriptor alignment in learning local descriptors. We modify PointNet++ as
follows: the first set abstraction layer is replaced by our detection and descrip-
tion network. The second and third set abstraction layers remain unchanged. We
replace the subsequent fully connected layers with fc1024-dropout-fc512 layers.
During inference, we extract descriptors as the output from the first set abstrac-
tion layer. We tuned the parameters for all descriptors to the best of our ability,
except in Section 5.4, where we used the same cluster radii for all descriptors to
ensure all descriptors “see” the same information.

Since none of the above baseline feature descriptors comes with a feature
detector, we use the handcrafted detector from Intrinsic Shape Signatures (ISS)
[35] implemented in PCL. Following [34], we also show the performance on ran-
domly sampled keypoints for 3DMatch.

5.4 Descriptor Matching

We first evaluate the ability of the descriptors to distinguish between different
clusters using the procedure in [34]. We extract each matching cluster at ran-
domly selected locations from two matching model pairs. Non-matching clusters
are extracted from two random point clouds at locations that are at least 20m
apart. We extract 30,000 pairs of 3D clusters, equally split between matches and
non-matches. As in [34], our evaluation metric is the false-positive rate at 95%
recall. To ensure all descriptors have access to similar amounts of information,
we fixed the cluster radius rcluster to 2.0m for all descriptors in this experiment.

Fig. 3 shows the performance of our descriptor at different dimensionality.
We observe that there is diminishing returns above 32 dimensions, and will use
a feature dimension of d = 32 for the rest of the experiments.
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Fig. 3. Matching error at 95% recall for different descriptor dimensionality

Table 2. Descriptor matching task. Error at 95% recall. Lower is better.

SI[13] FPFH[25] USC[30] CGF[15] 3DMatch[34] PN++[24] Ours

Error (%) 68.51 54.13 91.59 69.77 38.49 50.57 36.84
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Fig. 5. Left: Attention using proposed method (brighter colors indicate higher atten-
tion). Middle: Our Keypoints (red dots). Right: ISS keypoints (red dots). Colors in
middle and right images indicate different heights above ground.

Table 2 compares our descriptor with the baseline algorithms. Our learned
descriptor yields a lower error rate than all other descriptors despite having a
similar or smaller dimension. It performs significantly better than the best hand-
crafted descriptor (FPFH) which uses explicitly computed normals. The other
two handcrafted descriptors (USC and SI), as well as the learned CGF consider
the number of points falling in each subregion around the keypoint and could not
differentiate the sparse point cloud clusters. 3DMatch performed well in differ-
entiating randomly sampled clusters, but requiring a larger feature dimension.
Lastly, the modified PointNet++ network did not learn a good descriptor in the
weakly supervised setting and gives significantly higher error than our descriptor
despite having the same descriptor network structure.

5.5 Keypoint Detection and Feature Description

We follow the procedure in [15] to evaluate the joint performance of keypoints
and descriptors. For each keypoint descriptor in the first model of the pair,
we find its nearest neighbor in the second model via exhaustive search. We
then compute the distance between this nearest neighbor and its ground truth
location. We obtain a precision plot, as shown in Fig. 4, by varying the distance
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threshold x for considering a match as correct and plotting the proportion of
correct matches. We evaluate on all the baseline descriptors, and also show the
performance of our descriptor with the ISS detector, random sampling of points
(RS), and points obtained using Random Sphere Cover Set (RSCS) [8]. We tuned
the cluster sizes for all baseline descriptors, as many of them require larger
cluster sizes to work well. Nevertheless, our keypoint detector and descriptor
combination still yields the best precision for all distance thresholds, and obtains
a precision of 15.6% at 1m. We also note that our descriptor underperforms
when used with the two random sampling methods or the generic ISS detector,
indicating the importance of a dedicated feature detector.

Analysis of Keypoint Detection Fig. 5 shows the attention weights com-
puted by our network, as well as the retrieved keypoints. We also show the
keypoints obtained using ISS for comparison. Our network learns to give higher
attentions to lower regions of the walls (near the ground), and mostly ignores
the ground and the cars (which are transient and not useful for matching). In
comparison, ISS detects many non-distinctive keypoints on the ground and cars.

5.6 Geometric Registration

We test our keypoint detection and description algorithm on the geometric reg-
istration problem. We perform nearest neighbor matching on the computed key-
points and descriptors, and use RANSAC on these nearest neighbor matches to
estimate a rigid transformation between the two point clouds. The number of
RANSAC iterations is automatically adjusted based on 99% confidence but is
limited to 10,000. No subsequent refinement, e.g. using ICP is performed. We
evaluate the estimated pose against its ground truth using the Relative Transla-
tional Error (RTE) and Relative Rotation Error (RRE) as in [8,18]. We consider
registration successful when the RTE and RRE are both below a predefined
threshold of 2m and 5◦, and report the average RTE and RRE values for suc-
cessful cases. We also report the average number of RANSAC iterations.

Table 3. Performance on the Oxford RobotCar dataset.

Method RTE (m) RRE (◦) Success Rate Avg # iter

ISS [35] + FPFH [25] 0.396± 0.290 1.60± 1.02 92.32% 7171
ISS [35] + SI [13] 0.415± 0.309 1.61± 1.12 87.45 % 9888

ISS [35] + USC [30] 0.324± 0.270 1.22± 0.95 94.02% 7084
ISS [35] + CGF [15] 0.431± 0.320 1.62± 1.10 87.36% 9628
RS + 3DMatch [34] 0.616± 0.407 2.02± 1.17 54.64% 9848

ISS [35] + 3DMatch [34] 0.494± 0.366 1.78± 1.21 69.06% 9131
ISS [35] + PN++ [24] 0.511± 0.391 1.88± 1.20 48.86% 9904

RS + Our Desc 0.435± 0.305 1.64± 1.04 90.28% 9941
RSCS [8] + Our Desc 0.386± 0.292 1.46± 1.01 92.64% 9913
ISS [35] + Our Desc 0.314± 0.262 1.08± 0.83 97.66% 7127
Our Kpt + Desc 0.300± 0.255 1.07± 0.85 98.10% 2940
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Table 4. Performance on the KITTI odometry dataset.

Method RTE (m) RRE (◦) Success Rate Avg # iter

ISS [35] + FPFH [25] 0.325± 0.270 1.08± 0.82 58.95% 7462
ISS [35] + SI [13] 0.358± 0.304 1.17± 0.94 55.92% 9219

ISS [35] + USC [30] 0.262± 0.275 0.83± 0.75 78.24% 7873
ISS [35] + CGF [15] 0.233± 0.266 0.69± 0.60 87.81% 7442
RS + 3DMatch [34] 0.377± 0.298 1.21± 0.84 83.96% 8674

ISS [35] + 3DMatch [34] 0.283± 0.272 0.79± 0.65 89.12% 7292

Our Kpt + Desc 0.259± 0.262 0.57± 0.46 95.97% 3798

Performance on Oxford RobotCar Table 3 shows the performance on the
Oxford dataset. We observe the following: (1) using a keypoint detector in-
stead of random sampling improves geometric registration performance, even
for 3DMatch which is designed for random keypoints, (2) our learned descriptor
gives good accuracy even when used with handcrafted descriptors or random
sampling, suggesting that it generalizes well to generic point clusters, (3) our
detector and descriptor combination gives the highest success rates and low-
est errors. This highlights the importance of designing a keypoint detector and
descriptor simultaneously, and the applicability of our approach to geometric
registration. Some qualitative registration results can be found in Fig. 6(a).

Performance on KITTI Dataset We evaluate the generalization performance
of our network on the KITTI odometry dataset by comparing the geometric reg-
istration performance against ISS + FPFH in Table 4. We use the same param-
eters as the Oxford dataset for all algorithms, and did not fine-tune our network
in any way. Nevertheless, our 3DFeat-Net outperforms all other algorithms in
most measures. It underperforms CGF slightly in terms of RTE, but has a signif-
icantly higher success rate and requires far fewer RANSAC iterations. We show
some matching results on the KITTI dataset in Fig. 6(b).

Performance on ETH Dataset We compare our performance against LO-
RAX [8], which evaluates on 9 models from the Gazebo dataset and 3 models
from the Wood dataset. We show our performance on the best performing point
clouds for each algorithm in Table 5 since it is not explicitly stated in [8] which
datasets were used. Note that success rate in this experiment refers to a RTE of
below 1m to be consistent to [8]. We also report the success rate over the entire
dataset. Detailed results on the entire dataset can be found in the supplementary
material. LORAX considers 3 best descriptor matches for each keypoint. These
matches are used to compute multiple pose hypotheses which are then refined
using ICP for robustness. For our algorithm and baselines, we only consider the
best match, compute a single pose hypothesis and do not perform any refinement
of the pose. Despite this, our approach outperforms [8] and most baseline algo-
rithms. It only underperforms USC which uses a much larger dimension (1980D).
Fig. 6(c) shows an example of a successful matching by our approach.



14 Zi Jian Yew and Gim Hee Lee

ISS+FPFH

(a
) 

O
xf

or
d

OURS

(b
) 

K
IT

T
I

(c
) 

E
T

H

Fig. 6. Qualitative registration results, using our approach (left) and ISS + FPFH
(right). We only show a random subset of matches retained after RANSAC, and exclude
the ground in (c) for clarity. We also show the results using ISS + FPFH.

Table 5. Performance on the ETH dataset, the results of FPFH and LORAX are taken
from [8]. The last column indicates the success rate over the entire dataset.

Method RTE (m) RRE (◦) Success Rate (All)

FPFH [25] 0.44± 0.2 12.2± 4.8 67% -
LORAX [8] 0.42± 0.27 2.5± 1.2 83% -

ISS [35] + SI [13] 0.176± 0.083 1.97± 0.74 100% 93.7%
ISS [35] + USC [30] 0.130± 0.056 1.52± 0.30 100% 100%
ISS [35] + CGF [15] 0.157± 0.066 1.47± 0.60 100% 92.1%
RS + 3DMatch [34] 0.292± 0.199 4.71± 3.16 91.7% 33.3%

ISS [35] + 3DMatch [34] 0.401± 0.222 5.32± 3.25 100% 33.3%

Our Kpt + Desc 0.156± 0.112 1.56± 0.66 100% 95.2%

6 Conclusion

We proposed the 3DFeat-Net model that learns the detection and description
of keypoints in Lidar point clouds in a weakly supervised fashion by making
use of a triplet loss that takes into account individual descriptor similarities
and the saliency of input 3D points. Experimental results showed our learned
detector and descriptor compares favorably against previous handcrafted and
learned ones on several outdoor gravity aligned datasets. However, we note that
our network is unable to train well on overly noisy point clouds, and the use of
PointNet limits the max size of the input point cloud. We also do not extract a
fully rotational invariant descriptor. We leave these as future work.
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4. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification
using a “siamese” time delay neural network. In: Advances in Neural Information
Processing Systems. pp. 737–744 (1994)

5. Chen, H., Bhanu, B.: 3d free-form object recognition in range images using lo-
cal surface patches. In: International Conference on Pattern Recognition (ICPR).
vol. 3, pp. 136–139 (2004). https://doi.org/10.1109/ICPR.2004.1334487

6. Deng, H., Birdal, T., Ilic, S.: Ppfnet: Global context aware local features for ro-
bust 3d point matching. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2018)
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