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Abstract. Harvesting dense pixel-level annotations to train deep neu-
ral networks for semantic segmentation is extremely expensive and un-
wieldy at scale. While learning from synthetic data where labels are read-
ily available sounds promising, performance degrades significantly when
testing on novel realistic data due to domain discrepancies. We present
Dual Channel-wise Alignment Networks (DCAN), a simple yet effective
approach to reduce domain shift at both pixel-level and feature-level.
Exploring statistics in each channel of CNN feature maps, our frame-
work performs channel-wise feature alignment, which preserves spatial
structures and semantic information, in both an image generator and
a segmentation network. In particular, given an image from the source
domain and unlabeled samples from the target domain, the generator
synthesizes new images on-the-fly to resemble samples from the target
domain in appearance and the segmentation network further refines high-
level features before predicting semantic maps, both of which leverage
feature statistics of sampled images from the target domain. Unlike much
recent and concurrent work relying on adversarial training, our frame-
work is lightweight and easy to train. Extensive experiments on adapt-
ing models trained on synthetic segmentation benchmarks to real urban
scenes demonstrate the effectiveness of the proposed framework.

1 Introduction

Deep neural networks have driven recent advances in computer vision. However,
significant boosts in accuracy achieved by high-capacity deep models require
large corpora of manually labeled data such as ImageNet [1] and COCO [2].
The need to harvest clean and massive annotations limits the ability of these
approaches to scale, especially for fine-grained understanding tasks like semantic
segmentation, where dense annotations are extremely costly and time-consuming
to obtain. One possible solution is to learn from synthetic images rendered by
modern computer graphics tools (e.g., video game engines), such that ground-
truth labels are readily available. While synthetic data have been exploited to
train deep networks for a multitude of tasks like depth estimation [3], object
detection [4], etc., the resulting models usually suffer from poor generalization
when exposed to novel realistic samples. The reasons are mainly two-folds: (1)
the realism of synthesized images is limited—inducing an inherent gap between
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synthetic and real image distributions; (2) deep networks are prone to overfitting
in the training stage, which leads to limited generalization ability.

Learning a discriminative model that reduces the disparity between train-
ing and testing distributions is typically known as domain adaptation; a more
challenging setting is unsupervised domain adaptation that aims to bridge the
gap without accessing labels of the testing domain during training. Most existing
work seeks to align features in a deep network of the source domain (training sets)
and the target domain (testing sets) by either explicitly matching feature statis-
tics [5,6,7] or implicitly making features domain invariant [8,9]. Recent work also
attempts to minimize domain shift in the pixel space to make raw images look
alike [10,11,12] with adversarial training. While good progress has been made for
classification, generalizing these ideas to semantic segmentation has been shown
to be less effective [13], possibly due to the fact that high-dimensional feature
maps are more challenging to align compared to features used for classification
from fully-connected layers.

In this paper, we study unsupervised domain adaptation for semantic segmen-
tation, which we refer as unsupervised scene adaptation. We posit that channel-
wise alignment of high-level feature maps is important for adapting segmenta-
tion models, as it is able to preserve spatial structures and consider semantic
information like attributes and concepts encoded in different channels [14] in-
dependently, which implicitly helps transfer feature distributions between the
corresponding concepts across domains. In particular, we build upon recent ad-
vances of instance normalization [15] due to its effectiveness and simplicity for
style transfer [15,16,17]. Instance normalization is motivated by the fact that
mean and standard deviation in each channel of CNN feature maps contain the
style information of an image, and hence they are used to translate feature maps
of a source image into a normalized version based on a reference image for each
channel. In addition to being able to match feature statistics, the ability to main-
tain spatial structures in feature maps with channel-wise normalization makes
it appealing for tasks like segmentation.

Motivated by these observations, we propose to reduce domain differences at
both low-level and high-level through channel-wise alignment. In particular, we
normalize features of images from the source domain with those of images from
the target domain by matching their channel-wise feature statistics. Nevertheless,
such alignment is on a per image basis with each target sample serving as a
reference for calibration. When multiple images exist in the target domain, a
straightforward way is to enumerate all of them to cover all possible variations,
which is computationally expensive. In contrast, we stochastically sample from
the target domain for alignment. The randomization strategy is not only efficient,
but more importantly, provides a form of regularization for training in similar
spirit to stochastic depth [18], data transformation [19,20], and dropout [21].

To this end, we present, Dual Channel-wise Alignment Networks (DCAN),
a simple yet effective framework optimized in an end-to-end manner. The main
idea is leveraging images from the target domain for channel-wise alignment,
which not only enables minimizing the low-level domain discrepancies in pixel
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space (e.g., color, texture, lighting conditions, etc.), but also, simultaneously
normalizes high-level feature maps of source images specific to those of target
images for improved segmentation. Figure 1 gives an overview of the framework.
In particular, we utilize an image generator to map an image from the source
domain to multiple representations with the same content as the input but in
different styles, determined by unlabeled images randomly selected from the tar-
get set. These synthesized images, resembling samples from the target domain,
together with sampled target images, are further input into a segmentation net-
work, in which channel-wise feature alignment is performed once more to refine
features for the final segmentation task.

The key contributions of DCAN are summarized as follows: (1) we present
an end-to-end learning framework, guided by feature statistics of images from
the target domain, to synthesize new images as well as normalize features on-
the-fly for unsupervised scene adaptation; (2) we demonstrate that channel-wise
feature alignment, preserving spatial structures and semantic concepts, is a sim-
ple yet effective way to reduce domain shift in high-level feature maps. With
this, our method departs from much recent and concurrent work, which uses
adversarial training for distribution alignment; (3) we conduct extensive exper-
iments by transferring models trained on synthetic segmentation benchmarks,
i.e., SYNTHIA [22] and GTAS [23], to real urban scenes, CITYSCAPES [24], and
demonstrate DCAN outperforms state-of-the-art methods with clear margins
and it is compatible with several modern segmentation networks.

2 Related Work

There is a large body of work on domain adaptation (see [25,26] for a survey),
and here we focus only on the most relevant literatures.

Unsupervised Domain Adaptation. Most existing work focuses on classifi-
cation problems and falls into two categories: feature-level and pixel-level adap-
tation. Feature-level adaptation seeks to align features by either explicitly mini-
mizing the distance measured by Maximum Mean Discrepancies (MMD) [27,28],
covariances [6], etc., between source and target distributions or implicitly opti-
mizing adversarial loss functions in the forms of reversed gradient [29,30], domain
confusion [31], or Generative Adversarial Network [8,9,32,33], such that features
are domain-invariant. In contrast, pixel-level domain adaptation attempts to re-
move low-level differences like color and texture by stylizing source images to
resemble target images [10,34,35,36]. Compared to a large amount of work on
classification problems, limited effort has been made for semantic segmentation.
In [9], adversarial training is utilized to align features in fully convolutional net-
works for segmentation, and the idea is further extended for both pixel-level
and feature-level adaptation jointly using cycle consistency [11]. A curriculum
learning strategy is proposed in [13] by leveraging information from global label
distributions and local super-pixel distributions. Our work differs from previous
work in two aspects: (1) we introduce channel-wise alignment for unsupervised
scene adaption, which preserves spatial information and semantic information
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Fig.1: An overview of the proposed framework. It contains an image genera-
tor and a segmentation network, in both of which channel-wise alignment is
performed. The generator synthesizes a new image, reducing low-level appear-
ance differences, which is further input to the semantic segmentation network.
Features directly used for segmentation are refined before producing prediction
maps. During testing, we turn off the alignment (shaped in blue) and the seg-
mentation network can be readily applied.

of each channel when normalizing high-level feature maps for alignment; (2) we
avoid adversarial training, which “remains remarkably difficult to train” [37], yet
achieves better performance.

Image Synthesis. Generative Adversarial Networks (GANSs) [38], consisting of
a generator and a discriminator optimized to compete with each other, are one of
the most popular deep generative models for image synthesis [39,40,36]. Various
prior information, including labels [41], text [42], attributes [43], images [44,45]
has been explored to condition the generation process. GANs have also been
further extended to the problem of image-to-image translation, which maps a
given image to another one in a different style, using cycle consistency [46] or
a shared latent space [47]. This line of work aims to learn a joint distribution
of images from two domains using images from the marginal distributions of
each domain. As previously mentioned, adversarial loss functions are hard to
train, and hence generating high resolution images is still a challenging problem
that could take days [48]. A different direction of image-to-image translation
is neural style transfer [49,17,50,51,52]. Though style transfer can be seen as a
special domain adaptation problem with each style as a domain [53], our goal
in this work is different: we focus on unsupervised scene adaption, by jointly
synthesizing images and performing segmentation with the help of images from
the target domain for channel-wise distribution alignment.

3 Approach

Given labeled images from a source domain and unlabeled samples from a tar-
get domain, our goal is to reduce domain discrepancies at both pixel-level and
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feature-level. In particular, we leverage unlabeled target images for channel-wise
alignment—synthesizing photo-realistic samples to appear as if from the tar-
get set, and simultaneously normalizing feature maps of source images, upon
which segmentation classifiers directly rely. The resulting segmentation model
can then be readily applied to the novel target domain. To this end, we consider
each image from the target domain as a unique reference sample, whose feature
representations are used to normalize those of images from the source domain.
In addition, given an image from the source domain, instead of considering every
single target image, we sample from the target set for alignment stochastically,
serving as regularization to improve generalization. Figure 1 gives an overview
of this framework.

More formally, let X* = {x7,y} }icnv) denote the source domain with N*
images x§ € R3>*H>W and the corresponding label maps y$ € {0,1}¢*HxW_
where H and W represent the height and width of the image, respectively and
C denotes the number of classes. The target domain, on the other hand, has N*
images X* = {x!} ¢y of the same resolution without labels. For each image x;
in the source domain, we randomly select one sample x§ from the target domain
(we use one image here for the ease of description, but it can be a set of images
as will be shown in experiments). A synthesized image X{ is generated with the
content of x{ and style of X§ by channel-wise alignment of feature statistics. This
image is then fed into a segmentation network, where domain shift in high-level
feature maps is further minimized for segmentation.

In the following, we first revisit channel-wise alignment (Sec 3.1), and then
we present DCAN (Sec 3.2), which contains an image generator, synthesizing
new images to minimize low-level differences like color and texture, and a seg-
mentation network, refining high-level feature maps that are critical in the final
segmentation task. Finally, we introduce the learning strategy (Sec. 3.3).

3.1 Channel-wise Feature Alignment

The mean and standard deviation of each channel in CNN feature maps have
been shown to capture the style information of an image [16,15,17], and hence
channel-wise alignment of feature maps is adopted for fast style transfer with a
simple instance normalization step. Here, due to its effectiveness and simplicity,
we use adaptive instance normalization [17], to match the mean and standard
deviation of images from two different domains. In particular, given feature maps
F? and F]t of the same size RC*H*W (C’, H, W represents the channel, height
and width respectively) from the source and target domain, adaptive instance
normalization h produces a new representation of the source image as:

By = ) = (e (F L) ), m

1 H W 1 H W
,uc(F): = Zchhwaag(F): HWZZ(Fchw_Mc(F))27
h=1w=1
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where p. and 0. denotes mean and variance across spatial dimensions for the
c-th channel. This simple operation normalizes features of a source image to have
similar statistics with those of a target image for each channel, which is appeal-
ing for segmentation tasks, since it is spatially invariant, i.e., relative locations
of pixels are fixed. In addition, such channel-wise alignment ensures semantic
information like attributes encoded in different channels [14] is processed inde-
pendently. In our work, we adopt channel-wise feature alignment in both our
image generator for synthesizing photo-realistic samples, and segmentation net-
work to refine features used for segmentation. Note that channel-wise feature
alignment is generic and can be plugged into different layers of networks.

3.2 Dual Channel-wise Alignment Networks

Image generator. Our image generator contains an encoder and a decoder with
channel-wise alignment in between. The encoder, denoted as fyep, is truncated
from a pre-trained VGG19 network [54] by taking layers up till relud. We fix
the weights of the encoder, following [55,17], to map images x; and X; into fixed
representations: F = fyen(x]) and th = fgen(X§)7 respectively. F? is further
normalized to produce a new representation F‘is according to Eqn. (1). Given
the aligned source representation, a decoder, represented by ggen, is applied to
synthesize a new image X; = ggen(]f'?‘), in the style of samples from the target

K3
set. This is achieved by minimizing the following image generation loss function:

gen - ||fg€n( F‘S”2 + Z ||G gen X ) G( éen(xg))HQ' (2)

Here, the first term is the content loss measuring the discrepancies between
features from the stylized image %XJ and the aligned features of the source image
(weights of fge, are fixed), forcing the synthesized image to contain the same
contents as the original one. The second term matches the style information, by
penalizing the differences of Gram matrices between X and the target image XE»
using features from the first four layers (with [ denoting the layer index) in the
encoder [49]. More specifically, given a reshaped feature map F € ROXAW with
its original channel, height and width being C H 1474 respectively, the gram

matrix can be computed as: G(F) = P F Fj € ROXC.

Segmentation network. A new image X{ synthesized with our generator, re-
sembling target samples with similar low-level details like color, texture, lighting,
etc., is ready for semantic segmentation. Instead of sending X; to any off-the-shelf
segmentation engine for the task, we leverage the target style image XE' ornce more
to calibrate features of X with channel-wise alignment, such that they possess
similar statistics and its spatial information is preserved for segmentation. Here,
the intuition is to remove undesired mismatches in higher-level feature maps that
might still exist after minimizing low-level differences in the first stage. There-
fore, DCAN explicitly performs another round of alignment in the segmentation
network, refining features tailored for pixel-level segmentation. To this end, we
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divide a fully convolutional network (FCN) based model into an encoder fe,
and a decoder ggcq, With alignment in between. In particular, the segmentation
decoder produces a prediction map: pj = gseg(h(fseg(XF), fseg(x}))) and the
segmentation loss fs.4 takes the form:

HxWwW C

éseg = - Z Zy;ﬂclog(p?w% (3)

m=1 c=1

which is essentially a multi-class cross-entropy loss summed over all pixels (su-
perscript s denoting the source domain is omitted here). Note that state-of-the-
art segmentation networks like DeepLab [56], FCN [57], PSPNet [58], GCN[59],
etc., are usually built upon top-performing models on ImageNet like VGG [54]
or ResNet [60]; these networks differ in depth but have similar configurations,
i.e., five groups of convolution. In this case, we utilize the first three convolution
groups from a segmentation model as our encoder and the remaining part as the
decoder. For encoder-decoder based segmentation networks like SegNet [61], the
simple idea could be directly applied.

In summary, DCAN works in the following way: given a source image, a target
image is randomly selected whose style information is used for dual channel-wise
alignment in both image synthesis and segmentation phases. The image gener-
ator first synthesizes a new image on-the-fly to appear similar as samples from
the target domain, reducing low-level domain discrepancies in pixel space (e.g.,
color, texture, lighting conditions, etc.), which is further input into the segmen-
tation network. In the segmentation model, features from the synthesized image
are further normalized specific to the sampled target image while preserving
spatial structures and semantic information before producing label maps.

At test time, a novel image from the target domain is input into the segmen-
tation network (segmentation encoder and then decoder) to predict its semantic
map. The channel-wise feature alignment in the segmentation network is turned
off since the network is already trained to match the feature statistics between
two domains and thus can be directly applied for testing as shown in Figure 1.

3.3 Optimization

One could train the framework by selecting each sample in the source domain
and normalizing it with the style information of each image in the target domain,
which leads to Nt copies of the original image; the new dataset X* with the size
of N*N* can then be used for training by minimizing:

N$ Nt
1 1 S S S
L= 55 D0 i 2 Maeg (X7 %5, 97 Ouseq) + Men (x5, %53 Ogen)), (4
i=1 j=1

where Oy and Bge,, denote the parameters for the segmentation network and
the image generator, respectively, and A balances the two losses. However, enu-
merating all targets would be computationally expensive, as the cost grows lin-
early with the number of images in the target domain. It is worth noting that
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when there are infinite target images, Eqn (4) can be re-written as:

£:

N®
]\}vs Z Ex; ~xt[lseq (X7 X§'7Yf§ Oseq) + Mgen (X7, X§'§ Ogen)]- (5)
i=1

Here, the expected mean can be computed by stochastic sampling during train-
ing. The intuition is to introduce “uncertainties” to the learning processes as
opposed to summing over all target styles deterministically, making the derived
model more robust to noise and to generalize better on the target domain. It is a
type of regularization similar in spirit to SGD for fast convergence [62], stochas-
tic depth [18] and dropout [21,63,64]. Another way to view this is randomized
data augmentation to improve generalization ability [65,54]. Unlike PixelDA [10]
which generates new samples conditioned on a noise vector, we augment data
using feature statistics of images randomly sampled from the target domain. It
is also worth noting that the idea of sampling is in line with stochastic gradient
descent, which loops over the training set by sampling batches of images, and
hence can be easily implemented in current deep learning frameworks.

4 Experiments

In this section, we first introduce the experimental setup and implementation
details. Then, extensive experimental results are presented to demonstrate the
effectiveness of our method. Finally, an ablation study is conducted to evaluate
the contribution of different components of DCAN.

4.1 Experimental Setup

Datasets and evaluation metrics. We train DCAN on two source datasets,
SYNTHIA [22] and GTA5 [23] respectively, and then evaluate the models on
CITYSCAPES [24]. CITYSCAPES is a real-world dataset, capturing street scenes
of 50 different cities, totaling 5,000 images with pixel-level labels. The dataset is
divided into a training set with 2,975 images, a validation set with 500 images
and a testing set with 1,525 images. SYNTHIA is a large-scale synthetic dataset
automatically generated for semantic segmentation of urban scenes. As in [13,9],
we utilize SYNTHIA-RAND-CITYSCAPES, a subset that contains 9,400 images
paired with CITYSCAPES, sharing 16 common classes. We randomly select 100
images for validation and use the remaining 9,300 images for training. GTAS
contains 24,966 high-resolution images, automatically annotated into 19 classes.
The dataset is rendered from a modern computer game, Grand Theft Auto V,
with labels fully compatible with those of CITYSCAPES. We randomly pick 1,000
images for validation and use the remaining 23, 966 images for training.
Following [13,9], to train our model, we utilize labeled images from the train-
ing set of either SYNTHIA or GTA5, as well as unlabeled images from the train-
ing set of CITYSCAPES serving as references for distribution alignment. Then
we evaluate the segmentation model on the validation set of CITYSCAPES, and
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report mean intersection-over-union (mloU) to measure the performance. These
two adaptation settings are denoted as SYNTHIA — CITYSCAPES and GTAS5 —
CITYSCAPES, respectively.

Network architectures. For the image generator, its encoder is based on
a VGG19 network; the detailed architecture of the decoder can be found in
the supplemental material. To verify the effectiveness of DCAN in state-of-the-
art segmentation networks, we experiment with three top-performing architec-
tures, FCN-8s-VGG16 [57], FCN-8s-ResNet101, and PSPNet [58]. In particular,
FCN8s-VGG16 and FCN8s-ResNet101 respectively adapt a pre-trained VGG16
and a ResNet101 network into fully convolutional networks and use skip connec-
tions for detailed segmentations. PSPNet is built upon a ResNet50 model with a
novel pyramid pooling module to obtain representations of multiple sub-regions
for per-pixel prediction [58]. These networks are pre-trained on ImageNet.
Implementation details. We adopt PyTorch for implementation and use SGD
as the optimizer with a momentum of 0.99. The learning rate is fixed to 1le—3 for
both FCN&8s-ResNet101 and PSPNet, and 1e — 5 for FCN8s-VGG16. We adopt a
batch size of three and optimize for 100, 000 iterations, and we fix A to 0.1. Given
each sample in the training set, we randomly sample 2 images and 1 image from
the target image set for experiments on SYNTHIA and GTA5 respectively. This
is to achieve efficient training on GTADS, for its size is three times larger than
SYNTHIA, and we will analyze the effect of the number of sampled images below.
We use a crop of 512x1024 during training, and for evaluation we upsample the
prediction map by a factor of 2 and then evaluate mloU.

4.2 Main Results

We compare DCAN to state-of-the-art methods on unsupervised domain adapta-
tion for semantic segmentation, including “FCN in the wild” [9] and “Curriculum
Adaptation” [13]. In particular, FCN in the wild uses an adversarial loss to align
fully connected layers (adapted to convolution layers) of a VGG16 model, and
additionally leverages multiple instance learning to transfer spatial layout [9].
Curriculum Adaptation infers properties of the target domain using label distri-
butions of images and superpixels [13]. The results of SYNTHIA — CITYSCAPES
and GTAD — CITYSCAPES are summarized in Table 1.

We observe that these domain adaptation methods, although different in de-
sign, can indeed lead to improvements over the source only method (denoted
as source), which simply trains a model on the source domain and then di-
rectly applies it to the target domain. In particular, DCAN outperforms its
corresponding source only baseline with clear margins, around 8 and 9 absolute
percentage points, using all three different networks on both datasets. This con-
firms the effectiveness of DCAN, which not only reduces domain differences for
improved performance but also is general for multiple network architectures. Fur-
thermore, with PSPNet, DCAN achieves 41.7% and 38.4% on CITYSCAPES when
adapted from GTA5 and SYNTHIA, respectively. Compared to [9,13], with the
same backbone VGG16 architecture, DCAN offers the best mIoU value as well
the largest relative mIoU gain (9.5% and 8.4% trained from SYNTHIA and GTAS
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Table 1: Results and comparisons on CITYSCAPES when adapted from SYNTHIA
and GTADS, respectively. Here, “Source” denotes source only methods, “Oracle”
denotes results from supervised training, and A, B, C represent FCN8s-VGG16,
FCNB8s-ResNet101 and PSPNet. A/d uses dilation in VGG16 for segmentation.
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Source C 69.9 22.3 75.6 15.8 20.1 18.8 28.2 17.1 75.6 8.00 73.5 55.0 2.90 66.9 34.4 30.8 0.00 18.4 0.00 33.3
DCAN C 85.0 30.8 81.3 25.8 21.2 22.2 25.4 26.6 83.4 36.7 76.2 58.9 24.9 80.7 29.5 42.9 2.50 26.9 11.6 41.7 8.4
A 96.4 70.3 85.9 44.4 35.8 31.5 41.5 54.2 87.5 51.9 88.9 64.1 40.8 88.5 55.8 66.1 44.9 35.5 60.3 60.2 -
Oracle B 97.3 76.7 88.1 44.4 46.9 35.3 44.5 55.9 88.6 55.9 91.2 67.7 41.6 89.9 60.1 73.3 54.4 44.7 63.1 64.2 -
C 97.8 78.6 89.6 56.7 57.8 39.9 61.3 65.2 89.9 58.9 91.5 73.4 56.0 89.9 75.8 84.1 78.8 54.2 69.5 72.0 -

respectively). Note that although the backbone network is the same, source only
baselines are different due to different experimental settings. A dilated VGG16
network is adopted in [9] and the network is additionally pre-trained on PASCAL-
CONTEXT in [13]. In addition, it uses a crop size of 320 x 640 during training.
Our model is initialized on ImageNet and we choose 512 x 1024 for training
since large resolution offers better performance as observed in [58], which is also
consistent with state-of-the-art supervised methods on CITYSCAPES [24]. It is
worth noting that DCAN improves a stronger baseline by 36% relatively (25.9%
to 35.4%). With the same image size as in [13], DCAN improves the source only
baseline from 23.6% to 33.0% (v.s., 22.0% to 29.0% in [13]; see Table 2).
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Test image Source only prediction Ours Ground truth labels

Fig. 2: Sampled prediction results of PSPNet and its corresponding source only
model under the GTAb — CITYSCAPES setting using testing images from
CITYSCAPES. Our model improves the generalization ability of the trained seg-
mentation network.

Among three different networks, PSPNet gives the best results on both
datasets, mainly resulting from the pyramid pooling module that considers dif-
ference scales. Figure 2 illustrates sampled results of PSPNet under the GTAS
— CITYSCAPES setting, and its comparison with the source only method. Com-
paring across datasets, models trained on GTA5 produce better accuracies than
those learned from SYNTHIA. The reasons are two-folds: (1) a large number of
images from SYNTHIA are rendered at night, incurring significant domain differ-
ences since images from CITYSCAPES are captured during day time; (2) there are
more training samples in GTA5. In addition, oracle results, which are produced
with traditional supervised training using annotations from the target domain,
are also listed for reference. We can see there is still significant performance gaps
between domain adaptation methods and oracle supervised training, highlighting
the challenging nature of this problem.

4.3 Discussions

In this section, we run a number of experiments to analyze DCAN in the SyN-
THIA — CITYSCAPES setting, and provide corresponding results and discussions.

Image resolution. Top performing approaches on CITYSCAPES typically use a
high resolution for improved performance [24]. For example, GCN and FRRN
utilize a resolution of 800 x 800 [59] and 512 x 1024 [66], respectively. Here,
we report the results of DCAN adapted from SYNTHIA using FCN8s-VGG16
with three different resolutions, and compare with the corresponding source only
method in Table 2. DCAN offers significant performance gains for all resolutions,
and a larger resolution is indeed better for unsupervised domain adaptation.
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Table 2: Results of FCNS8s- Table 3: Training with and without feature
VGG16 using three different im-  alignment in FCN8s-VGG16 using different

age resolutions. image synthesis methods.
SYNTHIA — CITYSCAPES SYNTHIA — CITYSCAPES

Resolution Method mIoU gain Method mloU
956 x512 Source 21.2 CycleGAN [46] 30.4
DCAN 29.6 84 CycleGAN w. FeatureAlignment 31.7

Source 23.6 UNIT [55] 31.6

320640 DCAN 33.0 94 UNIT w. FeatureAlignment 32.7
512 1024 Source 25.9 DCAN w/o FeatureAlignment 33.8
DCAN 354 9.5 DCAN (two stage) 33.7

DCAN (end-to-end) 35.4

Different image synthesis methods. We compare with two different image
synthesis methods: (1) CycleGAN [46] and (2) UNIT [47], both of which attempt
to learn a distribution mapping function between two domains. Once the map-
ping function is learned, images from the source domain can be translated to
the style of the target domain. Therefore, we use the translated images from the
source domain to train the segmentation network. Table 3 presents the results.
For fair comparisons, we compare them under two settings, with and without
the channel-wise feature alignment in the segmentation network. DCAN achieves
better results than both GAN-based image synthesis methods in both scenarios.
To justify the advantage of an end-to-end framework, we also compare with a
two-stage training strategy, which simply trains a segmentation network using
pre-synthesized images without end-to-end training. In this case, image syn-
thesis is not optimized using gradients from the segmentation network. DCAN
improves the two-stage training by 1.7% mIOU, demonstrating the importance
of guiding the synthesis process with useful information from the final task.

Figure 3 further compares images produced by different synthesis methods.
DCAN is able to generate images that conform to the style of images from the
target set, containing fewer artifacts than CycleGAN and UNIT. In addition,
both CycleGAN and UNIT seek to align distributions at a dataset level, and
once the mapping is learned, the translation from the source to the target is fixed
(a fixed output given an input image). Learning such a transformation function
on high resolution images is a non-trivial task and might not perfectly cover all
possible variations. Instead, DCAN performs image translation at an instance
level, and in the regime of stochastic sampling, it is able to cover sufficient styles
from the target set for distribution alignment. One can further increase the
variations of synthesized images by compositing feature maps of source images
and target images (see Supple. for details). It is also worth noting that feature
alignment can improve segmentation results regardless of synthesis methods. We
also experimented with other GAN-based approaches like PixelDA [10] for image
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SYNTHIA CITYSCAPES

Source image (a) Source image (b) Target image (c) Target image (d)

Ours (a to c) Ours (a to d) CycleGAN

Ours (b toc) Ours (b to d) CycleGAN UNIT

Fig. 3: Images from SYNTHIA synthesized in the style of CITYSCAPES with Cy-
cleGAN [46], UNIT [47] and DCAN.

synthesis; however, conditioning on a noise vector rather than label maps [67]
fails to produce photo-realistic images in high resolution.

Table 4: Comparisons of differ-

ent feature alignment methods —— FONBs-VGG16
in the segmentation network. 570 " FONSs-ResNeti01
—4— PSPNet
SYNTHIA — CITYSCAPES %0 /\
Alignment Method mloU 535'0 .\/\
E 340
ADDA [8] 34.0
33.0
Ours-w/o alignment 33.8
32.0
Ours—Conv2 34.0
31.0 1 5 4 8
Ours—Conv4 34.4 Number of target images sampled
Ours—Convé 33.9 Fig. 4: Effect of using different num-
Ours—Conv7 392.7 ber of target images for each training
sample.

Ours—Conv3 35.4

Channel-wise feature alignment for segmentation. We now analyze the
effect of channel-wise alignment in the segmentation network (Table 4) with
FCN8s-VGG16. We compare with Adversarial Discriminative Domain Adapta-
tion [8], which leverages an adversarial loss to make features from two domains
indistinguishable without considering spatial structures explicitly. DCAN out-
performs ADDA by 1.4%, and also converges faster during training. We also
implemented MMD [27] and CORAL [6] loss to align features, but their results
are worse than source only methods. This is consistent with observations in [13].
We further investigate where to align in the segmentation network and found
that alignment after the Conv3 layer gives the best results, possibly due to it
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contains both sufficient number of channels and relatively large feature maps. In
addition, aligning features maps with more detailed spatial information (Conv2
and Conv4) is also better than Convé and Conv7 (convolution layers adapted
from fully connected layers, whose feature maps are smaller). This confirms the
importance to consider detailed spatial information explicitly for alignment.
Number of target images sampled. We also evaluate how the number of
sampled target images affects the performance. Since enumerating around 3, 000
samples for each image in the training set is computationally prohibitive, we
create a pseudo-target set with 8 images randomly selected from 8 cities in
CITYSCAPES. This is to ensure there are variations among the targets and it
is computationally feasible for enumerating all targets. We then analyze the ef-
fect of the number of target images used during training by randomly selecting
1, 2, 4 samples from SYNTHIA. Figure 4 presents the results. We observe that
stochastically selecting from the target set is better than using all of them for all
three networks. This might result from two reasons: (1) translating one image
to multiple different representations in one-shot is hard to optimize; (2) stochas-
tic sampling acts as regularization to improve generalization, which is similar
to the case that stochastic gradient is better than full batch gradient descent.
Interestingly, for PSPNet and FCN8s-ResNet101, sampling one image achieves
competitive results, and this is very appealing when the number of samples in
the target domain is limited.

5 Conclusion

In this paper, we have presented, DCAN, a simple yet effective approach to re-
duce domain shift at both pixel-level and feature-level for unsupervised scene
adaptation. In particular, our framework leverages channel-wise feature align-
ment in both the image generator for synthesizing photo-realistic samples, ap-
pearing as if drawn from the target set, and the segmentation network, which
simultaneously normalizes feature maps of source images. In contrast to re-
cent work that makes extensive use of adversarial training, our framework is
lightweight and easy to train. We conducted extensive experiments by transfer-
ring models learned on synthetic segmentation datasets to real urban scenes,
and demonstrated the effectiveness of DCAN over state-of-the-art methods and
its compatibility with modern segmentation networks.
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