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Abstract

The objective of our work is to reconstruct 3D object in-

stances from a single RGB image of a cluttered scene. 3D

object instance reconstruction is an ill-posed problem due

to the presence of heavily occluded and truncated objects,

and self-occlusions that lead to substantial regions of un-

seen areas. Previous works for 3D reconstruction take clues

from object silhouettes to carve reconstructed outputs. In

this paper, we explore two ways to include silhouette learn-

able in the network for 3D instance reconstruction from a

single cluttered scene image. To this end, in the first ap-

proach, we automatically generate instance-specific silhou-

ettes that are compactly encoded within our network design

and used to improve the reconstructed 3D shapes; in the

second approach, we find an efficient design to regularize

object reconstruction explicitly. Experimental results on the

SUNCG dataset show that our methods have better perfor-

mance than the state-of-the-art.

1. Introduction

3D shape and pose estimation for 2D object instances is

a fundamental tool for scene reasoning. Such a deep under-

standing about visual content can greatly help in applica-

tions such as robotics and augmented reality. Specifically,

accurate 3D estimation is essential for problems like ob-

ject grasping, navigation, and content augmentation. De-

spite recent attempts, this important problem is far from be-

ing solved and significant improvements in accuracy are re-

quired for 3D shape and pose estimation in cluttered scenes.

A recent research work named Factored3D [23] takes

a single view of a cluttered scene and estimates the 3D

shape and pose of instances without any supervision from

the 2D scene structure. This approach factorizes room lay-

out estimation and 3D instance reconstruction into two dis-

crete steps to reduce the task complexity. However, it does

not consider 2D structure constraints, such as an instance

silhouette, that encompasses valuable shape information.

Kundu et al. [9] uses a 2D silhouette constraint explicitly by

a render-and-compare 3D-CAD model driven approach for

Figure 1: Overview of our work. Given a single cluttered

RGB scene image, our goal is to estimate 3D object instance

shape and pose. In this work, we emphasize the impor-

tance of silhouette for 3D instance reconstruction and have

explored two ways, namely, implicit and explicit ones as

briefly illustrated in (a). To visualize the estimation output,

we represent 3D object shapes by a volume grid, the size

of each voxel illustrates the probability of occupancy. Our

approaches is able to reconstruct compact and accurate 3D

representations of the 2D object instances even from real

images, one example shown in (b). (see row 1, Fig. 6 for

detailed comparison). Best seen in color and high resolu-

tion.

3D instance reconstruction. However, in an indoor scene

scenario, extension of this method requires a much larger

generalized CAD model space that is prohibitive to develop.

In this work, we explore two ways to include silhouette as a

2D structure cue in our deep network. In the first approach,

we present a method to efficiently generate an instance-level

silhouette and implicitly include it in our network. Our

approach also avoids the additional computation required

for rendering the silhouette during inference time. While

the use of an instance silhouette is intuitive, the acquisi-

tion of silhouette annotations at large-scale is non-trivial.



For scene instance segmentation annotation, the typical ap-

proach (e.g., [32, 16]) is to use human annotation acquired

from crowd-sourcing platforms, e.g. Amazon Mechanical

Turk service. However, this is an expensive process and

may not be precise due to human perceptual bias. Here,

we propose a way to generate instance-level amodal sil-

houettes automatically at a large-scale. It requires no hu-

man intervention and is precise. In the second approach,

we propose an efficient method to explicitly regularize 2D

structure of object instance through perspective silhouette

projection without much memory and computation cost (in

contrast to techniques like z-buffer). With our predefined

single-object-only scene volume, we can generate the per-

spective silhouette projection efficiently and make it differ-

entiable to regularize object shape and pose parameters.

Our work has four contributions: (1) We propose an ap-

proach to model the silhouette as a latent feature to ensure

correct 2D projection of a 3D shape implicitly. The sil-

houette is only required at training time, not inference time

and does not require manual labeling. (2) We also propose

another approach to regularize 3D reconstruction explicitly

through perspective silhouette projection and make it dif-

ferentiable. (3) Experimental results show that both of our

methods reduce 3D shape uncertainty as well as improving

pose estimation accuracy.

2. Related Work

3D Indoor Scene Understanding. The goal of indoor

scene understanding is to estimate the type of scene, cate-

gory and location of objects, and the relationship between

them [29, 14, 31, 7]. Previous works explore 3D indoor

scene understanding by dealing with problems of depth or

surface normal estimation [11, 3, 2, 13], 3D object detec-

tion [17, 5, 8, 18, 33, 12, 25], and 3D holistic scene un-

derstanding (joint object detection, room layout and camera

pose estimation) [6]. In summary, the estimation of struc-

ture and arrangement of scene elements are critical prob-

lems for indoor scene understanding. After we obtain 3D

instance shape and pose, the 3D object bounding box, depth

and layout are easy to obtain. Further, since 3D object size

and pose represent the location and geometry of a 3D ob-

ject instance, support relations could also be inferred easily.

Therefore, 3D object instance reconstruction is a key basis

for 3D indoor scene understanding.

Single-Object Image Reconstruction. A single-object

image means there exists only one object in the image.

This scenario contains no object truncation or occlusion.

One solution is to consider photo-consistency from different

views, like traditional Space-carving method [10], or learn-

ing methods [15]. Smith et al. [15] propose to sculpt an

object via the learning-based estimation of multi-view high

resolution depth and silhouette. Other methods [24, 22, 26]

use differentiable projection from new view prediction to

(a) Zoomed in 3D object shape

visualization.

(b) 3D objects visualization

from a cluttered scene.

Figure 2: 3D object shape visualization. The first row is the

ground-truth, second row is the prediction from [23]. The

level of blur shows the uncertainty of a shape region.

learn 3D single-object shape. However, in a single-object

instance scene, an instance is centered and well posed,

therefore generating a multi-view silhouette is easy through

enumerating azimuth, and elevation angles. In contrast, in

a cluttered scene, the object instances has a large pose vari-

ations with each other, and visibility of object parts can not

maintain through multiple view points due to the object oc-

clusion and truncation. Therefore obtaining a ground-truth

multi-view object silhouette or novel viewpoint prediction

is not easy for one object in a cluttered scene. To address

this problem, we propose a 2D silhouette in a constrained

way of single view. Another category of learning based

methods propose category-specific reconstruction by using

a generative adversarial network [28], or an auto-encoder

[20, 27, 21]. However, these methods learn separate models

for different object categories.

3. Our Approach

To reconstruct a 3D object instance from a single clut-

tered scene image, we emphasize the importance of 2D sil-

houette structure. In this work, we propose two distinct ap-

proaches to incorporate silhouette information in the shape

and pose estimation pipeline. The first approach is to ap-

pend the silhouette representation as a latent feature to im-

plicitly reduce uncertainty for 3D shape estimation and si-

multaneously improve pose estimation. The second ap-

proach is to obtain the silhouette from the estimated 3D ob-

ject’s shape and pose and explicitly enforce its conformity

with the ground-truth silhouette projection in the scene and

make it differentiable. Below, we sequentially explain both

these approaches.

Notation. Our goal is to reconstruct 3D object instances



Figure 3: Cluttered scene image with color-coded amodal silhouette. Color is only for instance illustration.

from cluttered scene images. We represent 3D object shape

as a volume V in a canonical coordinate system, and trans-

formation pose for the scene as parameters of rotation (as a

quaternion) q, translation t, and scale s, following the nota-

tion of [23].

3.1. Implicit Silhouette

This approach implicitly incorporates the instance-based

silhouette information for 3D reconstruction. Firstly, we

illustrate the process of amodal1 silhouette generation in

Sec. 3.1.1. Secondly, we explain the procedure to incor-

porate instance-centred silhouette in the network. Then, we

illustrate the whole network architecture and our training

strategy.

3.1.1 Instance-level Amodal Silhouette Generation

The common way to generate an exact instance-level sil-

houette from a multi-object scene is via manual annotations

from humans. However, this approach is not scalable and

highly expensive. Also, for a cluttered scene image, hu-

man annotation cannot deal with the problem of amodal

silhouette generation. Human annotators cannot annotate

silhouette accurately due to object occlusion. We propose a

simple approach to automatically generate a large number

of amodal silhouette images for a variety of indoor objects.

Here, we take advantage of a large-scale synthetic dataset

of indoor scenes, SUNCG, with abundant 3D annotations.

For each cluttered scene image, this dataset has instance-

level CAD models and relative poses, thanks to the Plan-

ner5D platform which is an online interior design interface

[1]. Then, we obtain an amodal silhouette image for each

object instance using the renderer Blender. Specifically,

for each object instance in a training image, we have its

corresponding CAD model and relative pose, that is used

to obtain the amodal instance-specific silhouette image by

rendering the instance separately. We use the same cam-

1Amodal is a perception psychology term, defines the perception of the

whole of a physical structure when only parts of it are visible.

era intrinsic and extrinsic parameters as [30]. Examples of

rendered instance-level amodal silhouettes are shown with

color-coded masks in Fig. 3.

3.1.2 Instance-centered Silhouette

A 3D object shape cannot be sculptured precisely based

only on the high-level features of deep CNNs (e.g., Region-

of-Interest (ROI) pooling features in [23]). We emphasize

that such features encapsulate more global details about a

shape and lack fine-grained details that specify the local

structure of a 3D shape. This can be evidenced by visual-

izing the volume grid where each element shows the prob-

ability of occupancy, and the more blurry a surface area is,

the more uncertain the shape. Our analysis of the output

from [23] shows surface areas of predicted 3D object shape

from ROI pooling features are blurry, as shown in Fig. 2.

Alternatively, we propose to use silhouette constraints to

enhance the local shape details necessary for accurate in-

stance reconstruction. Specifically, we propose a silhouette

feature estimation network to calculate the 2D object sil-

houette and incorporate it in an end-to-end trainable net-

work. As a rendered instance-level silhouette image from

the cluttered scene is not instance-centered, we propose to

add a specialized silhouette branch after the ROI pooling

layer. Hence, the amodal silhouette is cropped by the in-

stance bounding box to align it with an object instance ap-

propriately.

3.1.3 Network Architecture

The complete network architecture is illustrated in Fig. 4.

The whole model comprises of five main parts: (a) Global

and local feature extraction, (b) Instance-centered feature

extraction, (c) Implicit silhouette estimation and encoding,

(d) Bounding box encoding, (e) Shape and pose prediction.

Overall, our architecture concatenates features of global,

ROI, silhouette, and bounding boxes to form a latent feature

space. This latent space is then used to predict the 3D shape



Figure 4: The whole network architecture of our work. Input is a single cluttered scene RGB image. Orange branch for

instance-centered implicit silhouette estimation and encoding. Blue branch is for Instance-centered feature extraction. Green

branch is for bounding boxes encoder. Yellow branch for coarse feature extraction. All the above features are concatenated

to a latent feature space. Then shape and pose predictors estimate 3D instance shape and pose separately. Gray branch for

explicit silhouette projection generation. Best seen in color.

and pose of each instance. Below, we outline the compo-

nents of our proposed approach that are key to our contribu-

tions. Other components follow our baseline network [23]

and please refer their paper for details.

Silhouette estimation and encoding. Based on the ROI

pooled instance-centered features, we first estimate a 2D

object structure using a silhouette estimator network and

then compactly represent it using an encoder stage. The sil-

houette estimator can be understood as a decoder (or a gen-

erator) that contains one layer of 2D up-convolution, one

layer of 2D convolution and one sigmoid layer towards the

end. It generates an instance-centered silhouette sil. In the

next stage, the silhouette encoder projects the estimated sil-

houette to a latent silhouette feature. Specifically, the en-

coder consists of two convolution and two 300-unit fully-

connected layers.

3.1.4 Two Stage Training

We train our proposed network in two stages. The first

stage is for training the silhouette estimator with instance-

centered silhouette loss. The second is for training four fea-

ture branches, as shown in Fig. 4 with instance shape and

pose losses, silhouette estimation and encoder trained to-

gether with the other parts. For 3D instance shape and pose

output, we follow the object shape normalization and rela-

tive pose configuration in [23]. The objective functions used

for the training are also elaborated below.

Silhouette Estimation Loss: The silhouette image is bi-

nary, so we compare the performance using binary cross en-

tropy loss (BCE, Eq. 1) and mean square loss (MSE, Eq. 2)

between the predicted instance-centered silhouette and the

ground-truth. These two losses are given by:

Lsil bce =
1

N
i

(si log(ŝi) + (1− si) log(1− ŝi)) (1)

Lsil mse =
1

N
i

(si − ŝi)
2

(2)

where s is the ground-truth instance-centered silhouette,

and ŝ is the estimated silhouette, N is the number of pixels

in s.

3D shape Loss: 3D shape is the voxel representation

V = {vi}, where vi ∈ {0, 1}. v̂i is the predicted voxel oc-

cupancy probability for the voxel at location. We use voxel-

level Cross Entropy loss Eq. 3 to learn this representation.

LV =
1

N
i

(vi log v̂i + (1− vi) log(1− v̂i)). (3)

3D Pose Loss: The pose loss comprises of three terms

that are described below:

� Rotation. Our objective function for rotation is the

negative log-likelihood (Eq. 4) computed using the

predicted probability of the ground-truth class q̂g . q̂

is the predicted probability over all 24-bin classes,

Lq = − log(q̂g). (4)

� Scale. We use squared Euclidean distance, Eq. 5,

between predicted scale values ŝ and ground-truth s.

This distance is calculated in logarithmic space to re-

duce the influence of magnitude.

Ls = �log(s)− log(ŝ)�2
2

(5)



� Translation. The translation loss is represented in

terms of Euclidean loss (Eq. 6) between prediction t̂

and ground-truth t.

Lt = t− t̂
2

2
. (6)

Two Stage Training: We train the silhouette branch
with silhouette estimation loss first, and then train the sil-
houette estimator and encoder with all other modules using
weighted 3D shape and pose losses together.

L =
b∈B+

wV LV + wqLq + wsLs + wtLt − ln(f)

+
b∈B−

ln(1− f). (7)

where wV , wq, ws, wt are the weights for corresponding

loss functions, B+,B− denote the set of positive and neg-

ative object bounding boxes respectively. Details are pro-

vided in experimental section.

3.2. Explicit Silhouette Projection

As an alternative to implicit silhouette estimation, we

propose explicit silhouette projection to improve 3D ob-

ject shape and pose estimation. The main idea is that the

perspective projection of predicted 3D object should be as

similar to the ground-truth projection as possible. With this

insight, we propose an explicit perspective silhouette pro-

jection loss for our task. To this end, for each object in-

stance, we obtain its perspective silhouette projection di-

rectly from it’s 3D shape and pose parameters and make

it differentiable. We use the loss given in Eq. 10 and 11

to minimize the reprojection error and regularize shape and

pose parameter estimations. We explain this process below.

Instance-level Perspective Silhouette Projection Gen-

eration: To generate instance perspective silhouette pro-

jection p, we use the 3D object instance shape V and pose

parameters q, s, t. Specifically, since the predicted 3D ob-

ject pose denotes the transformation parameters for the ob-

ject from canonical coordinates to camera coordinates, we

can obtain the single-object-only 3D scene volume in cam-

era coordinates through 3D transformation of object from

canonical coordinate with the shape and pose parameters.

Specifically, we use a predefined scene volume V s with di-

mensions height, width and depth as 32∗64∗64. ps denotes

3D point coordinate for one occupied voxel V s
ijk in V s. We

can obtain single object coordinates {psi} in the scene from

3D transformation of points {pci} in the canonical coordi-

nate by Eq. 8.

p
s =

Rq ∗ diag(s) t

0
T 1

p
c
, (8)

where 0 is a three-zero-elements vector, Rq is the rotation

matrix from quaternion q, and diag(s) is the diagonal ma-

trix with elements s.

Subsequently, we propose to take advantage of max

pooling to calculate the perspective silhouette projection

and make this process differentiable for shape and pose pa-

rameters regularization. This is through max pooling along

the depth dimension of scene volume V s in Eq. 9. This

procedure is illustrated in the gray branch of Fig. 4.

s = max
d

V s
hwd. (9)

Projection Loss: Similar to the implicit silhouette sec-

tion, here we use binary cross entropy loss Eq. 10 and mean

square error loss Eq. 11,

Lproj bce =
1

N
i

si log ŝi + (1− si) log(1− ŝi), (10)

Lproj mse =
1

N
i

(si − ŝi)
2
, (11)

where ŝ is the silhouette generated from the predicted shape

and pose V c, q, t, s.

Training: We train each projection loss Eq. 10 and 11
with shape loss Eq. 3 and pose losses Eq. 4, 5, and 6 in a
single stage manner.

L =
b∈B+

wV LV + wqLq + wsLs + wtLt + wprojLproj

− ln(f) +
b∈B−

ln(1− f). (12)

Hyper-parameter details are provided in experimental sec-

tion.

4. Experiments

Here we comprehensively evaluate our proposed implicit

and explicit silhouette techniques and compare it with the

state-of-the-art method Factored3d [23] on both synthetic

and real data. Our datasets for 3D object reconstruction

reflect real-world conditions such as cluttered scenes, oc-

clusions and small objects. We evaluate our approach us-

ing some different metrics (following [23]) since 3D ob-

ject reconstruction from a cluttered single scene image is

a compounded problem that involves both 3D object shape

and pose estimation. Our qualitative and quantitative results

show that overall our proposed method outperforms the re-

cent Factored3d [23]. We provide an in-depth ablation study

in Sec. 4.3 to justify various design choices considered in

our proposed approach.

4.1. Dataset

SUNCG [19]: For our experiments, we use SUNCG,

a large-scale synthetic dataset. This dataset contains clut-

tered indoor scenes and large pose and shape variations that

make 3D object shape and pose estimation difficult from



Figure 5: Visualization of 3D reconstruction with ground-truth bounding boxes on the SUNCG test dataset. Each row is one

comparison between our work and [23]. Our predicted shape has lower uncertainty around object surface areas. Instance

color is only to distinguish between object instances.

single RGB images. The RGB images belonging to clut-

tered scenes are rendered by a photo-realistic renderer pro-

posed in [30]. For each object in a cluttered scene, we can

obtain voxel-based 3D object shape in a canonical coor-

dinate system and pose parameters relative to the camera

coordinate system. The camera calibration parameters are

fixed as [30] for simplicity. In the SUNCG dataset, there

are 45,622 scenes with over 5M instances of 2,644 unique

objects belonging to 84 object categories. Here, we select 6

categories of common 3D indoor scene objects (television,

desk, sofa, table, bed, chair) similar to [23] to make a fair

comparison. We use the split setting of [23], which ran-

domly divides the dataset into training, validation and test

sets with a ratio of 70%:10%:20%, respectively.

NYU depth v2 [14]: To clarify our works generality to

real world scenarios, we analyze our network’s inference

ability on the NYU depth v2 dataset. This dataset contains

1449 real world indoor scene images. Thanks to Guo [4],

we can use their 3D surface mesh annotation to obtain the

ground truth of 3D object instances. Basically, we show

qualitative and quantitative results on the NYU depth v2

dataset, based on the models trained only on the SUNCG

training set.

Evaluation Metrics Tulsiani et al. [23] propose several

quantitative evaluation metrics for the task of 3D object in-

stance reconstruction from a single image. They aim to

make a comprehensive study of 2D object detection, and

3D object shape and pose estimation. However, they use

some loose thresholds (δV , δq, δt, δs). (Please refer to [23]

for details.) So we incorporate more strict thresholds along-

side their original ones to show our generalizability.

Implementation Details Hyper-parameter For hyper-

parameters of shape and pose loss weights wV , wq, ws, wt,

we follow [23], namely (10, 1, 1, 1). For the perspective

projection loss weight, we choose wp = 1. Training Basi-

cally, we use ground trugh object bounding boxes and ob-

ject proposals [34] to train the 2D object detection part as

[23]. For the implicit silhouette, we train silhouette esti-

mation based on ground truth bounding boxes with 1 epoch,

then fine tune the model on object proposals with 1 epoch.

Then we train the silhouette encoder together with object

shape and pose with ground truth bounding boxes with 1

epoch and object proposals with 4 epochs. For the explicit

silhouette, to make fair comparison with implicit silhouette

encoding, we train the combined losses in the same man-

ner, namely, 1 epoch with ground truth bounding boxes and

4 epochs with object proposals.

4.2. Comparisons with state-of-the-art

4.2.1 Reconstruction with Ground-truth 2D Box

To eliminate the effect of mislocalization of objects, we first

feed objects cropped using the 2D ground-truth bounding

boxes for 3D object reconstruction.

Qualitative results: We show the 3D object instance

shape and pose estimation results in two views to give a

better illustration of 3D information (Fig. 5). To illustrate

the occupancy for each voxel, we visualize each voxel us-

ing a cubic mesh, whose size reflects the probability value.

High sparsity of a volume grid means the shape estimation

is more uncertain. We illustrate 3D object pose by showing

the 2D projection of the 3D instance. The 2D position of

the object can show the soundness of its 3D pose estima-



Figure 6: Visualization of 3D instance reconstruction from a real scene from NYU depth v2 validation dataset. Each row is a

comparison between ours implicit and explicit methods with [23]. We can see that our results are more compact and accurate.

Dataset Method
Shape

Median IoU ↑ Mean IoU ↑ %(δV = 0.25) ↑ %(δV = 0.5) ↑
SUNCG

Factored3d[23] 0.47 0.49 74.98 47.15

Ours Implicit 0.55 0.55 78.54 55.21

Ours Explicit 0.60 0.58 80.52 58.97

NYUv2
Factored3d[23] 0.10 0.14 15.53 2.40

Ours Implicit 0.11 0.16 20.18 4.24

Ours Explicit 0.09 0.15 18.17 5.20

Table 1: 3D shape estimation: median and mean IoU, preci-

sion % with thresholds (δV = 0.25, 0.5) . Arrow direction

means better performance.

tion. As shown in Fig. 5, our proposed methods obtain a

more compact object shape than [23], this visually demon-

strates our method decreases the uncertainty of object shape

estimation. Besides, explicit method works better than im-

plicit one. For 3D object instance pose, the relative pose

difference in the 2D image shows one view of the 3D pose

estimation difference. We can see from Fig. 5, our pose

estimation of object instances is better, e.g., some chair in-

stance estimations in row 3.

To compare our method with others in the real image

scenario, we show some qualitative results based on the

NYU depth v2 dataset [14] in Fig. 5 from our model and

Factored3d [23], trained on the SUNCG synthetic dataset.

There are more complicated lighting conditions and disor-

dered object instances. Hence, reconstruction from a real

scene image is harder than reconstruction from a synthetic

scene image. We can this see in Fig. 6, in comparison with

the qualitative results from Fig. 5, object shape estimation

uncertainty is higher, and misdetection is higher too. How-

ever, we can still draw a similar conclusion as in Sec. 4.2.1:

our proposed method has improved 3D instance reconstruc-

tion from a cluttered real single scene image.

Dataset Method
Rotation

Median Err ↓ Mean Err ↓ %(δq = 30) ↑ %(δq = 10) ↑ %(δq = 5) ↑
SUNCG

Factored3d [23] 5.02 31.80 77.90 70.77 49.87

Ours Implicit 5.05 31.66 78.22 71.12 49.65

Ours Explicit 4.79 28.89 80.22 73.31 51.70

NYUv2
Factored3d[23] 15.61 47.34 62.37 36.03 16.41

Ours Implicit 16.33 49.23 59.57 34.99 17.69

Ours Explicit 14.40 44.35 64.93 39.79 19.62

Dataset Method
Translation

Median Err ↓ Mean Err ↓ %(δt = 1.) ↑ %(δt = 0.5) ↑ %(δt = 0.1) ↑
SUNCG

Factored3d[23] 0.30 0.58 91.09 74.46 6.80

Ours Implicit 0.28 0.54 91.89 76.87 8.28

Ours Explicit 0.31 0.55 91.29 73.85 6.77

NYUv2
Factored3d [23] 0.73 1.03 65.81 31.55 0.64

Ours Implicit 0.72 0.99 67.57 31.55 0.96

Ours Explicit 0.73 1.18 91.29 73.85 6.77

Dataset Method
Scale

Median Err ↓ Mean Err ↓ %(δs = 0.5) ↑ %(δs = 0.3) ↑ %(δs = 0.2) ↑
SUNCG

Factored3d [23] 0.12 0.23 87.67 75.79 64.43

Ours Implicit 0.11 0.22 88.40 77.05 66.28

Ours Explicit 0.12 0.21 89.05 78.25 67.03

NYUv2
Factored3d [23] 0.89 0.92 11.05 2.72 0.88

Ours Implicit 0.74 0.78 19.30 5.60 2.16

Ours Explicit 0.87 0.91 11.77 3.04 1.36

Table 2: 3D pose estimation: median and mean IoU, preci-

sion % with thresholds (δV = 0.25, 0.5) . Arrow direction

means better performance.

Quantitative Results: We evaluate 3D shape and pose

estimation based on the evaluation metrics given in [23].

(a) Shape evaluation: We evaluate shape estimation on

the metrics of the median and mean IoU, and IoU per-

centage precision % based on two thresholds %(δV =
0.25, 0.5). While [23] only show results based on δv =
0.25, we add a more strict IoU threshold δv = 0.5. From

Table 1, we can see that the joint modeling of object and

silhouette has made a big improvement, especially for the

more strict threshold setting. These results demonstrate that

both 2D silhouette techniques helps reduce the 3D shape

estimation uncertainty.

(b) Pose evaluation: We evaluate rotation, translation,

and scale estimation and show results in Table 2. This table



Method Factored3d

[23]

Ours

Implicit

Ours

Explicit

(δV , δq, δt, δs, δd) (0.25, 30, 1, 0.5, 0.5 )

all 39.01 41.48 43.00

-shape 44.57 46. 47.65

-rot 45.74 49.75 51.02

-trans 40.42 42.80 44.44

-box2d 41.66 43.92 45.90

-scale 42.00 44.12 45.45

box2d 68.01 69.43 69.78

box2d+rot 52.51 53.33 54.61

box2d+trans 62.92 65.08 65.12

box2d+shape 52.64 56.06 57.24

box2d+scale 58.35 60.66 61.60

box2d+rot+shape 44.24 46.19 47.63

Table 3: mean Average Precision (mAP) for 2D detection

and 3D reconstruction with three threshold settings on the

SUNCG test dataset.

shows that our proposed method has similar performance to

[23] for rotation estimation. We believe this is because the

2D silhouette does not provide as much information for ro-

tation estimation. Intuitively, better results can be obtained

by using 3D motion constraints that we will explore in fu-

ture work. Our work outperforms [23] both in terms of er-

ror and precision measures for translation estimation. In

the end, our method has better performance especially with

more strict threshold δs setting for scale estimation.

4.2.2 Reconstruction with 2D Detection

Now we evaluate 3D reconstruction with 2D detection to

show the results from this combination.

Quantitative Results: We follow the evaluation metrics

proposed in Tulsiani et al. [23] for this setting. As shown

in Table 3, our method outperforms [23] in every criterion.

Our proposed method has improved 3D instance reconstruc-

tion from a cluttered single scene image for the combined

task of 2D detection and 3D instance shape and pose esti-

mation quantitatively.

4.3. Ablation study

In addition to the previous comparison with the baseline

method, we performed an analysis of the impact of silhou-

ette loss choices for both implicit and explicit settings. In

Table 4, for implicit silhouette, binary cross entropy (BCE)

loss outperforms mean square error (MSE) loss a little for

almost all evaluation metrics. From this, we can draw a con-

clusion that it is better to treat implicit silhouette estimation

as a binary regression problem instead of binary classifica-

tion problem.

However in Table 5, for explicit silhouette, mean square

error (MSE) loss obtains better or at least comparable per-

formance compared to binary cross entropy (BCE). So un-

like the above finding in implicit setting, we can draw the

Method
Shape

Median IoU ↑ Mean IoU ↑ %(δV = 0.25) ↑ %(δV = 0.5) ↑
MSE 0.54 0.54 78.36 54.04

BCE 0.55 0.55 78.54 55.21

Method
Rotation

Median Err ↓ Mean Err ↓ %(δq = 30) ↑ %(δq = 10) ↑ %(δq = 5) ↑
MSE 5.11 32.11 77.78 70.46 49.22

BCE 5.05 31.66 78.22 71.12 49.65

Method
Translation

Median Err ↓ Mean Err ↓ %(δt = 1.) ↑ %(δt = 0.5) ↑ %(δt = 0.1) ↑
MSE 0.31 0.56 91.72 74.45 6.63

BCE 0.28 0.54 91.89 76.87 8.28

Method
Scale

Median Err ↓ Mean Err ↓ %(δs = 0.5) ↑ %(δs = 0.3) ↑ %(δs = 0.2) ↑
MSE 0.12 0.22 88.23 76.53 65.39

BCE 0.11 0.22 88.40 77.05 66.28

Table 4: Ablation study for implicit silhouette losses Eq. 1

and 2 on SUNCG test dataset.

Method
Shape

Median IoU ↑ Mean IoU ↑ %(δV = 0.25) ↑ %(δV = 0.5) ↑
MSE 0.5986 0.5832 80.52 58.97

BCE 0.5977 0.5765 80.02 58.70

Method
Rotation

Median Err ↓ Mean Err ↓ %(δq = 30) ↑ %(δq = 10) ↑ %(δq = 5) ↑
MSE 4.79 28.89 80.22 73.31 51.70

BCE 4.75 29.34 79.98 73.08 51.94

Method
Translation

Median Err ↓ Mean Err ↓ %(δt = 1.) ↑ %(δt = 0.5) ↑ %(δt = 0.1) ↑
MSE 0.3096 0.5547 91.29 73.85 6.77

BCE 0.3095 0.5500 91.52 73.67 6.57

Method
Scale

Median Err ↓ Mean Err ↓ %(δs = 0.5) ↑ %(δs = 0.3) ↑ %(δs = 0.2) ↑
MSE 4.79 28.89 80.22 73.31 51.70

BCE 4.75 29.34 79.98 73.08 51.94

Table 5: Ablation study for explicit silhouette losses Eq. 10

and 11 on SUNCG test dataset.

conclusion that as a perspective projection silhouette assis-

tant for 3D object instance reconstruction, a regression so-

lution works better than a binary classification solution.

In summary, we choose the results from binary cross en-

tropy loss for implicit silhouette, and mse loss for explicit

silhouette and report qualitative and quantitative results in

Table. 1, 2, 3 and Fig. 5, 6.

5. Conclusion

We present two methods to explore the importance of

silhouettes for 3D instance reconstruction. In the first ap-

proach, we include a 2D implicit silhouette feature and

combine it with other object features to make a compact

3D object reconstruction. In the second approach, we pro-

pose an efficient and differentiable way through explicit per-

spective silhouette projection to regularize object shape and

pose. Qualitative and Quantitative results show that both

our methods have improvement with a considerable margin

and the explicit method works better. Automatic rendering

and de-rendering in the network is an excellent direction to

improve the performance further. Also, a further indepen-

dent design to solve 3D reconstruction without 2D object

detection is another promising direction to investigate.
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