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Abstract

The generation of up-to-date accurate 3D models from

multi-view satellite images has recently become a hot re-

search topic. A well-known challenge of this problem is to

put all cameras into a common frame of reference, since de-

pending on the satellite geopositioning equipment the cam-

era parameters may contain errors of up to tens of meters on

the ground. In this context, bundle adjustment based tech-

niques, relying on the identification of a set of tie-points and

the correction of the camera models to make them coinci-

dent, have become a generally accepted practice. However,

new approaches capable of producing state-of-the-art re-

sults without the use of prior bundle adjustment have also

been proposed. This work aims to compare both strategies

and assess the practical impact of using bundle adjustment

for 3D reconstruction from multi-view satellite images.

1. Introduction

In the past few years, the advances in satellite technology

have resulted in a remarkable increase of high resolution

imagery of the Earth surface, with many areas being cap-

tured on a daily basis or multiple times per year. Current

satellite imagery allows the use of photogrammetry to build

accurate 3D digital surface models (DSMs) in a periodic

manner, providing extremely valuable up-to-date informa-

tion about the evolution of the terrain and the human activity

on it. The applications of this field are multiple and ambi-

tious, including navigation, urban planning, surveillance or

natural disaster prevention and response.

Compared to multi-view satellite images, airbone lidar

acquisitions and aerial images are well-known alternatives

that can be used to create 3D models of higher precision.

However, these technologies are limited by their narrow

swath and cost, making it difficult to update the models in

a short period of time. In this context, the break-through of

low-cost and high resolution satellite imagery has enabled

persistent coverage of large areas, inaccessible or not.
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Figure 1: Geolocation correction methods are a key step to re-

move the effects of pointing errors and thus obtaining precise out-

put models in 3D reconstruction from multi-view satellite images.

Satellite images are typically provided along with a Ra-

tional Polynomial Coefficients (RPC) camera model [8],

and other metadata such as the acquisition timestamp or the

pixel size. The RPC camera model is composed by two ra-

tional polynomial functions that approximate the mapping

from 3D space points to 2D image pixels (i.e. the projec-

tion function) and its inverse (i.e. the localization func-

tion). RPCs allow to model complex camera systems in-

dependently of the specifics on the system (e.g. pushbroom

or projective). Given a stereo correspondence found across

two or more satellite images, the associated RPCs can be

used to triangulate and retrieve the 3D point that projects on

the correspondence.

Although RPCs are expected to be precise enough, the

complex system they encode is subject to measurement er-

rors in the satellite geopositioning equipment, mainly due

to the attitude angles. Such inaccuracies, also referred to as

pointing errors [22], can be of the order of tens of pixels in

the image domain. This implies that different satellite views

are typically not consistent in a common frame of reference

(i.e. each 3D point projects to a slightly different location

in the images). Hence it is imperative to use some relative

geolocation correction strategy to prevent these pointing er-

rors from affecting the triangulation of 3D points and the

accuracy of the output DSMs.

Techniques for 3D reconstruction from multiple views

can be grouped into two categories:



– True multi-view methods tackle the multi-view trian-

gulation problem for all images simultaneously.

– Multi-view stereo (MVS) methods process image pairs

independently and then fuse the resulting 3D models.

MVS methods are the most popular choice for satel-

lite imagery, as it has been shown that they can outper-

form sophisticated true multi-view techniques [21]. The

efficient and stable performance of the semi-global match-

ing (SGM) algorithm [16] typically used in stereo pipelines

(e.g. [7, 11, 23, 9, 4] among others) is usually pointed out

as the driving force behind their success.

The objective of this work is to investigate the perfor-

mance of 3 MVS pipelines for 3D reconstruction from

multi-date satellite images. Two of the pipelines reviewed

in this paper use a bundle adjustment procedure, each

optimizing a different set of parameters to correct the RPCs:

2D translations in the image domain [22] or the 3D rotation

of the satellite cameras [25]. Oppositely, the third approach

omits any kind of prior bundle adjustment and aligns in-

dependent models based on geometry correlation [11]. To

perform a fair comparison, the different blocks of the MVS

pipelines are all common apart from the relative geolocation

correction method that is applied in each case.

Our evaluation will focus on the reconstruction of small

areas of interest. Indeed, the increasing availability of satel-

lite imagery has enabled the exploitation of incidental im-

agery for 3D reconstruction [18]. This is useful for moni-

toring applications in which a concrete area needs to be re-

constructed from the available imagery. Moreover, modern

satellite constellations, such as SkySat from Planet, favor

smaller footprints and revisit capacity to large swaths.

We employ the IARPA Multi-View Stereo 3D Mapping

Challenge dataset [2], which includes 47 DigitalGlobe

WorldView-3 images, with 30 cm nadir resolution, col-

lected between 2014 and 2016 over Buenos Aires; and the

dataset comprised in the 2019 IEEE GRSS Data Fusion

Contest [17, 1] with 26 DigitalGlobe WorldView-3 images

collected between 2014 and 2016 over Jacksonville. The

completeness (percentage of points where the absolute dif-

ference is less than 1 meter) of the output models with re-

spect to the lidar ground truth is used as the main evaluation

metric to assess the performance of the different methods.

1.1. Bundle adjustment

Given a cloud of K 3D points {Xk}k=1,...,K , a set of

feature tracks representing their projections across M im-

ages, and the projection maps {Pm}m=1,...,M : R3 → R
2

of the cameras (usually associated to a projection matrix or

a RPC model), bundle adjustment is the process that seeks

to minimize the reprojection error of the setting by opti-

mizing {Xk} and {Pm}. The reprojection error is defined

as the sum of the squared Euclidean distances between the

projections of the point cloud x̂mk = Pm(Xk) and the real

measurements of xmk (i.e. the detected features):

E({Pm}, {Xk}) =
K∑

k=1

M∑

m=1

‖xmk − Pm(Xk)‖
2. (1)

1.2. Related work

The Computer Vision community has proposed differ-

ent methods to correct the pointing error of RPC camera

models. Bundle adjustment based solutions are a generally

accepted practice that consist in detecting inter-image tie-

points and applying a compensating function to the original

RPCs so that the back-projections of the tie-points are coin-

cident in the 3D world [14, 5, 22, 13, 18].

In the case of satellite images, since satellites are far

from the Earth’s surface, the main component of the repro-

jection error comes from the inaccurate knowledge of the

satellite orientation. This means that the energy in Equa-

tion 1 can be minimized by composing each Pm with a

global 3D transformation Rm. This amounts to finding the

{Rm} that minimize
∑

k ‖Pm(Rm(Xk))− xmk‖
2.

In [14] it was shown that the net effect of pointing error

reduces to a 2D translation (also termed as bias or correc-

tion offset) in images accounting for less than 50 km in each

dimension. Based on this observation, bundle block adjust-

ment procedures have in common the optimization of 2D

correction offsets. Following the notation from Equation 1,

this amounts to finding the M 2D transformations {Tm}
that minimize

∑
k ‖Tm(Pm(Xk))− xmk‖

2. Note that this

problem is easier than the previous one as it reduces to a

linear system. Also note that bundle adjustment and bun-

dle block adjustment correspond to inserting a correction

before the projection or after it.

For smaller areas (e.g. 2 km × 2 km), RPCs can be mod-

eled as affine cameras using the first order Taylor approx-

imation [12, 24, 11, 6]. This allows to correct the effect

of bias on the triangulated points with an affine 3D trans-

formation. After this idea, [11] proposed a new approach

capable of producing high-quality reconstructions without

needing a bundle adjustment. Independent DSMs are regis-

tered based on correlation. Hence geometry is used instead

of image information to solve the problem of relative geolo-

cation correction. The main motivation behind this work is

that finding a sufficient amount of tie-points can be an issue

with multi-date images, especially when restricted to small

areas of interest. Significant differences due to noise or ra-

diometric changes may cause image matches not to be accu-

rate enough, set aside the impact of human activity, weather

phenomena or seasonal changes.

Our work tries to give a deeper vision on the subject,

highlighting the pros and cons of image (i.e. bundle adjust-

ment) and geometry based solutions and revealing aspects

to take into account when applying them.



2. Methodology

This section presents the most relevant concepts behind

the 3 MVS pipelines for 3D reconstruction from multi-date

satellite images reviewed in this study, focusing on the rel-

ative geolocation correction methods proposed by each.

2.1. Correlation based DSM alignment

Originally proposed in [11], this pipeline aggregates

3D point clouds independently computed from N different

stereo pairs, without any prior RPC correction. The method

is summarized in Algorithm 1. Our implementation is based

on the publicly available satellite stereo pipeline S2P [7, 3].

The input images are cut into tiles covering small areas,

where RPCs can be locally approximated as an affine cam-

era model (see Section 1.2). The reconstruction of each tile

starts by rectifying the image crops (I, I ′) of each stereo

pair, to make epipolar lines horizontal. A variant of the

SGM algorithm [10] with a cost based on the census trans-

form is then used to compute a disparity map robust to light-

ing changes. Only consistent disparities passing the left-

right check are kept. The correspondences given by the dis-

parity map are re-expressed in the original images domain

and triangulated using the affine projection matrices P, P ′

of the pair to compute a dense 3D point cloud.

After running the previous process for the N input stereo

pairs, the objective is to merge the output point clouds to

obtain a high-quality reconstruction. To this end, each point

cloud is projected on a geographic grid, thus producing dif-

ferent DSMs as in [2, 11]. Morphological filters are then

used to refine the DSMs, which may contain small holes

due to the sampling step and larger ones due to mismatches.

Closing with a 3 × 3 structuring element is applied to fill

small holes, followed by interpolation using a low value

(the 5th percentile) on the boundaries to reduce larger holes.

This interpolation strategy assumes that occluded parts are

at ground level.

At this point, the post-processed DSMs are not aligned

due to the pointing error in the satellite RPCs, which pre-

vents any kind of fusion. This is where the differential part

of the pipeline intervenes: the DSMs are aligned via a 3D

translation that maximizes the Normalized Cross Correla-

tion (NCC) between them, defined as

NCC(u,v) :=
1

|Ω̂|

∑

t∈Ω̂

(ut − µu(Ω̂))(vt − µv(Ω̂))

σu(Ω̂)σv(Ω̂)
, (2)

where Ω̂ := Ωu∩Ωv is the intersection of the sets of known

points in two DSMs u and v. The mean and standard devi-

ation of u on Ω̂ are denoted respectively µu(Ω̂) and σu(Ω̂).
According to [11], this is motivated by two observations:

• The misalignment induced by the satellite pointing er-

ror is mainly a translation [14, 12, 24, 6].

Algorithm 1: MVS with NCC based DSM alignment

Input : M views of a small area of interest (AOI) cropped

from multi-date satellite images + associated RPCs

Output: High-quality DSM of the input AOI

1 - Select N stereo pairs: { (In, I
′

n) }n=1,...N

2 for each stereo pair (In, I
′

n) do

3 - Affine approx. of raw RPCs → Pn, P
′

n

4 - Epipolar rectification

5 - Dense stereo matching

6 - Triangulate using Pn, P
′

n to get 3D point cloud

7 - Project point cloud to DSMn

8 - Post-process DSMn

9 end

10 - DSM alignment via 3D translations maximizing the NCC

11 - Fuse all DSMs via point-wise median

• As long as the 3D geometry of the area does not change

too much, matching surface models is more stable over

time than using tie-points across multi-date images.

The maximum correlation translations are employed to

register all DSMs to the frame of reference of the first input

stereo pair, which is expected to be the best according to the

selection criterion used (see Section 3.1). After the align-

ment, the point-wise median is used to perform the DSMs

fusion, as in [13]. Remark that the fusion is done using the

DSMs previous to interpolation. Therefore, in practice, the

interpolated DSMs are only used to compute the alignment

transformations. This is done to avoid possible biases due

to large areas of unknown values, as detailed in [11]).

2.2. Bundle block adjustment

This MVS pipeline (Algorithm 2), based on [22], was

selected to test a bundle block adjustment procedure. The

RPCs are corrected previous to the triangulation of stereo

correspondences, implying that all DSMs are aligned be-

fore the fusion step. The approach aims to find the 2D

translations (or correction offsets) in the image domain that

compensate the pointing error of each view (see Figure 2).

The first step of the pipeline consists in the detection of

feature tracks across the set of input images. The feature

tracks employed in our experiments result from pairwise

matches of SIFT keypoints [19]. We apply a distance ratio

test as in [19] with a rather strict threshold of 0.6, and also

perform geometric filtering using the Fundamental matrix

to minimize the presence of outliers. The union-find algo-

rithm from [20] is employed to extend pairwise matches to

unordered tracks of arbitrary length in an efficient way.

The feature tracks are used to initialize a sparse 3D point

cloud and a correction offset for each image, providing this

way the necessary inputs for the bundle block adjustment.

Algorithm 3, introduced in [22], details how to initialize the

correction offsets and the 3D points from the feature tracks.



Before Bundle Adjustment After Bundle Adjustment

Figure 2: Effect of pointing error before and after bundle adjust-

ment. Green dots represent the detected features, and red vectors

the distance to the reprojected locations (i.e. reprojection error).

After bundle adjustment, the reprojection error reaches subpixel

magnitude, implying that the RPCs have been corrected.

Note that initializing the values for the 3D points is not a

straight-forward task: the direct triangulation of each stereo

correspondence part of a track would produce a different 3D

point because of the still to be corrected pointing error.

Using the RPC localization functions, it is possible to

back-project a ray from each track observation to a set of

horizontal planes with heights {Zmin, ..., Zmax}, given by

a series of ∆Z increments, covering a sufficient range to

contain the whole scene. The height Z where the multiple

back-projections are less scattered (i.e. minimum σZ , as de-

fined in Equation 3) defines the initial depth of the 3D point

associated to the track. The (X , Y ) coordinates are given

by the mean (µX , µY ) of all back-projections at height Z.

The scatter value σZ at height Z for a given feature track

is defined as

σZ =

√∑

i

(Xi − µX)2 +
∑

i

(Yi − µY )2, (3)

where Xi and Yi are the coordinates of the back-projection

of the i-th observation of the feature track at height Z.

To initialize the correction offsets of all input images, all

possible offsets per image are computed using each feature

track. Observe that error-free tracks should ideally generate

the same offsets for all images if the model holds. Adaptive

RANSAC can be applied then to pick a single correction

offset per image with the largest consensus [15]. RANSAC

threshold to declare inliers was set to 3 pixels. Further

refinement of the tracks and the initial location of the 3D

points is done in [22] by preserving, for each image, only

those observations that contributed to an inlier offset. For

simplicity, we kept all raw feature tracks and 3D points as

output by Algorithm 3 to feed the bundle block adjustment.

As mentioned in Section 1, apart from the relative

geolocation correction method, the rest of the blocks of the

approach do not change in comparison to the other MVS

pipelines reviewed in this study (i.e. steps of lines 10–19 in

Algorithm 2 are the same in Algorithm 1).

Algorithm 2: MVS with bundle block adjustment

Input : M views of a small area of interest (AOI) cropped

from multi-date satellite images + associated RPCs

Output: High-quality DSM of the input AOI

1 - Feature track detection across the M input images

2 - Run Algorithm 3 to compute:

3 (1) All possible correction offsets for all images

4 (2) An initial value for the 3D point of each track,

5 i.e. point cloud X

6 for each image Im in {I1, ..., IM} do

7 - RANSAC to select an offset ρm with a large support

8 end

9 - Bundle block adjustment to refine the M correction offsets

and X → {ρBAm
}m=1,...M , XBA

10 - Select N stereo pairs: { (In, I
′

n) }n=1,...N

11 for each stereo pair (In, I
′

n) do

12 - Affine approx. of corrected RPCs → PBAn
, P ′

BAn

13 - Epipolar rectification

14 - Dense stereo matching

15 - Triangulate using PBAn
, P ′

BAn
to get 3D point cloud

16 - Project point cloud to DSMn

17 - Post-process DSMn

18 end

19 - Fuse all DSMs via point-wise median

Algorithm 3: Correction offsets from feature tracks

Input : M views of a small area of interest (AOI) cropped

from multi-date satellite images + associated RPCs

Feature track k detected across the input images

Output: M correction offsets, one per image

3D point Xk corresponding to feature track k

1 for each altitude Z in {Zmin, ..., Zmax} do

2 for each image Im in {I1, ..., IM} do

3 - Pick the 2D observation of track k in Im → xmk

4 - Localize xmk at height Z via RPCm → (X,Y, Z)

5 - Add (X,Y, Z) to the list of 3D point candidates

for track k at height Z → LISTk

6 end

7 - Compute σZ of LISTk as stated in Equation 3

8 end

9 - Define the 3D point of track k as Xk = minσZ
LISTk

10 for each image Im in {I1, ..., IM} do

11 - Project Xk via RPCm → x̂mk

12 - Compute the correction offset → ρmk = x̂mk − xmk

13 end

2.3. Bundle adjustment of camera rotations

This pipeline is presented as an alternative to traditional

bundle block adjustment, without renouncing to the correc-

tion of the RPCs. Instead of optimizing a set of correction

offsets, bundle adjustment is used to correct the orientation

(i.e. rotation) of the satellite cameras and compensate the

pointing error. The approach is outlined in Algorithm 4.



Algorithm 4: MVS with correction of camera rotation

Input : M views of a small area of interest (AOI) cropped

from multi-date satellite images + associated RPCs

Output: High-quality DSM of the input AOI

1 - Feature track detection across the M input images

2 - Affine approx. of all raw RPCs → { Pm }m=1,...M

3 - Initialize sparse point cloud from feature tracks → X

4 - Bundle adjustment to refine the M rotation matrices

5 and X → { PBAm
}m=1,...M , XBA

6 - Select N stereo pairs: { (In, I
′

n) }n=1,...N

7 for each stereo pair (In, I
′

n) do

8 - Epipolar rectification

9 - Dense stereo matching

10 - Triangulate using PBAn
, P ′

BAn
to get 3D point cloud

11 - Project point cloud to DSMn

12 - Post-process DSMn

13 end

14 - Fuse all DSMs via point-wise median

As in the previous MVS pipelines, since the area to re-

construct is assumed to be small, the RPCs can be locally

modeled as affine camera projection matrices. The affine

camera model can be decomposed as

P3×4 =

(
M2×3 t2×1

0 1

)
, (4)

where M2×3 = K2×2R2×3, being K the calibration matrix

and R and t the camera rotation and position respectively.

The method aims to refine the R matrix of each camera.

Note that a small rotation of a camera far away from

a scene, as it is the case for satellite imagery, amounts in

practice to a translation on the image domain [14]. This ob-

servation suggests that optimizing the rotation matrices R

with bundle adjustment should be, at least, equivalent to the

traditional offset correction. The rest of parameters of the

affine projection matrices are fixed.

Since it is known that reducing the number of param-

eters to be optimized aids the bundle adjustment process,

we encode all rotation matrices using the Euler angles as a

3-parameter representation. Any 3D rotation matrix R can

be decomposed into 3 elemental rotations with respect to

the world reference system, where the Euler angles φ, θ, α

are the angles of rotation around the canonical axes:

R = Rx(φ)Ry(θ)Rz(α) (5)

=

⎛
⎝
1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎞
⎠

⎛
⎝

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞
⎠

⎛
⎝
cosα − sinα 0
sinα cosα 0
0 0 1

⎞
⎠.

In Algorithm 4, feature tracks are detected following

the same methodology from Section 2.2. Differently from

Algorithm 3, the 3D points associated to the tracks are ini-

tialized by triangulating all pairwise matches per track and

taking the mean of the resulting 3D locations, which is

faster than the technique used in Algorithm 3.

feature track observations
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Figure 3: Feature track refinement. After an initial bundle adjust-

ment with soft L1 loss, sorting the reprojection errors typically

results into a well-defined elbow-shaped function (due to the large

errors caused by a small subset of outliers). We set an outlier re-

moval threshold to the 95th percentile of all values below the el-

bow point (i.e. the point with largest distance with respect to the

line defined by the minimum and maximum errors).

2.4. Feature track refinement

It should be noted that the result of the bundle adjustment

based approaches is highly dependent on the quality of the

input feature tracks found across the input images.

The classic bundle adjustment loss considers the squared

distances between projected and observed locations (i.e.

L2(d) = d2, where d denotes the Euclidean distance), since

the L2 norm is well-posed for differential calculus and the

optimization converges rapidly. Nonetheless, this loss is

very sensitive to the presence of outliers, which can cause

the result to be biased according to erroneous tracks at the

expense of good observations.

As a solution, a combination of the L1 and L2 losses

such as the soft L1 loss can be used. The soft L1 loss is

defined as

L1

soft(d) = 2
(√

1 + d2 − 1
)
, (6)

where d is the Euclidean distance between two points.

The soft L1 loss from Equation 6 offers higher robust-

ness to outliers. It behaves as a linear loss for large dis-

tances, which are likely to be caused by outliers; and as a

quadratic loss for smaller distances around 1 pixel or below,

likely to be caused by inliers.

Based on to the previous, we employ the following pro-

cedure to improve the quality of the feature tracks. We run

two successive bundle adjustment steps: the first one uses

the soft L1 loss and the second one the L2 loss. Thanks to

the soft L1 loss, after the first run we can expect the gap

in terms of reprojection error between inlier and outlier ob-

servations to increase. As shown in Figure 3, a threshold

can be set to discard erroneous observations according to

this error. The remaining tracks (presumably made of reli-

able inliers) can be fed to the second run, using the L2 loss,

which yields the optimal estimator for Gaussian perturba-

tions and quickly converges to a refined solution.



IARPA JAX 113 JAX 161 JAX 251

Oracle order

Correlation based DSM alignment 70.62 / 2.67 – – –

Bundle block adjustment - naif 64.39 / 2.72 – – –

Bundle block adjustment 70.63 / 2.74 – – –

Bundle adjustment of camera rotations - naif 64.50 / 2.71 – – –

Bundle adjustment of camera rotations 70.71 / 2.74 – – –

Heuristic order

Correlation based DSM alignment 68.08 / 2.69 77.72 / 2.00 82.75 / 1.70 74.87 / 2.90

Bundle block adjustment 69.73 / 2.74 77.74 / 2.04 82.53 / 1.73 76.86 / 2.91

Bundle adjustment of camera rotations 69.89 / 2.75 77.72 / 2.04 82.60 / 1.72 75.91 / 2.91

SIFT order

Correlation based DSM alignment 48.84 / 2.62 76.73 / 2.01 82.64 / 1.64 72.46 / 2.74

Bundle block adjustment 42.15 / 2.71 76.83 / 2.06 82.48 / 1.66 72.69 / 2.76

Bundle adjustment of camera rotations 42.15 / 2.71 76.79 / 2.04 82.44 / 1.66 71.14 / 2.78

Table 1: Completeness (%) / Accuracy (m) of the reconstructed DSMs for the IARPA (Buenos Aires, one AOI) and GRSS (Jacksonville,

AOIs 161, 251 and 113) datasets. The naif label indicates that a single bundle adjustment run with classic L2 loss for reprojection errors

was used. Otherwise, the feature track refinement strategy from Section 2.4 was used in bundle adjustment procedures.

3. Evaluation

This section presents the conducted experiments and the

results of our study. Table 1 summarizes the performance

metrics for an area of interest (AOI) from the IARPA dataset

and three AOIs from the GRSS dataset respectively. Exam-

ples of output DSMs are shown in Figure 4. Note that the

reconstruction may contain unknown values, represented as

white points in Figure 4, if no stereo pair finds a reliable

correspondence for certain areas.

The reconstructed DSMs and the ground truth DSMs of

each site may not be in the same frame of reference. We em-

ploy a translation that maximizes the correlation between

both models to register them, following the procedure from

Section 2.1. After this, the performance metrics are com-

puted from the error between the two surfaces, that is de-

fined as the point-wise absolute difference (in meters).

Completeness represents the percentage of points whose

error is less than 1 meter, with unknown values being

counted as larger errors. The accuracy value, in meters, is

the root mean square error (RMSE) of all known points.

Both metrics are defined in [2]. Points within water bodies

were not taken into account.

3.1. Selection of input pairs

Previous work already highlighted the importance of the

criterion used to select input stereo pairs for MVS pipelines

dealing with satellite imagery [11, 13]. Poor choices lead

to pairs of views sharing less visual content and output

DSMs with larger errors and incomplete areas, making the

correction of the pointing error harder both for image and

geometry based methods. We ran the MVS pipelines using

3 different criteria to assess the robustness of the geoloca-

tion correction methods:

• Oracle order: Obtained by computing the DSM of

each possible stereo pair and sorting the pairs by de-

creasing completeness. It guarantees that the best pairs

are selected, but it is expensive to compute and unre-

alistic since ground truth may not be available and is

needed to compute the completeness of each pair.

• Heuristic order: Detailed in [11], this criterion is an

attempt to emulate the oracle order based on the meta-

data of the satellite images. Stereo pairs are sorted ac-

cording to the intersection angle, incidence angle and

proximity of acquisition date.

• SIFT order: The number of pairwise matches can be

interpreted as a measure of the shared visual content

between two images. This order sorts all possible pairs

in decreasing number of SIFT matches, therefore pri-

oritizing pairs with a higher overlap of visual content.

In all experiments, the best (i.e. the first) 50 pairs accord-

ing to each selection criterion were employed to reconstruct

the AOIs. Due to the high computational cost, the oracle

order was only computed for the IARPA dataset.

3.2. Results and discussion

Table 1 reflects some of the concepts anticipated in Sec-

tion 2. First of all, we can verify that naif bundle adjustment

(single run, classic L2 norm for reprojection errors) pro-

duces worse DSMs compared to the rest, even when opti-

mal stereo pairs are used, underlining the need of strategies

to handle outliers in the feature tracks.

Table 1 also supports the assumption that adjusting a

2D translation at image level or the 3D rotation of a satel-

lite camera is almost equivalent, with the results being ex-

tremely similar in all experiments involving these strategies.
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Figure 4: Lidar acquired DSMs versus 3D reconstruction from multi-date satellite images. The ground truth DSMs from the IARPA and

GRSS datasets are shown on the top row. For each AOI, the reconstructed DSM that obtained the highest completeness score is displayed

below. Colorbars on the right of the DSMs assign a color to each height, expressed in meters. White points represent unknown values.

The color palettes were chosen to optimize the view of scene details.

It follows that complex methods to initialize the sparse point

cloud input to the bundle adjustment, as Algorithm 3, can

be replaced by simpler and more efficient methods such as

the one employed in Section 2.3.

In all experiments, the overall RMSE of correlation

based DSM alignment is slightly smaller. This bias seems

natural considering that the maximum NCC is minimizing

the difference in location between all points of the DSMs;

whereas bundle adjustment strategies only use a reduced

amount of keypoints (i.e. feature tracks) to register them.

In any case, the main idea that seems to stand out from

the majority of results is that both geometry and image

based solutions are valid and competitive solutions to the

problem. Most of the experiments produced DSMs with

completeness score above 65%. However, in certain scenar-

ios, some of the pipelines experimented a loss of accuracy.

Failure prone cases for image based corrections. For

the IARPA AOI, the correlation based DSM alignment

clearly outperformed bundle adjustment methods when us-

ing the number of SIFT matches to select input stereo pairs

instead of the oracle or the heuristic orders.

The loss of accuracy of bundle adjustment methods, il-

lustrated in Figure 5, can be explained by looking at the

connectivity graph of the images according to the number

of SIFT matches: it turns out that there is a group of 5 nodes

weakly connected to the rest. The 5 nodes correspond to im-

ages taken from a similar viewpoint, with a large incidence

angle. Consequently, they have very strong intra-similarity

but less resemblance to the rest. If we only display edges ac-

counting for more than 40 matches, the 5 nodes (in red) are

disconnected from the others (see Figure 6, IARPA). The

heuristic order does not use these views because they are

too tilted. Still, red nodes exhibit a large amount of matches

between them, so several pairs from the set are selected by

the SIFT order. What happens then is that bundle adjust-

ment may end up putting all white nodes into a common

frame of reference, to the extent possible, while red nodes

are adjusted to a frame that fits better their particular set

of observations. This can be verified by exploration of the

DSMs obtained from pairs of white and red nodes.

Oppositely to bundle adjustment, the correlation based

DSM alignment offers higher robustness to this scenario,

since it was conceived to deal with non registered DSMs.

Based on the preceding, we can state that bundle adjust-

ment algorithms require not only quality feature tracks to

work properly, but in addition such tracks should connect

the graph of input images in a consistent manner. Other-

wise, it is better to avoid incorporating stereo pairs from dis-

connected sets, as it happens when the oracle order is used

(i.e. no pair takes both views from the set of red nodes).

In contrast to the IARPA case, the heuristic and SIFT or-

ders yield similar results for the JAX AOIs. The connectiv-

ity graphs of the Jacksonville images are much more consis-

tent (see Figure 6, JAX 113). Accordingly, the use of SIFT

matches as a selection criterion seems appropriate. For JAX

AOIs, more than 20 of the pairs selected by the SIFT order

are also chosen by the heuristic order; for IARPA, only 2

pairs coincide in both orders.



Oracle order SIFT order

Figure 5: Reconstruction error of the DSM obtained with bundle

adjustment of camera rotations (IARPA AOI), using the oracle and

the SIFT orders. Brighter values account for larger errors. Errors

above 1 m are clipped and correspond to white pixels.
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Figure 6: Connectivity graphs for the images of the IARPA and

JAX 113 AOIs (edges link images with more than 40 matches).

Failure prone cases for geometry based correction. In

Table 1 we can see that some results obtained by DSM

alignment are slightly worse than the bundle adjustment

counterparts (e.g. JAX 251 and IARPA with heuristic

order). Since the DSMs being fused are the same, these

errors are due to the alignment itself. They can be attributed

to the fact that correlation based alignment is sensitive to

incomplete geometry, especially if the holes in the DSMs

are relevant with respect to the size of the AOI. Even in

the absence of major radiometric changes, incomplete (i.e.

unknown) areas in the DSM may be caused by occlusions,

which are common in areas with many structures, as is the

case in the concerned sites; or by water bodies, as in the

lower right corner of JAX 251.

Deficiencies not due to pointing error. There is an

amount of error in the output DSMs that has nothing to do

with RPC inaccuracies. Even when these are properly cor-

rected, errors at the edges of buildings or in vegetation areas

are typically larger than 1 m (see Figure 5, oracle order).

This is not surprising since in these areas it is necessary to

choose between two extremely different modes: a 3D point

belongs either to the floor or to a rooftop/tree. Thus, the

values of the DSMs can be expected to have higher variance

there and using a median filter to fuse them is insufficient.

Further discussion on the multi-modality of DSM heights

can be found in [11].

4. Conclusion

We reviewed and compared 3 MVS pipelines for auto-

matic 3D reconstruction from multi-date satellite images,

each of them using a different method to correct the point-

ing error of satellite RPCs: (1) geometry correlation to align

independent DSMs, (2) bundle adjustment to optimize 2D

correction offsets in the image domain (3) bundle adjust-

ment to optimize the 3D rotation of satellite cameras.

All the approaches proved to be valid and competitive

solutions to the problem. Overall, they achieved very sim-

ilar evaluation metrics, but in some cases differences in

performance were revealed. The geometry based strategy

emerged as a more robust solution when stereo pairs from

weakly connected subsets of images (in terms of feature

matching) are used as input. Oppositely, image based so-

lutions relying on bundle adjustment proved to be more ro-

bust in lack of geometry, either because the area of interest

is too small, or because the site can only be reconstructed

partially. The presence of water or large occlusions can be

possible reasons for the latter case.

It seems clear that there is room for improvement regard-

ing the relative geolocation correction of satellite RPCs.

This work unveiled some clues about which scenarios seem

to be more prone to failure for each method, but further

research needs to be carried out on a larger scale to confirm

the presented findings and draw sound conclusions.

Future work. The conducted experiments highlighted

that sub-optimal selections of stereo pairs make it harder for

geolocation correction strategies to success. It was shown

that considering the distribution of pairwise matches can be

a valuable additional source of information to discard incon-

venient views or pairs. This insight could complement the

heuristics used in the literature to select input pairs, mainly

focused on the images metadata. The fact that the meta-

data affects the entire satellite images and is not particular

to specific areas of interest argues in favour of this idea.

Adjusting a set of correction rotations directly composed

with the original RPCs, without relying on the affine camera

approximation, may also be useful to handle larger AOIs.

Last but not least, the investigated algorithms are not

incompatible. Probably an intermediate two-step pipeline,

using bundle adjustment followed by an ideally redundant

DSM alignment would offer even higher robustness, since

both image data and geometry would be exploited.
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