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Abstract

This paper introduces our submission to the 2nd 3DFAW

Challenge. To get a high-accuracy 3D dense face shape

based on 2D videos or multiple images, a framework which

consists of multi-reconstruction branches and a mesh re-

trieval module, is proposed to effectively utilize the informa-

tion of all frames and the results predicted by all branches.

The recent state-of-the-art methods based on single-view

and multi-view are introduced to form an ensemble of in-

dependent regression networks. The candidate 3D shape

of each branch is synthesized by weighted linear combina-

tion of the results on all frames to boost the depth estima-

tion and invisible regions reconstruction. Finally, the best

fitting mesh is retrieved according to the distance between

the synthesized texture and the ground truth texture. Exper-

iment results show that our approach obtains competitive

results near the accuracy of ”pseudo” ground truths, and

achieves superior performance over most of submissions by

other teams in the testing phases.

1. Introduction

Face alignment is critical to face analysis applications,

such as face identification [2, 29], face tracking [25], and

face synthesis [8, 6, 13]. Compared with 2D face align-

ment methods [24, 18, 14, 23], 3D face alignment is more

robust to variation of occlusions and out-of-plane rotations,

and has stronger representational power for describing face

shapes [20, 27, 5, 19]. 3D face alignment and reconstruc-

tion have made rapid advances in recent years, especially

after the utilization of deep convolution neural networks

(CNN) for solving the problem [5, 1, 27, 7, 21]. Previous

approaches can be divided into two categories according to

input data type, the methods based on single-view and the

methods based on multi-view. Due to space constrains, we

mainly focus on the recently proposed methods related with

our work from the above two categories, then discuss their

advantages and drawbacks, respectively.

3DDFA [28] stacks a 2D image and projected normal-

ized coordinate codes (PNCC) as the input of a cascaded

CNN network to regress the 3D Morphable Model (3DMM)

[3] parameters iteratively. Besides of 3DMM parameters,

landmark heatmaps are also used as the representation for

regressing 3D face shapes [4, 5]. [4] builds a two-stage con-

volutional part heatmap regression for 3D face alignment,

and ranks first in the 1st 3DFAW Challenge [10]. PRNet

[7] introduces a light-weighted encoder-decoder network to

solve the problems of face alignment and 3D face recon-

struction together from a single 2D facial image. Tu et al.

[19] take the sparse 2D facial landmarks as additional in-

formation to to substantially improve 3D face model from

an single image. These methods using CNN have shown

their remarkable progress of obtaining 3D facial shapes

compared with traditional regressors. However, recover-

ing 3D facial parameters from a single view always suffers

from the lack of reliable depth information, and it is not ro-

bust enough to handle difficult scenarios caused by extreme

poses, facial expressions and complex lighting conditions.

The approach of [6] deploys a displaced dynamic expres-

sion regression to reconstruct a performance-driven face

shape based a single video without user-specific calibration.

Jeni et al. [9] utilize a fast cascade regression framework,

in which the facial landmarks on all frames are consistent

across all poses, to enable real-time person-independent 3D

registration from a 2D video. [16] proposes a method that

selects the most plausible reconstructions according to their

visual qualities, operates on different region of the face sep-

arately, and merges them into a single 3D face. MVF-Net

[22] learns features from three-view face images by a shared
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Figure 1. The overview of our proposed framework.

weight CNN, and then concatenates the features by mini-

mizing the photometric reprojection error between different

views to regress the 3DMM parameters for the face. The

work [26] proposes a deep neural network that predicts the

intermediate representation of the deep appearance model

(DAM) from a single image and its self-supervised domain

adaptation method, thus enabling facial reconstruction from

a monocular video. The methods based on multi-view have

the advantage of utilizing multi-view geometric constraints

and thus are more robust to the wild face images compared

with the methods based on single-view. However, only a

single type of representation is used by these methods, e.g.,

3DMM parameters, vertex positions, or DAMs, it is not suf-

ficient for describing the 3D face shapes comprehensively in

complex environments.

In this paper, we propose a novel framework which con-

sists of multi-reconstruction branches and a mesh retrieval

module (see Figure 1), to overcome the representing lim-

itation of previous single-reconstruction methods and en-

hance the accuracy of 3D shape reconstruction from 2D

videos. The recent state-of-the-art 3D face networks which

have shown their advantages based on a single image or a

small amount of images, are introduced to form the ensem-

ble of independent regression branches. In each branch, the

meshes of all frames are reconstructed individually, then

the candidate 3D shape is synthesized by weighted linear

combination. This step helps reduce the errors of depth es-

timation and invisible regions reconstruction under a sin-

gle camera view. At last, the best fitting mesh is retrieved

according to the distance between the synthesized texture

and the ground truth texture of the real 2D face image. To

evaluate our algorithm, we implement different settings of

our method to make a complete analysis. Extensive experi-

ments show that our approach is able to obtain competitive

results near the best theoretical predictions, which are re-

constructed by the external 3DMM model and the ground

truth 3D sparse landmarks. In the testing phases of the 2nd

3DFAW challenge [11], our method also achieves superior

performance over most of submissions by other participat-

ing teams.

To summarize, in this work we make the following main

contributions: 1) A novel framework consisting of multi-

reconstruction branches and a mesh retrieval module is pre-

sented to handle 3D face reconstruction from 2D videos. 2)

We conduct comprehensive experiments on 3DFAW-Video

dataset to evaluate our method, and our approach performs

very well on solving the 3D face alignment and reconstruc-

tion problem from 2D videos.

2. Our Method

In this section, we first review the goal of 3DMM Recon-

struction from 2D images and videos. Then we introduce

the detail of the multi-reconstruction branches and the com-

bination formulations of multiple frames for each branch.

At last, we discuss how to retrieve the best fitting mesh ac-

cording to the outputs of different branches.

2.1. 3D Model

The geometry of a 3D face is denoted as a shape vector

S ∈ ℜ3×n with total n vertices. A common assumption

is that a new shape of 3D face can be modeled by 3DMM

[3] with a linear combination of the average shape and the

principal components:

S = S̄+αidAid +αexpAexp, (1)

where S̄ is the average shape, αid and αexp are the coef-

ficients of the identity and expression eigenvectors, respec-

tively, A is the principal component.

Given the 3DMM model parameter ζ = {S̄,Aid,Aexp},

the sparse 2D shape s ∈ ℜ2×l with l landmarks on the

static image I , the goal of 3D reconstruction is to estimate

the intrinsic camera parameters A ∈ ℜ3×3, rotation matrix



R ∈ ℜ3×3, translation vector t ∈ ℜ3×1, and the face pa-

rameter Φ = {αid,αexp}. To find Φ and the projection

parameter Ω = {A,R, t} that best fits the 3D face model

to the 2D landmarks, the following nonlinear least squares

optimization problem can be solved by:
[

Ω̂, Φ̂
]

= min
Ω,Φ

‖f(Ω,Φ)− s)‖
2
,

f = f1 ◦ f2,

f1(Ω,Φ) = [A(RS+T)]sparse,

f2(S) =

[

S
⊤
1
⊘ S

⊤
3

S
⊤
2
⊘ S

⊤
3

]

,

(2)

where T = [t, t, ...] ∈ ℜ3×n consists of n copies of t, the

subscript sparse means that only the sparse 3D vertices cor-

responding with s are selected, f projects the 3D vertices

into the coordinate space of I , ⊘ denotes element-wise di-

vision, Si is the ith row vector.

The 3DFAW challenge only uses the face mesh recon-

structed from a 2D video ν = {I1, I2, ..., IK} with K

frames while excluding each projection parameter Ωk on

each frame for submission, so the solution of face recon-

struction based on multiple frames can be formulated as:

Φ̂ = min
Φ

K
∑

k=1

‖f(Ωk,Φ)− sk)‖
2
. (3)

2.2. Multi-Reconstruction Branches

Figure 1 shows the flowchart of three reconstruction

branches, B3D, BP , BM , they are built on the recent suc-

cessful 3D face alignment networks, 3DDFA [28], PRNet

[7] and MVF-Net [22] respectively. Given the video ν,

the multi-reconstruction branches regress face meshes in-

dependently. They have different structures with different

representations of 3D face shapes. B3D deploys an unified

CNN structure across the cascade to regress the 3DMM pa-

rameter Θk
3D =

[

Ω
k
3D,Φk

3D

]

from the input of each single

frame Ik. BP uses an encoder-decoder structure to generate

a UV position map from Ik, and the map can be converted

directly to the 3D face shape Sk
P . BM takes a triplet T con-

sisting of a front, left, and right view frame as its input. For

the current frame Ik, two frames with the other views are

randomly selected from ν to construct the triplet Tk. Three

features are extracted from a shared weight CNN separately,

and they are concatenated together to regress the 3D shape

Θ
k
M =

[

Ω
k
M ,Φk

M

]

.

2.3. Fusion of Multi-frame Parameters

Three sets of 3D face shapes, Γ3D = {Θ1

3D, ...,ΘK
3D},

ΓP = {S1

P , ...,S
K
P }, ΓM = {Θ1

M , ...,ΘK
M} are predicted

by the the multi-reconstruction branches separately. For the

shape set of each branch, all the elements are weighted lin-

ear combined together to form an optimal overall solution

to improve the quality of face reconstruction.

For the sets Γ3D and ΓM , only identity parameters are

utilized to fuse the optimal face shape for the input video ν:

S3D = S̄+

∑K

k=1
ωk
3D,idα

k
3D,id

∑K

k=1
ωk
3D,id

A3D,id, (4)

SM = S̄+

∑K

k=1
ωk
M,idα

k
M,id

∑K

k=1
ωk
M,id

AM,id, (5)

where ωid represents the weight value for identity coeffi-

cients. For Γ3D, the weight value is inversely proportional

to the absolute value of the facial yaw angle, because the re-

construction shape becomes less accurate on a single frame

as the facial pose increases. For ΓM based on multi-view

frames, their weight values are all set to 1.

For the set ΓP , all the shapes are firstly rotated to the

frontal view and aligned to the reference shape, and then

fused to one shape with the weights:

SP =

∑K

k=1
ωk
PS

k
P

∑K

k=1
ωk
P

, (6)

where the value of ωk
P is also inversely proportional to the

absolute value of facial yaw angle on Ik.

2.4. Mesh Retrieval
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Figure 2. The diagram of the mesh retrieval module.

After the fused meshes S3D, SP , and SM are obtained

by the multi-reconstruction branches, inspired by [22], we

derive a weighted photo distance in the mesh retrieval mod-

ule to select the best fitting face shape as the final result. As

shown in Figure 2, according to the annotated 51 2D facial

landmarks s, the projection matrix Ωc is estimated between

the candidate shape Sc ∈ {S3D,SP ,SM} and the real 2D

frontal frame Ir. For each branch, the synthesized image

Is is reconstructed by Sc, and its corresponding UV texture

map Tc which is the weighted mean of the UV texture maps

of all frames, and the weighted mask W . The pixel values

of W follow the setting of [7]. We assume that the optical



3D mesh has the best photometric consistency between Ir
and Is. The weighted photo distance is defined as:

D =

W−1
∑

u=0

H−1
∑

v=0

‖Ir (u, v)− Is (u, v)‖ Iw (u, v) , (7)

where Ir, Is and Iw are the input frontal face, the synthe-

sized face and facial mask image respectively, they have the

same width W and height H . The mesh with the minimum

distance is selected as the final reconstruction result of ν.

3. Experiments

3.1. Datasets

Training Datasets. The 300W-LP dataset [28], which

contains over 60,000 images across different identities,

poses and expressions with fitted 3DMM parameters, is

used for training the models based on the proposed frame-

work.

Evaluation Datasets. Our method is evaluated on the

3DFAW-Video dataset, which consists of a large corpora

of profile-to-profile face videos annotated with correspond-

ing high-resolution 3D ground truth meshes. It is divided

into the training, validation and testing sets. The training

set contains 26 subjects with neutral expression and avail-

able ground-truth 3D meshes. Each subject contains two

videos, a high-definition in-the-lab video, and an uncon-

strained video captured from an iPhone device. The vali-

dation and testing sets contain 14 and 26 subjects respec-

tively. Contrast to the training set, only one type video, the

in-the-lab or the unconstrained video is provided for each

subject. For each video, a frame with frontal face is an-

notated with 51 facial landmarks, which are extracted from

the standard 68 dlib [12] landmarks. The qualities of recon-

structed meshes in this challenge are evaluated by using the

metric of Average Root Mean Square Error (ARMSE).

3.2. Implementation Details

For the branch training of B3D , we select MobileNetV2

[17] as the backbone network. The weight of the loss for

regressing identity parameters is set to 3, while the weight

of the loss for learning expression parameters is set to 1,

it makes the model training pay more attentions on shape

parameters regression. For optimization, we use SGD opti-

mizer with a learning rate begins at 0.001 and decays half

after each 10 epoches. The batch size is set to 512 and the

total epoch is set to 50. As for the branches BP and BM ,

their initial public released models are used directly for the

subsequent parameter fusion and mesh retrieval.

3.3. Experimental Results

We first conduct a series of experiments on the train-

ing set to demonstrate the effectiveness of the multi-

Method
w/o Fusion w Fusion

HiRes iPhone HiRes iPhone

B3D 2.24 2.28 2.22 2.23
BP 2.25 2.47 2.04 2.18
BM 2.32 2.32 2.24 2.26
Our Method - - 1.89 2.02

Table 1. The ARMSE comparison of different settings based our

method on the training dataset of 3DFAW-Video.

Method B3D BP BM Our Method

ARMSE 2.28 2.02 2.33 1.86

Table 2. The ARMSE comparison on the testing dataset of

3DFAW-Video.

reconstruction branches and the mesh retrieval module. Ta-

ble 1 lists the comparison of our models with different set-

tings on the training set. It is noted that the fusion method

based on multi-view performs much better than the method

based on single-frame, and the mesh retrieval module sig-

nificantly improves the reconstruction accuracy compared

with the single-branch methods.

In the training set, 51 sparse 3D landmarks of each sub-

ject can be extracted from the ground truth mesh. So the

maximum reconstruction accuracy of the methods based on

external 3D models can be approximated by the ”pseudo”

ground truth meshes which are reconstructed based on the

sparse landmarks and the BFM model [15]. These meshes

are evaluated and get the ARMSE of 1.76. It shows that our

method on the in-the-lab videos is able to obtain a competi-

tive performance (ARMSE = 1.89) near the best theoretical

results.

At last, we submit the results predicted by our method on

the testing dataset. Table 2 shows the performance achieved

by our methods with different settings. The ARMSE of 1.86

outperforms most of the results submitted by other teams.

4. Conclusion

This paper introduces the submission to the 2nd 3DFAW

Challenge. The multi-reconstruction branches and the mesh

retrieval module are presented to integrate the advantages

of some recent 3D alignment methods with different fea-

ture representations and enhance the robustness of 3D face

reconstruction from 2D videos. The experiments on the

dataset of 3DFAW-Video show the significant performance

of our method.
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