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Abstract

Volumetric depth map fusion based on truncated signed

distance functions has become a standard method and is

used in many 3D reconstruction pipelines. In this paper, we

are generalizing this classic method in multiple ways: 1)

Semantics: Semantic information enriches the scene repre-

sentation and is incorporated into the fusion process. 2)

Multi-Sensor: Depth information can originate from dif-

ferent sensors or algorithms with very different noise and

outlier statistics which are considered during data fusion.

3) Scene denoising and completion: Sensors can fail to re-

cover depth for certain materials and light conditions, or

data is missing due to occlusions. Our method denoises the

geometry, closes holes and computes a watertight surface

for every semantic class. 4) Learning: We propose a neural

network reconstruction method that unifies all these proper-

ties within a single powerful framework. Our method learns

sensor or algorithm properties jointly with semantic depth

fusion and scene completion and can also be used as an

expert system, e.g. to unify the strengths of various photo-

metric stereo algorithms. Our approach is the first to unify

all these properties. Experimental evaluations on both syn-

thetic and real data sets demonstrate clear improvements.

1. Introduction

Holistic 3D scene understanding is one of the central

goals of computer vision research. Tremendous progress

has been made within the last decades to recover accurate

3D scene geometry with a variety of sensors [8, 23, 35]

and image-based 3D reconstruction methods [19, 49, 39].

With the breakthrough in machine learning, algorithms that

recover 3D geometry increasingly include semantic infor-

mation [26, 20, 21, 1, 5, 31, 10, 14, 12, 6, 43] in order to

improve the algorithm robustness, the accuracy of the 3D

reconstruction and to provide a richer scene representation.

Many consumer products like smartphones, game consoles,

augmented and virtual reality devices, as well as cars and

household robots are equipped with an increasing amount
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Figure 1. Depth map fusion of Kinect and photometric stereo.

Our fusion approach learns sensor noise and outlier statistics and

accounts them via confidence weights in the fusion process. This

yields more accurate and more complete semantic reconstructions.

of cameras and depth sensors. Computer vision systems

can highly benefit from this trend by leveraging multiple

data sources and providing richer and more accurate results.

In this paper, we address the problem of multi-sensor depth

map fusion for semantic 3D reconstruction.

Nowadays, depth can be estimated very robustly from

multiple and even single RGB images [43]. Nevertheless,

depending on the camera, scene lighting, as well as the ob-

ject and material properties, the noise statistics of computed

depth maps can vary largely. Moreover, popular depth sen-

sors like the Kinect have varying noise statistics [54] de-

pending on the depth value and the pixel distance to the

image center. They also have trouble recovering depth on

object edges as well as on light reflecting or absorbing sur-

faces, but perform well on low-textured surfaces and within

short depth ranges. In contrast, image-based stereo meth-

ods usually perform well on object edges and across a wide

depth range, but fail on low-textured surfaces and have com-

parably high noise and outlier rates.

While traditional methods have tried to model these ef-

fects, they usually impose strong assumptions about noise

distribution, or they require tedious calibration to estimate

all parameters [54]. In contrast, we leverage the strength

of machine learning techniques to extract sensor properties

and scene parameters automatically from training data and

use them in form of confidence values for a more accurate

semantic depth map fusion. Fig. 1 shows example output of

our method. In sum, we make the following contributions:



• We propose the first method to unify semantic 3D recon-

struction, scene completion and multi-sensor data fusion

into a single machine-learning-based framework. Our ap-

proach uses only few model parameters and thus needs

only small amounts of training data to generalize well.

• Our method analyses the sensor output and learns depth

sensor-specific noise and outlier statistics which are con-

sidered when estimating confidence values for the TSDF

fusion. For the case that the depth source is an algorithm

we feed in both information about the depth output and

information about the input patches such that out network

is better able to learn when the algorithm typically fails.

• Besides the multi-sensor data fusion, our approach can

also be used as an expert system for multi-algorithm

depth fusion in which the outputs of various stereo meth-

ods are fused to reach a better reconstruction accuracy.

2. Related Work

Volumetric Depth Fusion. In their pioneering work, Cur-

less and Levoy [9] proposed a simple and effective method

to fuse depth maps from multiple views by averaging trun-

cated signed distance functions (TSDFs) within a regular

voxel grid. With the broad availability of low-cost depth

sensors like the MS Kinect, this method became very pop-

ular with influential works like KinectFusion [23] and its

numerous extensions, like voxel hashing [36] or voxel oc-

trees [42]. This depth fusion method has become standard

for SLAM frameworks like InfiniTAM [24] and was further

generalized to account for drift and calibration errors, e.g.

ElasticFusion [51], BundleFusion [13], but also for 3D re-

construction frameworks [53, 29, 20, 21, 12, 6].

All these methods have in common that TSDF fusion is

performed via simple uniformly weighted averaging. Hence

these methods do not account for the fact that depth mea-

surements may exhibit different noise and outlier rates. This

has been tackled by probabilistic fusion methods.

Probabilistic Depth Fusion. Probabilistic approaches ex-

plicitly model sensor noise, typically with a Gaussian dis-

tribution. A very simple approach with only 2.5D output

and a Gaussian noise assumption can be found in [16]. A

point-based fusion approach is proposed in [25]. Instead

of a voxel grid, the fusion updates are directly performed

on a point cloud. This has been extended to anisotropic

point-based fusion in [34] to account for different noise lev-

els when a surface is observed from a different viewing an-

gle. For a fixed-topology the mesh-based fusion approach

by [56] fuses depth information over various mesh resolu-

tions. A more complex probabilistic fusion method is pro-

posed in [52] which includes long range visibility constraint

in their online fusion method. A similar model with long-

range ray-based visibility constraints was used in [47, 46],

although these methods are not real-time capable. Recently,

PSDF Fusion [15] demonstrated a combination of proba-

bilistic modeling and a TSDF scene representation. How-

ever, they also assume a Gaussian error distribution of the

input depth values. Overall, probabilistic approaches han-

dle noise and outliers better than traditional TSDF fusion

methods. Nevertheless, the majority of these methods im-

pose strong assumptions about the sensor error distributions

to define the prior model. The first method that implicitly

learns an unknown error distribution during the fusion is

OctNetFusion by Riegler et al. [38]. They jointly learn the

splitting of the octree scene representation, but multiple sen-

sors or semantic information are not considered.

Multi-Sensor Data Fusion. Early approaches like Zhu et

al. [55] fuse time-of-flight depth and stereo, but only for a

2.5D depth map. Kim et al. [27] fuse the same sensor com-

bination with 3D via a probabilistic framework on a voxel

grid. Work by [7] strives for low-level data fusion to im-

prove the Kinect output with stereo correspondences. As

an extension of [16], Duan et al. [17] use a probabilistic

approach for the fusion of Kinect and Stereo in real-time.

None of the current multi-sensor depth fusion networks is

able to incorporate semantic information and their general-

ization is usually non-trivial.

3D Reconstruction with Confidences. A wide range of

3D reconstruction approaches estimate confidence values

for depth hypotheses which are then later used for adap-

tive fusion. All these approaches typically use either hand-

crafted confidence weights [18, 48, 30] rather than learning

them intrinsically from data or they learn only 2D score map

without learning their 3D fusion [37, 45, 44, 50].

Semantic 3D Reconstruction and Scene Completion.

Joint semantic label estimation and 3D geometry has been

proposed with traditional energy-based methods to estimate

depth maps [32] or dense volumetric 3D [26, 20, 21, 1, 5,

31]. Machine learning-based approaches have pushed the

state of the art in reconstructing and completing 3D scenes

[10, 14, 12, 6]. These methods are not real-time capable,

but real-time fusion of CNN-based single-image depth and

semantics has recently been presented in CNN-SLAM [43].

So far none of the semantic 3D reconstruction ap-

proaches is able to properly handle multiple sensors with

different noise characteristics and their extension is not

straightforward. Our goal is a general framework which

unifies all the previously discussed properties within a

learning-based method.

3. Method

For performing semantic 3D reconstruction, our method

requires as input a set of RGB-D images and their corre-

sponding 2D semantic segmentations as shown in Fig. 1.

The semantic segmentations can be fused into the TSDF

representation of the scene, using [20]. In the following, we
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Figure 2. Network architecture. Our network consists of two connected networks which are jointly trained. Left: Sensor Confidence

Network which aggregates voxel-wise confidence values for each sensor. First we fuse semantic TSDFs (yellow) and aggregate features

(green) from the input depth maps and images. Then a small fully connected network with ReLU activations processes the features and

predicts a confidence weight (magenta). Right: Semantic 3D Reconstruction Network which performs 3D reconstruction, denoising and

scene completion. This network consists of special layers (blue) which minimize an energy that denoises and completes the scene within a

multi-grid setting and finally outputs semantically labeled occupancy grid (red). The right network part corresponds to the one in [6].

describe how we can robustly produce an accurate TSDF by

fusing measurements from multiple depth sensors.

Key idea. We consider multiple depth sensors which pro-

duce a set of depth maps by scanning a scene. The most

common approach to data fusion consists in fusing all the

depth maps, regardless of the sensor that produced them,

into a TSDF representation of the scene. However, this does

not reflect the specific noise and outliers statistics of each

measurement. We propose to overcome this issue by learn-

ing a confidence estimator for every sensor that weights the

measurements before fusing them. For each sensor, we can

produce a TSDF representation of the scene by fusing the

corresponding depth maps. Our method learns to estimate

confidence values for every voxel in TSDF, such that the

accuracy of the semantic 3D reconstruction is maximized.

We propose an end-to-end trainable neural network ar-

chitecture which can be roughly separated into two parts:

a sensor confidence network which predicts a confidence

value for each sensor measurement, and a semantic 3D re-

construction network which takes all aggregated noisy mea-

surements and corresponding confidences and performs se-

mantic 3D reconstruction.

The overall network structure is depicted in Fig. 2 and

the individual network parts are detailed in the following

subsections.

3.1. Sensor Confidence Network

Weighted TSDF Fusion. A sensor i produces a set of

depth maps that can be fused into a TSDF fi, following

[9]. We learn to estimate corresponding confidence maps

ci, where for every voxel x, ci(x) is the confidence for the

measurement fi(x). The fusion of all the sensor measure-

ments is then computed via a point-wise weighted average:

f(x) =

∑

ci(x)fi(x)
∑

ci(x)
(1)

Goal. The purpose of the confidence weight learning

for multi-sensor TSDF fusion is twofold: 1) Intra-Sensor

Weighting: The network captures the noise and outlier

statistics among measurements thus producing a spatially

varying confidence map, e.g. points that are mostly ob-

served from a far distance can get a lower confidence than

those mainly observed from a closer distance. 2) Inter-

Sensor Weighting: The network analyses the noise and

outlier statistics among different sensors in order to weight

them against each other. In this regard the network also

accounts for normalization which is important if there are

different amounts of data available from different sensors.

This avoids for instance a bias towards a sensor with a

higher frame rate.

Feature extraction. We aggregate features from the input

data which we believe will help the network to estimate a re-

liable confidence value. Ideally, we could feed all input data

into our confidence network and the network could identify

important features for the confidence estimation on its own,

but the amount of input data for the scenes we consider in

this paper renders this infeasible. Therefore, our selected

feature set is certainly not exhaustive and there might be

other useful features or better feature combinations. How-

ever, we found all of them improving the reconstruction re-

sults. For each sensor k and each voxel, we extract the fol-

lowing m = 13 features {vlk}
m
l=1:

• Average 3×3 patches in depth image (9 values): Ana-

lyzing neighboring depth values helps to identify outliers

in the depth map (Fig. 3).

• Mean and standard deviation of image gradient norm

on 3×3 patches (2 values): Especially for stereo meth-

ods the average gradient norm of a patch indicates how

much gradient information is contained in the patch. Ho-

mogeneously colored patches should lead to low confi-

dence values.

• Mean and standard deviation of normalized cross cor-

relation (NCC) of stereo 5×5 patches (in case of stereo



Figure 3. Voxel-wise feature extraction. Extraction of the av-

erage depth on a 3x3 patch. The voxel is back-projected onto

the depth maps, and the patches are centered around the back-

projections (represented in red). This approach is identical for the

extraction of the gradient and patch similarity features.

algorithms) (2 values): NCC is an established measure

for estimating patch similarity for stereo methods. If the

patches do not match well, or there is a high variance

of NCC values among patches voting for the same point,

then the confidence value should be reduced.

This set of features is then processed for each voxel indi-

vidually by a small neural network which estimates a confi-

dence weight for a single voxel (magenta in Fig. 2).

Confidence Network Architecture. The small con-

fidence estimation networks have identical structure for

each sensor and identical weights for each voxel of a sen-

sor. They consist of 5 fully connected neural layers with

ReLU activations and with a decreasing number of neurons

{100, 50, 20, 10, 1}. The last layer is initialized with biases

equal to one such that the initial confidence values are equal

for each sensor. The remaining weights are initialized ran-

domly. The output of the confidence networks are then ag-

gregated into a single TDSF volume which serves as input

for a semantic 3D reconstruction network.

3.2. Semantic 3D Reconstruction Network

Our approach learns in an end-to-end fashion how to

jointly perform data fusion and semantic 3D reconstruction.

The data fusion should facilitate the semantic 3D recon-

struction by providing additional and more complete infor-

mation about the scene. To perform the reconstruction, we

use the architecture introduced in [6] which leverages the

benefits of neural networks and variational methods. The

fundamental principle of the method is to compute a con-

sistent voxel labeling from noisy and incomplete depth such

that semantic voxel transitions are statistically similar to the

transitions previously seen in the training data. For instance,

a bed should be standing on the ground, with vertical tran-

sitions to the ground below and the free space above, while

a wall should have a horizontal transitions to free space.

The motivations are the following:

• The architecture, which relies on the principles of total

variation segmentation and inpainting, contains very few

parameters to learn due to weight sharing. Due to the few

parameters the network does not need much training data

which is beneficial since only few and small real data sets

are available for training.

• The compact architecture allows to easily extend the net-

work to estimate further parameters for the data fusion

and still allows to process larger scenes with more then

15M voxels.

• The energy formulation allows us to incorporate an ar-

bitrary number of sensors into the 3D reconstruction

method, which is more difficult with standard feed-

forward architectures.

Variational method. We briefly describe the working

principles of the reconstruction network. More details can

be found in [6]. At its core, the network minimizes an en-

ergy such that the solution corresponds to a scene with label

transition statistics that match the training data. We define

Ω the voxel grid, and write the energy as:

minimize
u

∫

Ω

(

‖Wu‖2 +
∑

s∈S

(cs◦fs) u
)

dx (2)

subject to ∀x∈Ω :
∑

ℓ∈L

uℓ (x)=1

In Eq. (2), u is the voxel labeling we optimize for, defined

such that uℓ(x) ∈ [0, 1] is the probability that label ℓ is

given to voxel x. The operator ◦ denotes element-wise mul-

tiplication (Hadamard product). The operator W is a regu-

larizer that enforces the labeling to respect certain condi-

tions on the semantic transitions (e.g. the bed stands on the

ground). During training, W is learned to capture typical

scene statistics. This can be implemented as a convolution

which locally compares voxels to their neighborhood, thus

verifying the semantic transitions.

The energy (2) is numerically minimized with a first-

order algorithm [3]. To this end, dual variables ξ, ν are

introduced to account for the non-differentiability and the

constraint in Eq. (2), leading to the following equivalent dis-

cretized saddle point energy

minimize
u

max
‖ξ‖∞≤1

〈Wu, ξ〉+
∑

s∈S

〈cs◦fs, u〉+ ν
(

1−
∑

ℓ∈L

uℓ

)

(3)

The numerical minimization iterations are unrolled and

each layer of our network (blue cylinders in Fig. 2) per-

forms the following updates to minimize energy (3). The
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Figure 4. Ablation study on SUNCG. For each step we report average semantic accuracy on the whole dataset. Average depth patches for

confidence estimation are marked by d, and gradient mean and standard deviation by g. ”Full” means that all views were used, whereas

”half” means that views were split in two parts. Former refers to noise canceling, and latter to scene completion.

inputs and outputs of each layer are shown on the left.
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νt+1 = νt+σ (
∑

ℓ ū
t
ℓ − 1)

ξt+1 = Π‖·‖≤1 [ξ
t + σWūt]

ut+1 = Π[0,1]

[

ut−τ(W ∗ξt+1+

νt+1+
∑

s∈S cs◦fs)
]

ūt+1 = 2ut+1 − ut

(4)

For better readability these steps show the single resolution

variant. For the multi-grid version the update steps for ξ and

u change slightly (please see [6] for more details).

4. Experiments

Setup and Implementation. The entire framework has

been implemented in Python/Tensorflow and runs on a com-

puter with E5-2630 processor and an NVidia GTX 1080

Ti GPU running a recent Linux distribution. The network

training was done with the ADAM optimizer [28], with

learning rate 0.0001 and batch size 4. All training sam-

ples were random crops of the input data of dimension

(24, 24, 24). Then every crop was randomly rotated around

the z-axis and randomly flipped along x and y axes. The

network was trained for 1000 epochs, which was enough to

converge for all datasets. One epoch iterated once over all

scenes. The number of hierarchical levels was set to 3 and

number of unrolled optimization iterations to 50, as in [6].

On average training required about 3 hours for 1000 epochs.

Inference of one scene takes 3 to 5 minutes on GPU.

Datasets. The experiments were done on three datasets:

SUNCG [41], ScanNet [11] and ETH3D [40]. For every

dataset and experiment we measure semantic and free-space

accuracy. Semantic accuracy (SA) is defined as a ratio of

occupied voxels (i.e. non free space) for which the partic-

ular semantic label was estimated correctly, divided by the

total number of occupied voxels. Similarly, the free-space

accuracy (FA) is a ratio of voxels, for which the unique free-

space label was estimated correctly, divided by the number

of free-space voxels. Splitting accuracy into two parts helps

to account for domination of free-space voxels in all scenes.

Then, the loss function is defined as categorical cross en-

tropy, separately computed for semantic voxels as Ls and

free-space voxels as Lf , which are then added together to

compute the total loss L = Ls + λfLf . We set λf = 1.5 to

achieve better semantic reconstructions.

4.1. SUNCG

The artificial data origin of the SUNCG dataset with 38

semantic labels enables full control of the data fusion. All

components of the method are examined on this dataset with

an ablation study. We simulate several different depth sen-

sors, such as a perfect sensor, Kinect and different stereo

algorithms.

The baseline is a recent work by Cherabier et al. [6]



A) SGBM [22]: 0.71 B) BM [2]: 0.71 C) PSMNet [4]: 0.69 D) FCRN monocular [33]: 0.44

A+B+C (d): 0.72 A+B+C (d, g): 0.725 A+B+C (d, g, n): 0.735 A+B+C+D (d, g): 0.73

Figure 5. Close-up views for the expert system experiment with learned fusion of 4 stereo algorithms: Block Matching (BM) [2],

Semi-Global Block Matching (SGBM) [22], PSMNet [4], FCRN monocular [33]. The top row contains TSDF fusion results from each

of the stereo algorithms separately, whereas the bottom row provides results of different algorithm combination as well as different types

of input used for confidence estimation. Average depth patches for confidence estimation are denoted by d, gradient mean and standard

deviation by g, and average normalized cross correlation of stereo patches by n. FCRN is a monocular method and thus n cannot be

computed. For each method we report average semantic accuracy on the whole dataset.

where they use a simple averaging of input TSDF vol-

umes trained with the network without confidence estima-

tion module. We add gradually the following input mea-

surements: average 3×3 depth patches, mean and standard

deviation of gradients, mean and standard deviation of nor-

malized cross-correlation between stereo patches in case of

a stereo algorithm.

Training and validation sets were created by randomly

selecting 100 and 30 scenes respectively. Qualitative results

for a selected scene and quantitative results on the whole

dataset are shown in Fig. 4. Every input brings an increase

in performance, measured by semantic and free-space accu-

racy. Quantitative results contain only semantic accuracy.

The free-space accuracy was close to 0.95 with small de-

viations in all settings. The increase in accuracy is small,

but the values approach the upper limit given by the perfect

sensor and the reconstructions look better visually.

4.2. Stereo Expert System

The proposed method was applied to create an expert

system for stereo algorithms. We used the following four

methods for stereo depth estimation:

• Pyramid Stereo Matching Network (PSMNet) [4] – 3D

CNN architecture with spatial pyramid pooling module

for depth map estimation from a stereo pair.

• Depth Prediction with Fully Convolutional Residual Net-

works (FCRN) [33] – fully convolutional architecture

with residual learning which is trained to estimate depth

map from a single RGB image.

Method TP rate Distance SA FA

Input 0.507 3.376 0.55 0.79

ScanComplete [14] 0.588 2.527 0.47 0.90

Standard TSDF in [6] 0.837 1.606 0.79 0.96

Proposed 0.953 1.410 0.90 0.97

Table 1. Quantitative results on the ScanNet dataset [11]. We

report true positive (TP) rate of completion, average surface dis-

tance to the ground truth, semantic accuracy (SA) and free-space

accuracy (FA). The comparison demonstrates that our method per-

forms better than the baselines [6, 14].

• Semi-Global Block Matching (SGBM) [22] – classical

method (by H. Hirschmuller), which matches blocks of a

given size in a pair of images using mutual information.

• Block Matching (BM) [2] – a version of block matching

algorithm provided by K. Konolige.

At first, we trained a network without confidence values on

each of the stereo algorithms separately. Then, a fused com-

bination of these methods with learned confidence values

was trained. Fig. 5 shows that the learned fusion performs

better than any of the stereo methods on its own. More im-

portantly, the learned fusion results are less noisy, more ac-

curate and complete. The stereo system results can be com-

pared to results of other sensor fusion models in Fig. 4.

4.3. ScanNet

Previous two experiments were done on a synthetic

dataset. The next evaluation on ScanNet [11] dataset shows

that the method is able to perform well also on real data.

However, the dataset contains only measurements from one
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Standard TSDF in [6] ScanComplete [14] Learned Fusion (ours) Ground Truth

Figure 6. Our learned fusion approach in comparison to standard TSDF averaging in [6]. We fuse real world Kinect data with

an artificially noised Kinect sensor. Our approach leads to less artificats, more consistent semantic labels and better accuracy scores in

comparison to the ground truth data. Top row: Estimated confidence values from input measurement on ScanNet dataset. Middle and

bottom rows: The proposed learned fusion in comparison to datacost averaging in [6], ScanComplete [14] and ground truth.

Dataset Fusion Method SA FA

ETH3D
Standard TSDF in [6] 0.50 0.96

Learned (proposed) 0.59 0.97

Table 2. Evaluation on the ETH3D dataset [40]. We report se-

mantic accuracy (SA) and free-space accuracy (FA). The proposed

learned fusion outperforms the baseline [6] with standard TSDF

fusion, when used with different sensors.

sensor, Kinect. In order to create an additional sensor, we

simulated an artificial noisy Kinect with outliers modeled

by Gaussian noise with zero mean and standard deviation of

2 meters with probability of 1%. We used 7 training scenes

and 5 validation scenes from the hotel bedroom category,

which have 9 semantic labels. Ground truth was obtained

by running total variation on all views, whereas only every

10th view was used for further fusion. The proposed fu-

sion method was compared to two state-of-the-art baselines,

Cherabier et al. [6] with simple averaging of TSDF volumes

and ScanComplete [14]. ScanComplete also optimizes ge-

ometry, but is not designed for sensor fusion. Hence, this

method performs worse when we input uniformly averaged

multi-sensor data. ScanComplete is trained on SUNCG and

fine-tuning on ScanNet is difficult due to incompleteness as

already stated by the authors and thus omitted.

Tab. 1 shows various performance scores of the input ge-

ometry in comparison to the completed results. The pro-

posed learned fusion improves semantic accuracy of [6] by

11%. Volumes with estimated confidence values are visu-

alized in Fig. 6, together with two selected reconstructed

validation scenes. Learned confidence values in the top row

show that the network is able to learn different weights for

artificially created noisy Kinect sensor and downscales oc-

casional noisy pixels. Voxels outside walls are not down-

scaled and not penalized, because they are part of the un-

known label which is not included in the loss function. For

the non-noisy Kinect, the confidence values are decreasing

for voxels further away from the center. The Kinect sensor

is known to have less precise measurements with increasing

depth [54] and this was learned by the network.

4.4. ETH3D

The last experiment on ETH3D dataset is done to con-

firm that the proposed method is able to work not only

on real data, but also with several real sensors. ETH3D

dataset [40] comprises multi-view images with high reso-

lution camera, as well as with low resolution camera rigs.

The ground truth is given by a laser scan.

We again tested that the joint learned fusion performs



Ground Truth Standard [6] (Geometry) Standard [6] (Error) Learned (Geometry) Learned (Error)

Figure 7. Experiment on ETH3D. Two top rows contain the first training scene – delivery area, and two middle rows another training

scene – terrains. Two bottom rows contain the validation scene – playground. For each scene we show a full view and a close-up view.

The distance to the ground truth (error) is color-coded by a gray color where the distance is less than 5 voxels (correct reconstruction) and

blue-green-yellow-red color scale for outliers. Black voxels denote regions where the ground truth geometry was not reconstructed.

better than [6] with simple TSDF averaging. Training set

had two scenes, delivery area and terrains, whereas val-

idation set consisted of a single scene playground. Only

these three scenes contain measurements from both sensors,

which explains the used set size. The resolution was set to 8

cm, which gives scenes large enough for training. The num-

ber of parameters to learn is low and the results show that

only several scenes are enough to train the model. The label

set consists of only two labels, free-space and occupied-

space, as no semantic ground truth is available.

Tab. 2 contains quantitative results on ETH3D dataset,

where the increase in semantic accuracy is 9%. Fig. 7 shows

visualized reconstructions of all scenes with one close-up

view for each scene. The learned fusion is able to provide

more complete reconstructions and it does not contain as

many separate outlier semantic voxels in ground truth free-

space. The error is measured as distance to the ground truth

with gray color regions representing the correct reconstruc-

tion with error less than 5 voxels.

5. Conclusion

We proposed a novel machine learning-based depth fu-

sion method that unifies semantic depth integration, multi-

sensor or multi-algorithm data fusion as well as geometry

denoising and completion. We substantially generalize the

recent semantic 3D reconstruction method [6] to incorpo-

rate an arbitrary amount of depth sensors. To balance the

contribution of each sensor according to their noise statis-

tics, we extract features from the sensor data and learn the

network to predict suitable confidence weights for each sen-

sor and each point in space. Our approach is generic and can

also learn reliability statistics of different stereo algorithms.

This allows us to use the method as an expert system that

weights and fuses the outputs of all algorithms, providing a

result that is better than of any individual algorithm.
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[20] Christian Häne, Christopher Zach, Andrea Cohen, Roland

Angst, and Marc Pollefeys. Joint 3d scene reconstruction

and class segmentation. In Proc. International Conference

on Computer Vision and Pattern Recognition (CVPR), pages

97–104, 2013. 1, 2
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