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Abstract. As facial appearance is subject to significant intra-class variations

caused by the aging process over time, age-invariant face recognition (AIFR)

remains a major challenge in face recognition community. To reduce the intra-

class discrepancy caused by the aging, in this paper we propose a novel approach

(namely, Orthogonal Embedding CNNs, or OE-CNNs) to learn the age-invariant

deep face features. Specifically, we decompose deep face features into two or-

thogonal components to represent age-related and identity-related features. As a

result, identity-related features that are robust to aging are then used for AIFR.

Besides, for complementing the existing cross-age datasets and advancing the re-

search in this field, we construct a brand-new large-scale Cross-Age Face dataset

(CAF). Extensive experiments conducted on the three public domain face ag-

ing datasets (MORPH Album 2, CACD-VS and FG-NET) have shown the effec-

tiveness of the proposed approach and the value of the constructed CAF dataset

on AIFR. Benchmarking our algorithm on one of the most popular general face

recognition (GFR) dataset LFW additionally demonstrates the comparable gen-

eralization performance on GFR.

Keywords: Age-Invariant Face Recognition, Convolutional Neural Networks,

Cross-Age Face Dataset

1 Introduction

As one of the most important topics in computer vision and pattern recognition, face

recognition has attracted much attention from both academic and industry for decades

[37, 4, 2, 40, 19, 18, 23, 44]. With the evolution of deep learning, the performance of

general face recognition (GFR) has been significantly improved in recent years, even

higher than humans’ abilities [33, 35, 34, 32, 43, 24, 39]. As a major challenge in face

recognition, age-invariant face recognition (AIFR) is extremely valuable on various ap-

plication scenarios, such as looking for lost children after decades, matching face im-

ages in different ages, etc. In contrast to GFR, AIFR involves more diversity with the
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Fig. 1. The major challenge of AIFR: the intrinsic large intra-class variations in the aging process.

(a) An example where intra-class distance is larger than inter-class distance. (b) The cross-age

images for one subject in the FG-NET [1].

significant intra-class variations caused by the aging process and thus is more challeng-

ing. It is very often that the inter-class variation is much smaller than the intra-class

variation in the presence of age variation, as illustrated in Figure 1(a). Figure 1(b) also

exhibits the difficulty of AIFR where the same identity greatly varies in appearance

with the aging process.

Recent AIFR researches primarily concentrate on two technical schemes: genera-

tive scheme and discriminative scheme. The generative scheme models the AIFR by

synthesizing faces to one or more fixed age category then performs recognition with

the artificial face representations [9, 16, 28]. Benefited from the advancement of the

deep generative model, the generative scheme becomes more promising on AIFR as

well [46, 3, 8]. However, the generative scheme still remains several significant short-

comings. Firstly, generative scheme usually separates the recognition process into two

steps. Hence it is not easy for the generative models to optimize recognition perfor-

mance in an end-to-end manner. Secondly, generation models are often unstable so the

synthesizing face images will introduce additional noises, which may result in nega-

tive effects on the recognition process. Moreover, constructing an accurate, parametric

generation model is fairly difficult since the aging process of humans’ face is easily

impacted by many latent factors such as social environments, diet, etc.

The discriminative scheme aims at constructing the sophisticated discriminative

model to solve the problem of AIFR. Related works on discriminative model include

[11, 17, 21, 7, 20, 22, 5, 6, 10]. By combining the deep learning algorithm, the discrimi-

native scheme has achieved substantial improvement on AIFR. For example, Wen et al.

[42] extended the HFA method [10] to a deep CNN model called latent factor guided

convolutional neural networks (LF-CNNs), which achieved the state-of-the-art recogni-

tion accuracy in this field. Zheng et al. [47] also used the linear combination of jointly-

learned deep features to represent identity and age information, which is similar to the

HFA based deep CNN model.

In this paper, we aim at designing a new deep learning approach to effectively

learn age-invariant components from features mixed with age-related information. The

key idea of our approach is to decompose face features into age-related and identity-
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related components, where the identity-related component is age-invariant and suitable

for AIFR. More specifically, inspired by a recent state-of-the-art deep learning GFR

system with A-Softmax loss [24] where features of different identities are discrimi-

nated by different angles, we decompose face features in the spherical coordinate sys-

tem which consists of radial coordinate r and angular coordinates φ1, . . . , φn. Then

the identity-related components are represented with angular coordinates, and the age-

related information is encoded with radial coordinate. Features separated by the two

mutually orthogonal coordinate systems are then trained jointly with different supervi-

sion signals. Identity-related features are trained as a multi-class classification task su-

pervised by identity labels with the A-Softmax loss, and age-related features are trained

as a regression task supervised by age labels. As such, we extract age-invariant features

from angular coordinates by separating age-related components with radial coordinates.

Since face features are decomposed into mutually orthogonal coordinate systems, we

name our approach as orthogonal embedding CNNs (OE-CNNs). A related work De-

coupled Network also discussed how to decouple the CNN with orthogonal geometry

in details. Nevertheless, this work merely studies the generalization of networks rather

than specifically modeling the age into decomposed features in the AIFR application

scenario. We verify the effectiveness of OE-CNNs with extensive experiments on three

face aging datasets (MORPH Album2 [30], CACD-VS [5] and FG-NET [1]) and one

GFR dataset (LFW [12]), and achieve the state-of-the-art performances.

The major contributions of this paper are summarized as follows:

1. We propose a new approach called OE-CNNs to tackle the problem on how

to jointly model the age-related features and identity-related features in a deep CNN

model. Based on the proposed model, age-invariant deep features can be effectively

obtained for improved AIFR performance.

2. We introduce a new large-scale Cross-Age Face dataset, named CAF, to help

advance the research in this field. This dataset contains more than 313,986 images from

4,668 identities. The face data in CAF has been manually cleaned in order to be noise-

free.

3. We demonstrate the effectiveness of our proposed approach with several extensive

experiments over three face aging datasets (MORPH Album2 [30], CACD-VS [5] and

FG-NET [1]) and one GFR dataset (LFW [12]). The experimental results have shown

the superior performance of the proposed approach over the state-of-the-art either on

AIFR or GFR.

2 Proposed Approach

2.1 Orthogonal Deep Features Decomposition

Two certain difficulties involved in AIFR include the considerable variations of the

identical individual in different age categories (intra-class variations) caused by aging

process (such as shape changes, texture changes, etc.), and the inevitable mixture of

unrelated components in the deep features extracted from a general deep CNN model.

Large intra-class variation usually leads to erroneous identification on a pair of faces

from the same individual at different ages. The mixed features (age features and identity
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Fig. 2. The proposed ResNet-Like CNN architecture.

features) potentially reduce the robustness of recognizing cross-age faces. To address

this, we propose a new approach called orthogonal embedding CNNs. Below we first

walk through the problem of deep AIFR in detail.

Given an observed Fully-Connected (FC) feature x extracted from the deep CNN

model, we decompose it into two components (vectors). One is identity-related compo-

nent xid and the other is age-related component xage. Thus, after removing xage from

x, we can obtain xid that is supposed to be age-invariant. Recent works [10, 42, 47] use

a linear combination to model xage and xid as the solution. In this paper, we propose a

new approach to model xage and xid in an orthogonal manner with deep convolutional

neural networks. Inspired by A-Softmax [24], where features of different identities are

discriminated by different angles, we decompose feature x in spherical coordinate sys-

tem xsphere = {r;φ1, φ2, ..., φn}. The angular components {φ1, φ2, ..., φn} represent

identity-related information, and the rest radial component r is used to encode age-

related information. Formally, x ∈ Rn is decomposed under xsphere as

x = xage · xid, (1)

where xage = ||x||2, and xid = { x1

||x||2
, x2

||x||2
, ..., xn

||x||2
}, with ||xid||2 = 1. Here ||.||2

represents for L2 norm, and xn is the n-th component of x. For convenience, we will

use nx to represent for ||x||2 and x̃ for x
||x||2

.

2.2 Multi-Task Learning

According to Equation 1, feature x output from the last FC layer is decomposed into

xage and xid. In this part, we describe a multi-task based learning algorithm to jointly

learn these features. An overview of the proposed CNN model is illustrated in Figure 2.

Learning age-related component. In order to dig out the intrinsic clues of age

information, we utilize an age estimation task to learn the relationship between the

component xage (nx) and the ground truth of age. For simplicity, linear regression is

adopted to the age estimation task, and the regression loss can be formulated as follows:

Lage =
1

2M

M∑

i=1

||f(nxi
)− zi||

2
2 (2)
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where nxi
is the L2 norm of the i-th embedding feature xi, zi is the corresponding i-th

age label.f(x) is a mapping function aimed to associate nxi
and zi. Since the L2 norm

nxi
is a scalar, we use linear polynomial f(x) = k · x + b as the mapping function.

We also explored other more complicated functions such as non-linear multi-layer per-

ceptron network, but they did not perform as well as a simple linear transformation. We

believe this is because a more complicated model overfits the underlying feature which

is one-dimensional here.

Learning identity-related component. When performing face verification or iden-

tification, x̃ is the only part which participates in the final similarity measure. Thus, the

identity-related component xid should be as discriminative as possible. Following the

recent state-of-the-art GFR algorithm A-Softmax [24], we use a similar loss function to

increase classification margin between different training persons in angular space:

Lid =
1

M

M∑

i=1

− log(
es·ψ(θyi,i)

es·ψ(θyi,i) +
∑
j 6=yi

es·cos(θj,i)
) (3)

in which ψ(.) is defined as ψ(θyi,i) = (−1)k cos(mθyi,i) − 2k, θyi,i is the angle

between the i-th feature x̃i and label yi’s weight vector, θyi,i ∈ [kπ
m
,
(k+1)π
m

], and

k ∈ [0,m − 1]. m ≥ 1 is an integer hyper-parameter that controls the size of angular

margin, and s > 0 is an adjustable scale factor introduced to compensate the learn-

ing of Softmax. From the geometric perspective, Equation 3 adds a constraint which

guarantees the angle of the feature x with its corresponding weight vector should less

than 1
m

of the angle between the feature x and any other weight vectors. Consequently,

the margin between two arbitrary classes can be increased. Compared with the original

A-Softmax, Equation 3 replaces L2 norm of x̃ with an adjustable scalar factor s. In

our model, according to Equation 1, ||x̃||2 is always equal to 1. Thus, it is necessary to

introduce an extra free variable to compensate for the loss of L2 norm.

Overall, the two losses are combined to a multi-task loss for jointly optimizing, as

below:

L = Lid + λLage (4)

where λ is a scalar hyper-parameter to balance the two losses. Equation 4 is used to

guide the learning of our CNN model in the training phase. In the testing phase, only

the identity-related component xid is used for the AIFR task.

2.3 Discussion

Compared with HFA based AIFR methods. The HFA based AIFR methods [10, 11,

42] suggest modeling the identity-related component and age-related component of fea-

tures by the simple linear combination. Specifically, given a feature x, the HFA based

methods decompose the x as x = m + Uxage + V xid + ε, where m is the mean

feature regarding identity-related component, ε is the additional noise and U, V are

the transformation matrices for identity-related component xid and age-related com-

ponent xage respectively. The major advancements of the proposed approach over the

HFA based methods are described in the following aspects: Firstly, the proposed ap-

proach revises the decomposition of x in the HFA based methods to the multiplication
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Fig. 3. Visualization of deep features learned with Softmax (Left), A-Softmax (Middle) and the

proposed algorithm (Right). It is noteworthy that only 10 individuals are used to train CNN mod-

els, and the output dimension is set to 2. Colors are used to distinguish identities, and placement

of face images is based on the corresponding features.

of hidden components xid and xage, which is more intuitive and concise to model the

unrelated components with less extra hyper-parameters. Secondly, we explicitly project

the identity features on a hypersphere to match the cosine similarity measurement for

effectively combining the improvement strategies based on the Softmax loss and the

margin of decision boundaries. Thirdly, the HFA based methods have to iteratively run

the EM algorithm in contrast to our approach which jointly trains the network in the de-

sirable end-to-end manner of feature learning. For the foregoing reasons, our method is

more recommendable to be embedded into CNN framework for the purpose of learning

age-invariant features, as supported by our experimental results.

Compared with SphereFace. SphereFace [24] introduces A-Softmax loss to learn

the angular margin between identities for GFR. Though we train the identity-related

component with a loss function similar to A-Softmax, the proposed algorithm takes

advantage of the age information to explicitly train age-related component with an ad-

ditional age regression task (Equation 2). To intuitively investigate the impact by in-

troducing such additional age regression task, we construct a toy example to compare

features learned by Softmax, A-Softmax and our proposed algorithm. Specifically, we

train CNN models with 10 individuals and set the output dimension of feature x as 2.

For simplicity we let f(x) = x (see Equation 2) in this case. Figure 3 is the visual-

ization for training features. Based on this example, we conclude that: (1) features of

different persons are discriminated mostly by angles, which intuitively justifies our de-

composition design; (2) both A-Softmax and the proposed algorithm have noticeably

larger classification margins than Softmax, as a result of the A-Softmax loss; (3) most

importantly, for our model age of a person is reflected in radial direction (e.g. larger

L2 norms for older faces), while the other two models do not have this property. We

believe this property further constrains the training problem, which reduces the risk of

over-fitting and consequently leads to superior performance for AIFR.

Generalization of Our Approach. One of the noticeable highlights of the proposed

algorithm is its generalization capability. Intuitively, our method is specifically designed
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Fig. 4. Overview of the CAF dataset. (a) Example images of CAF. Note that since our images are

collected from Internet, CAF not only varies in ages but also in poses, races, etc. (b) The distri-

bution of CAF. Top: The distribution of the number of different ages. Bottom: The distribution of

the number of different identities.

to fit cross-age training data. However, the experimental results surprisingly unfold the

excellent performance of the proposed method even trained with general training data

(as shown in Section 4.4). Furthermore, as the objective of the algorithm is to generate

identity-related features, the proposed algorithm is not only suitable for AIFR but also

for GFR. Finally, The age component can be easily generalized to any other common

component such as pose, illumination, emotion, etc.

3 Large-Scale Cross-Age Face Dataset (CAF)

In order to further motivate the development of AIFR and enrich the capability of the

current model, a dataset with a large age gap is urgently needed. Besides, the dataset

size should be large enough to avoid overfitting. To this end, we collect a new dataset

with a large number of cross-age celebrities’ faces, named large-scale Cross-Age Face

dataset (CAF).

3.1 Dataset Collection

To build the cross-age celebrity dataset, it is inevitable to collect celebrity’s name to

form a list. The collected names in the list come from multiple sources such as IMDB,

Forbes celebrity list, child actors name list from Wikipedia, etc. This guarantees the

comparatively large age gap in the later data collection. Next, we iteratively search the

name in the list by the Google Search Engine. Each searching term has been thresholded

to a certain number, that is, we keep the name in the list if the number of responses ex-

ceeds a certain threshold, which ensures the sufficient number of data for each celebrity.

Moreover, to the best of our knowledge, the current public cross-age datasets have very
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Dataset CAF IMDB-WIKI [31] CACD [5] MORPH [30] AgeDB [26] FG-NET [1]

# Images 313K 523K 163K 78K 16K 1K

# Subjects 4,668 20,284 2,000 20,000 568 82

Noise-free Yes No Yes Yes Yes Yes

Table 1. Comparison over cross-age datasets.

limited Asian individuals. For the purpose of increasing the diversity of our cross-age

dataset, we collect a large number of Asian celebrities. After filtering the name list, we

download the face images on several commercial image search engine (such as Google,

Baidu) querying by the celebrity’s name companied with several keywords like year-

book, past and now, childhood, young, from young to old, etc, to obtain the face images

with different age categories. The data cleaning is performed thereafter. Specifically,

we apply face detection algorithm MTCNN [14] to filter the images without any faces,

then manually wipe off the near-duplicates and false face images (faces do not belong

to that celebrity). Finally, we delete some of the images that have a large proportion in

a certain age category to keep the age distribution more balanced.

3.2 Dataset Statistics

Following the above labeling and cleaning process, we construct a cross-age face dataset

which totally includes about 313,986 face images from 4,668 identities. Each identity

has approximately 80 face images. All of these images have been carefully and man-

ually annotated. Example images of the dataset are shown in Figure 4(a). Consider-

ing the lack of exact age information, we utilize the public pre-trained age estimation

model DEX [31] to predict the rough age label for each face image. Figure 4(b) shows

the distribution histogram of CAF. One can observe our data are well-distributed in ev-

ery possible age category. Table 1 fairly compares our dataset with existing released

cross-age datasets. It is clear that except IMDB-WIKI [31], we have the comparatively

largest scale in terms of the number of pictures and the number of individuals. Fur-

thermore, as IMDB-WIKI is collected by automatically online crawling, some of the

downloaded data might be redundant and noise-severe. Superior to IMDB-WIKI, CAF

has minimized the noise data by manually annotating.

4 Experiments

For a direct and fair comparison to the existing work in this field, we evaluate our ap-

proach on existing public-domain cross-age face benchmark datasets MORPH Album

2[30], CACD-VS [5] and FG-NET [1]. We also evaluate our algorithm on LFW [12]

for verifying the generalization performance on GFR.

4.1 Implementation Details

The training set is composed of two parts: a cross-age face dataset and a general face

dataset (without cross-age face data). The cross-age face dataset that we use is the col-
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lected CAF dataset introduced in Section 3 while the general face dataset consists of

three public face datasets: CASIA-WebFace [45], VGG Face [29] and celebrity+ [25].

The same identities appeared in different datasets are carefully merged together. Since

our testing dataset contains MORPH, CACD-VS, FG-NET, and LFW, we have excluded

these data from the training set. Finally, our training set contains 1,765,828 images with

19,976 identities in total, which includes 313,986 cross-age face images with 4,668

identities and 1,451,842 general face images with 17609 identities respectively. In ad-

dition, the age label predicted from the public pre-trained age estimation model DEX

[31] is treated as the regression target of Euclidean loss. Prior to training stage, we

perform the same pre-processing on both training set and testing set: Using MTCNN

[14] to detect the face and facial key points in images, then applying similarity trans-

formation to crop the face patch to 112×96 pixels according to the 5 facial key points

(two eyes, nose and two mouth corners), finally normalizing the cropped face patch

by subtracting 127.5 then divided by 128. The proposed loss in Equation 3 serves as

the supervisory signal of identity classification. In terms of the age branch, we use Eu-

clidean loss function to guide the network to learn the age label. The hyper-parameters

m, s mentioned in Equation 3 and 4 are set to 4, 32 according to the recommendations

of [24, 38]. For the factor λ, we empirically selected an optimal value 0.01 to balance

the two losses. All models are trained with Caffe [13] framework and optimized with

stochastic gradient descent (SGD) algorithm. Training batch size is set to 512 and the

number of iterations is set to 21 epochs. The initial learning rate is set to 0.05 and the

training process adaptively decreases the learning rate 3 times when the loss becomes

stable (roughly at the 9-th, 15-th and 18-th epoch).

4.2 Experiments on the MORPH Album 2 Dataset

Following [10, 11, 17, 42], in this study we use an extended version of MORPH Album

2 dataset [30] for performance evaluation. It has 78,000 face images of 20,000 identities

in total. The data has been split into training and testing set. The training set contains

10,000 identities. The rest of 10,000 identities belong to testing set where each identity

has 2 photos with a large age gap. The testing data have been divided into gallery set and

probe set. We follow the testing procedure given by [10] to evaluate the performance of

our algorithm. We set up several schemes for comparison including: (1) Softmax: the

CNN-baseline model trained by the original Softmax loss, (2) A-Softmax: the CNN-

baseline model guided by the A-Softmax loss, (3) OE-CNNs: the proposed approach,

and (4) other recently proposed top-performing AIFR algorithm in the literatures.

Firstly, we compare the proposed approach to baseline algorithms that are most

related to the proposed algorithm to demonstrate its effectiveness. Table 2 compares

the rank 1 identification rates testing on 10,000 subjects of Morph Album 2 over Soft-

max, A-Softmax, and OE-CNNs, with and without CAF dataset. As shown in the table,

The proposed OE-CNNs significantly outperforms both Softmax and A-Softmax under

both settings. Specifically, though we’ve used similar loss function with A-Softmax for

training the identity-related features, OE-CNNs noticeably improves the performance

of A-Softmax, which confirms the effectiveness of our features decomposition method

for AIFR. Note that, all compared networks have the same base network (from input

to FC layer). When comparing performances trained with and without CAF dataset,
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Training Dataset Method
Rank-1

Identification Rates

Public datasets Softmax 94.84%

Public datasets A-Softmax 96.27%

Public datasets OE-CNNs 97.46%

Public datasets + CAF Softmax 95.49%

Public datasets + CAF A-Softmax 96.59%

Public datasets + CAF OE-CNNs 98.57%

Table 2. Performance comparisons of different baselines on Morph Album 2.

Method #Test Subjects
Rank-1

Identification Rates

HFA [10] 10,000 91.14%

CARC [5] 10,000 92.80%

MEFA [11] 10,000 93.80%

MEFA+SIFT+MLBP [11] 10,000 94.59%

LPS+HFA [17] 10,000 94.87%

LF-CNNs [42] 10,000 97.51%

OE-CNNs 10,000 98.55%

GSM [21] 3,000 94.40%

AE-CNNs [47] 3,000 98.13%

OE-CNNs 3,000 98.67%

Table 3. Performance comparisons of different approaches on Morph Album 2.

we can see that with CAF the identification rate improves consistently for all systems,

which confirms that the CAF dataset is valuable to AIFR research.

Secondly, for ensuring a fair comparison with other methods, we neglect the CAF

dataset and conduct an experiment with the same training data as related work [42] has

used. Specifically, WebFace [45], celebrity+ [25] and CACD [5] form the training set

to train a CNN base model. The trained model is later fine-tuned with Morph training

data. Table 3 depicts our result compared with other methods. There are conventionally

two evaluation schemes on Morph benchmark: testing on 10,000 subjects or 3,000 sub-

jects. For fairly comparing against other methods, we evaluate the proposed OE-CNN

approach on both schemes. As can be seen in Table 3, the OE-CNN approach shows

its capability by substantially outperforming all other methods in both two evaluation

schemes. Particularly, our method surpasses the LF-CNN model by 1.0% and AE-CNN

model by 0.5%, which is an outstanding improvement on the accuracy level above 98%.

4.3 Experiments on the CACD-VS Dataset

CACD dataset comprises comprehensively 163,446 images from 2,000 distinct celebri-

ties. The age ranges from 10 to 62 years old. This dataset collects the celebrity’s images

with the effect of various illumination condition, different poses and makeup, which
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Fig. 5. ROC comparisons of different approaches on CACD-VS.

Method Acc. AUC.

High-Dimensional LBP [7] 81.6% 88.8%

HFA [10] 84.4% 91.7%

CARC [5] 87.6% 94.2%

LF-CNNs [42] 98.5% 99.3%

Human, Average [6] 85.7% 94.6%

Human, Voting [6] 94.2% 99.0%

Softmax 98.4% 99.4%

A-Softmax 98.7% 99.5%

OE-CNNs 99.2% 99.5%

Table 4. Performance comparisons of different approaches on CACD-VS.

can effectively reflect the robustness of the AIFR algorithm. CACD-VS is a subset of

CACD which is picked from CACD to composes 2,000 pairs of positive sample and

2,000 pairs of negative samples, and 4,000 pairs of samples in total. We follow the

pipeline of [5] to calculate the similarity score of all sample pairs and the ROC curves

and its corresponding AUC. We take 9 folds from 10 folds that have already been sep-

arated officially to compute threshold references and use this threshold to evaluate on

the rest of 1 fold. By repeating this procedure 10 times, we finally calculate the average

accuracy as another measure.

The results of all the baselines are shown in Table 4 and Figure 5. As illustrated, the

proposed OE-CNN approach significantly outperforms all the other baselines. Further-

more, our approach also surpasses the human-level performance, which demonstrates

the effectiveness of our proposed age-invariant deep features.
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Method Protocol
Rank-1

Identification Rates

FUDAN-CS SDS [41] Small 25.56%

SphereFace [24] Small 47.55%

TNVP [8] Small 47.72%

Softmax Small 35.11%

A-Softmax Small 46.77%

OE-CNNs (single-patch) Small 52.67%

OE-CNNs (3-patch ensemble) Small 58.21%

Table 5. Performance comparisons of different approaches under the protocols of MF1 [15] on

FG-NET.

Method Protocol
Rank-1

Identification Rates

GRCCV Large 21.04%

NEC Large 29.29%

3DiVi Large 35.79%

GT-CMU-SYSU Large 38.21%

OE-CNNs (single-patch) Large 53.26%

Table 6. Performance comparisons of different approaches under the protocol of MF2 [27] on

FG-NET.

4.4 Experiments on the FG-NET Dataset

The FG-NET dataset consists of 1,002 pictures from 82 different identities, each iden-

tity has multiple face images with huge variability in the age covering from child to

elder. Following the evaluation protocols of Megaface challenge 1 (MF1) [15] and

Megaface challenge 2 (MF2) [27] we employ the 1 million images from Flickr as the

distractor set. Particularly, under the small protocol of MF1, we reduce our training

data to 0.5 million images from 12,073 identities in the training phase. The cross-age

face images in FG-NET servers as the probe set in which a probe image is compared

against each image from distractor set. We evaluate the rank-1 performance of the pre-

sented algorithm under the protocols of MF1 and MF2, as shown in Table 5 and Table

6, respectively.

Under the small protocol of MF1, the proposed method not only obtains a significant

performance improvement over Softmax and A-Softmax baseline but also surpasses

the existing methods (including a specific age-invariant method TNVP [8]) by a clear

margin. Under the protocol of MF2, all the algorithms need to be trained using the same

training dataset (which does not involve the cross-age training data) provided by MF2

organizer. It is encouraging to see that our algorithm also outperforms all other methods

with a large margin, which strongly proves the effectiveness of our algorithm on AIFR.
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Method Images Networks Acc.

General

Approaches

DeepFace [36] 4M 3 97.35%

FaceNet [32] 200M 1 99.65%

DeepID2+ [35] - 25 99.47%

Center Loss [43] 0.7M 1 99.28%

SphereFace [24] 0.5M 1 99.42%

Cross-Age

Approaches

LF-CNNs [42] 0.7M 1 99.10%

OE-CNNs 0.5M 1 99.35%

OE-CNNs 1.7M 1 99.47%

Table 7. Performance comparisons of different approaches on LFW.

4.5 Experiments on the LFW Dataset

LFW is a very famous benchmark for general face recognition. The dataset has 13,233

face images from 5,749 subjects acquiring from the arbitrary environment. We exper-

iment our algorithm on LFW following the official unrestricted with labeled outside

data protocol. We test our model on 6,000 face pairs. The training data are disjoint from

the testing data. Table 7 exhibits our results. One can see that the proposed OE-CNN

approach achieves comparable performance without any ensemble trick to the state-of-

the-art approaches, which demonstrates the excellent generalization ability of the pro-

posed approach. Additionally, after we expand the training dataset to 1.7M (including

CAF dataset), the performance of OE-CNNs further improves to 99.47%, which also

proves that our CAF dataset is not only valuable for AIFR but also helpful for GFR.

5 Conclusion

AIFR is a remained challenging computer vision task on account of the aging process of

the human. Inspired by pioneering work and the observation of hidden components, this

paper proposes a novel approach which separates deep face feature into the orthogonal

age-related component and identity-related component to improve AIFR. The highly

discriminative age-invariant features can be consequently extracted from a multi-task

deep CNN model based on the proposed approach. Furthermore, we build a large cross-

age celebrity dataset named CAF that is both noise-free and vast in the number of

images. As a part of training data, CAF greatly boosts the performance of the models for

AIFR. Extensive evaluations of several face aging datasets have been done to show the

effectiveness of our orthogonal embedding CNN (OE-CNN) approach. More studies on

how to incorporate the generative scheme and improve the discriminative scheme will

be explored in our future work to benefit the AIFR community.
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