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Abstract

In this work, we present a novel learning based approach

to reconstruct 3D faces from a single or multiple images.

Our method uses a simple yet powerful architecture based

on siamese neural networks that helps to extract relevant

features from each view while keeping the models small. In-

stead of minimizing multiple objectives, we propose to si-

multaneously learn the 3D shape and the individual camera

poses by using a single term loss based on the reprojection

error, which generalizes from one to multiple views. This al-

lows to globally optimize the whole scene without having to

tune any hyperparameters and to achieve low reprojection

errors, which are important for further texture generation.

Finally, we train our model on a large scale dataset with

more than 6,000 facial scans. We report competitive results

in 3DFAW 2019 challenge, showing the effectiveness of our

method.

1. Introduction

3D technology is present in many different fields nowa-

days. We can use it to reconstruct body limbs and create

personalised prosthesis, to autonomously navigate in indoor

and outdoor environments, or to unlock our phones using

our facial anatomy. However, most of the applications re-

quire specific hardware to obtain the 3D information about

the scene, for instance laser scanners or structured light sen-

sors, which are rarely present in most of the devices used

by the mainstream users. Being able to understand the envi-

ronment that we are surrounded by using only RGB data

from ubiquitous video cameras is a challenging problem

that could open a whole new range of possibilities.

Approaches based on deep neural networks [12, 6] have

been proposed for solving the task of single and multi-view

3D reconstruction. Despite being capable to encode much

more prior knowledge than classical techniques, and thus

reduce the number of images required, learning 3D recon-

struction from one or multiple images is a challenging prob-

lem. The scarcity of annotated 3D data is one of the main

concerns and it is usually addressed by learning from syn-

thetic data [14, 15, 16] or defining self-supervised losses

in the image domain [19, 15, 23]. Another common is-

sue in deep 3D reconstruction, is deciding which 3D data

representation is more suitable for a certain problem. Point

clouds [4], meshes [22], voxel grids [2] and 3DMM [20] are

some of the most used representations and they are a key de-

sign criterion. Finally, it is not trivial how to combine infor-

mation from multiple views in order to satisfy the geometric

constrains of the scene and generate better reconstructions

as the number of views increases. Recent approaches in-

troduce geometric inductive biases about the scene into the

architectures [10] and the losses [13], which constrain the

number of possible solutions and ease the learning process.

In this work, we describe a method that participated in

the 3DFAW 2019 challenge [8]. We propose an architec-

ture based on siamese neural networks for the task of 3D

face reconstruction from one or multiple images, with focus

on building a simple, modular and geometrically grounded

learning system. Our contributions are:

• A simple and modular architecture based on siamese

neural networks that allows learning both single view

and multi-view 3D reconstruction.

• A single-term reprojection loss that introduces multi-

view geometry to enforce consistency across multiple

views.

• The training of 3D reconstruction deep learning mod-

els completely supervised by a large scale dataset with

more than 6,000 ground truth scans, which allows the

comparison between supervised and self-supervised

methods.



2. State of the art

2.1. Single view

Methods that aim to predict 3D shapes from a single

image usually require stronger inductive biases than multi-

view ones. For this reason, it is common to combine

deep learning methods and 3D Morphable Models (3DMM)

[3], which embed the sub-space of possible solutions into

a lower dimensional one. In [14] and [15], a model is

trained on synthetic data to regress the shape parameters of a

3DMM. To generalize to real data, Iterative Error Feedback

(IEF) [1] is applied in the image domain, which is slow.

In order to speed up the process, [9] performs IEF in the

latent space. Other methods directly learn 3D reconstruc-

tion by defining losses in the image domain [19, 18, 15].

This greatly improves generalization and avoids the need of

using IEF. Nevertheless, since no 3D information is avail-

able, these methods require strong regularization in their

losses, penalizing large norms of the vectors that contain

the 3DMM parameters [20]. An alternative regularization

technique is the one proposed by [9], which uses an adver-

sarial loss to keep the distribution of the 3DMM parameters

plausible. Finally, [5] proposes an unsupervised method to

learn to regress 3DMM parameters by enforcing cycle con-

sistency, similarly to CycleGAN [25], and using a differen-

tiable renderer.

2.2. Multi-view

In contrast to single view methods, the multi-view ones

can leverage epipolar geometry to introduce more complex

biases into the architecture and into the losses. In [10], deep

image features are projected into a 3D volume, processed

using 3D convolution, and similarly to [24], a multi-view

loss is defined in the image domain by projecting the recon-

structed 3D geometry and comparing it against masks or

depth maps. In [23], the authors propose a simpler way to

combine 2D image features by concatenating them. Then,

a photometric consistency loss is defined across all views,

which is based on multi-view geometry and uses the same

differentiable renderer as [5].

Our work resembles to [23]. However, our architecture

is grounded on a single view model used as a siamese neu-

ral network, making it more flexible in case that frame by

frame predictions are required, for instance in augmented

reality (AR) applications. Moreover, we do not restrict the

multi-view features fusion to concatenation, but study other

ways to merge these cues. Finally, we define a single term

loss that has no hyperparameters and allows to obtain com-

petitive models faster, since tuning is not necessary.

3. Methodology

We formalize the problem of learning 3D reconstruc-

tion as finding the unknown mappings from a set of input

Figure 1: Single view architecture.

images {In}
N
n=1

to a 3D shape s ∈ R
3P , P being the

number of points, and to a set of camera poses {cn}
N
n=1

,

each one associated to an input image. We express each

camera pose as a 3x4 matrix cn = [R|t], R being the

rotation and tn = (tx, ty, tz) ∈ R
3 the spatial transla-

tion of each camera. We model R as a unit quaternion

q = (q0, q1, q2, q3) ∈ H1 to avoid the Gimbal lock ef-

fect, which is the loss of one degree of freedom in a three-

dimensional mechanism.

3.1. Single view setup

In the single view setup (N = 1), we define the three

mappings to be learnt as S , Q and T , which represent three

generic functions that map an input image towards a 3D

shape, a quaternion and a 3D point respectively. In order to

learn them, we make use of a simple architecture formed by

an encoder, responsible for extracting image features, and

three multilayer perceptrons that act as regressors for ŝ, q̂

and t̂, which are the outputs of the network. Figure 1 shows

a block diagram of the single view setup.

Note that, since we are using a linear model to represent

the 3D shape ŝ, the mapping S can be decomposed into two

sub-mappings: one that transforms the image to the shape

parameters α̂id of the 3DMM, and a second sub-mapping

that back-projects the shape parameters to the 3D shape ŝ.

This second mapping is linear and deterministic, and can be

expressed as:

ŝ = m+Φidα̂id, (1)

where m represents the mean of the 3DMM, and Φid

and α̂id are the identity basis and the predicted identity pa-

rameters respectively. So, effectively, S will only learn the

parameters necessary to map I to α̂id.

Learning deep models for single view 3D reconstruction

requires strong regularization, since no 3D information is

fed into the network. This is often translated on appending

multiple terms into the loss together with hyperparameters

that help to keep the norm of α̂id small [19]. In order to

avoid the use of hyperparameters, we make use of the loss

proposed in [13], which allows to simultaneously learn the

3D shape and the camera pose using a sole term expression.



Figure 2: Multi-view architecture.

3.2. Multi-view setup

Our multi-view architecture is composed of two main

blocks. The first is the previously described single view

architecture that works as a siamese neural network to pre-

dict individual camera poses cn and shape parameters α̂idn

for each view. Then, the N outputs of the shape parameters

are fed into a second block that combines them to obtain a

global 3D shape, which we call merge block M. The merge

block is generic and can be implemented with any opera-

tion that aggregates information. Finally, a MLP is used

to regress the shape parameters of the 3DMM that will be

linearly transformed into the 3D shape using the mapping

from Equation 1. We describe this architecture in Figure 2.

Using the single view architecture as the main building

block of the multi-view one has several advantages. First,

we can train the single view model and use the weights to

better initialize the training of the multi-view. The single

view model can also be used to predict the target poses that

later will be fed into the multi-view architecture. Finally,

most of the code can be re-used, avoiding potential bugs.

In order to enforce a global scene consistency in the

predictions, we define an objective that uses all the cam-

era poses and the predicted 3D shape within a single term,

which does not include any hyperparameter and is easy to

minimize, as proposed by [13]. Our loss is defined as the

sum of the reprojection errors across all the input views, as

in Bundle Adjustment [21], which is the Maximum Likeli-

hood estimator when the image error is zero-mean. Thus,

we aim to minimize the following term:

L =

V
∑

v=1

||P(qv, tv)(sH)− P(q̂v, t̂v)(ŝH)||2
2
, (2)

where sH is the 3D shape in homogeneous coordinates

and P projects any 3D shape s to the 2D image plane, ob-

taining s2D defined by:

s2D =

(

u′/w′

v′/w′

)

, (3)

with

(

u′v′w′
)T

= K[R(q)|t]sH , (4)

K being the calibration matrix.

4. Experiments

In this section, we evaluate the performance of the single

view and the multi-view models presented in Section 3. We

start by describing the dataset we built for training the mod-

els. Then, we detail our implementations and, finally, we

present the results obtained in the 3DFAW challenge 2019

[8].

4.1. Dataset

Current state of the art methods overcome the scarcity

of 3D data by learning from synthetic data [14, 15, 7] or

by defining losses in the image domain [19, 18, 15]. Un-

fortunately, the former ones suffer from poor generalization

and the later require strong regularization. In order to avoid

these issues, we built a large scale dataset with real images

and 3D facial scans.

Our dataset is formed by 6,528 individuals from differ-

ent gender, age and ethnicity. From each individual, we

capture the 3D facial geometry with neutral expression to-

gether with a set of images from different angles and the

corresponding camera poses. In average, we collect five

images per subject. The 3D geometry is acquired using the

Structure Sensor scanner from Occipital.

We normalize the data such that all the 3D heads are

aligned toward a reference template, which is centered at
�0 and facing towards -ẑ. We split the whole dataset into

70%, 10% and 20% for training, validation and testing re-

spectively. For data augmentation purposes, all the scenes

are fully symmetrized.

Finally, we create a 3DMM using the 3D data from the

training dataset. First of all, we register a template to each

scan in order to have the same topology. Then, the regis-

tered templates are aligned using Procrustes Analysis and

we apply Principal Component Analysis (PCA) to obtain

the identity basis Φid and the associated eigenvalues Λ,

which is the standard procedure.

4.2. Implementation details

As described in Section 3, our single view and multi-

view architectures are grounded on a module that processes

individual frames, as shown in Figure 1. We implement this

module using a VGG-16 image encoder [17] followed by

three multilayer perceptrons (MLP) with one hidden layer



of 256 units that regress α̂id, q̂ and t̂. We use 64 shape

model modes, which cover the 99% of the 3DMM variance.

This module is used for single view inference, an referred

as SV in the tables.

In order to create the multi-view architecture, we use the

single view model as a siamese neural network and we im-

plement the merge block M using addition and concate-

nation operations. The aggregated information is then pro-

cessed by another MLP with also one hidden layer and 256

units. We name these models MV Add and MV Concat, re-

spectively. Although our architecture could generalizes to

any N views, we implement a multi-view model by setting

N = 3: a frontal one and two laterals views.

All the models have been trained until convergence using

Adam optimizer [11] with a learning rate of 10−4 and batch

size of 32 samples on a NVIDIA RTX 2080 Ti. The training

process lasted 13h approximately.

4.3. Evaluation on the 3DFAW 2019 challenge

The proposed single view and multi-view models are

assessed on the 3DFAW 2019 challenge [8]. The data is

provided in two formats: videos taken with an iPhone, in

which the camera moves around the head of the subject,

and videos taken with a high resolution camera, in which

the camera is static and the subject moves the head to both

sides. The metric used to evaluate the 3D accuracy is the

Average Root Mean Square Error (ARMSE). We refer the

reader to 3DFAW for further details [8].

We use as baseline a model that always predicts the mean

of the 3DMM, which we call 3DMM Mean. In order to eval-

uate the single view model, we perform two different ex-

periments. The first one consists of predicting the 3D shape

using the most frontal frame. The second one performs in-

ference on all the frames and then the predictions are aver-

aged. These two models appear as SV Frontal and SV Mean

in Table 1. Regarding the multi-view setup, we evaluate the

two models described in sub-section 3.2, which are named

MV Add and MV Concat. The selection of the frontal and

the lateral views was automatically obtained by perform-

ing inference with the single view model and keeping only

those frames with estimated cameras closer to {−45, 0, 45}
degrees in the Y axis.

Finally, since our models are designed to estimate shape

and pose, we provide a fine-tuned architecture for the task

of only 3D shape prediction. We modify the MV Concat

model by removing the camera pose regressor. Moreover,

we add average pooling a the end of the VGG-16 encoder

and minimize the MSE error of the 3D shape ŝ against the

ground truth s. We name this last model as MV Shape-

Concat. Similarly to SV Mean, we can boost the perfor-

mance by averaging multiple predictions of the multi-view

model. The best performance was achieved by computing

the mean on five predictions, which we name MV Shape-

Model ARMSE (mm)

3DMM Mean 3.02

SV Frontal 2.62

SV Mean 2.51

MV Add 2.43

MV Concat 2.33

MV Shape-Concat 2.23

MV Shape-Concat Mean 2.14

Table 1: Performance comparison of the different models in

the 3DFAW 2019 challenge [8].

Concat Mean.

As it can be observed in Table 1, the accuracy of both

SV and MV models can be improved by averaging the indi-

viduals predictions. In the multi-view setup, using concate-

nation instead of addition provides better results. Finally,

using a specific network for the task of 3D shape regression

slightly improves the results, probably because the filters of

the encoder can specialize on those features that are more

relevant to 3D shape.

5. Conclusions

In this work, we presented a method for learning 3D face

reconstruction from a single or multiple images based on

siamese neural networks. Our models are simple, modu-

lar and, at the same time, capable to obtain highly accurate

models. The proposed optimization, based on a single term

loss, generates models that are both geometrically consis-

tent across all the 3D scene and does not require fine-tuning

any hyperparameter. However, it is not clear whether or not

unsupervised losses applied to 3D reconstruction could out-

perform supervised ones. This is an open question that we

leave for future work. Moreover, we empirically showed

how merging 3D information can be achieved by simply

concatenating the feature vectors extracted by standard en-

coders such as VGG-16 and that it provides better results

than using addition. Finally, using dedicated architectures

for the task of 3D shape prediction also provides small gains

in accuracy. The design of architectures capable of pro-

cessing multiple input views and that efficiently extract and

merge the 3D information remains a major challenge which

we will continue to explore.
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