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Abstract

3D Human Body Reconstruction from a monocular im-

age is an important problem in computer vision with ap-

plications in virtual and augmented reality platforms, ani-

mation industry, en-commerce domain, etc. While several

of the existing works formulate it as a volumetric or para-

metric learning with complex and indirect reliance on re-

projections of the mesh, we would like to focus on implic-

itly learning the mesh representation. To that end, we pro-

pose a novel model, HumanMeshNet, that regresses a tem-

plate mesh’s vertices, as well as receives a regularization

by the 3D skeletal locations in a multi-branch, multi-task

setup. The image to mesh vertex regression is further reg-

ularized by the neighborhood constraint imposed by mesh

topology ensuring smooth surface reconstruction. The pro-

posed paradigm can theoretically learn local surface defor-

mations induced by body shape variations and can there-

fore learn high-resolution meshes going ahead. We show

comparable performance with SoA (in terms of surface and

joint error) with far lesser computational complexity, mod-

eling cost and therefore real-time reconstructions on three

publicly available datasets. We also show the generalizabil-

ity of the proposed paradigm for a similar task of predict-

ing hand mesh models. Given these initial results, we would

like to exploit the mesh topology in an explicit manner going

ahead.

1. Introduction

Recovering a 3D human body shape from a monocu-

lar image is an ill-posed problem in computer vision with

great practical importance for many applications, including

virtual and augmented reality platforms, animation indus-

try, e-commerce domain, etc. Some of the recent deep

Figure 1: We present an early method to integrate Deep

Learning with the sparse mesh representation, to success-

fully reconstruct the 3D mesh of a human from a monocular

image

learning methods employ volumetric regression to recover

the voxel grid reconstruction of human body models from a

monocular image [31, 29]. Although volumetric regression

enables recovering a more accurate surface reconstruction,

they do so without an animatable skeleton [31], which limits

their applicability for some of the aforementioned applica-

tions. [29] attempted to overcome this limitation by fitting

a parametric body model on the volumetric reconstruction

using a sillhoute reprojection loss. Nevertheless, in gen-

eral, such methods yield reconstructions of low resolution at

higher computational cost (regression over the cubic voxel

grid) and often suffer from broken or partial body parts.

Alternatively, the parametric body model [2, 15, 23]

based techniques address some of the above issues, how-



Figure 2: Overview of our Multi-Task 3D Human Mesh Reconstruction Pipeline. Given a monocular RGB image (a), we first

extract a body part-wise segmentation mask using [1] (b). Then, using a joint embedding of both the RGB and segmentation

mask (c), we predict the 3D joint locations (d) and the 3D mesh (e), in a multi-task setup. The 3D mesh is predicted by first

applying a mesh regularizer on the predicted point cloud. Finally, the loss is minimized on both the branches (d) and (e).

ever, at the cost of accurate surface information [24, 10, 3,

14]. Recently, several end-to-end deep learning solutions

for estimating the 3D parametric body model from a monoc-

ular image have been proposed [12, 27, 28, 20, 19, 33].

They all attempt to estimate the pose (relative axis-angles)

and shape parameters of the SMPL [15] body model, which

is a complex non-linear mapping. To get around this

complex mapping, several methods transform them to ro-

tation matrices [19, 20] or learn from the 2D/3D key-

point and silhouettes projections (a function of the parame-

ters) [19, 12, 20]. Additionally, [12] proposes an alternate

method for training (Iterative Error Feedback) as well as a

body joint specific adversarial losses, which takes upto 5

days to train. In other words, learning the parametric body

model hasn’t been straightforward and has resulted in com-

plex and indirect solutions that actually rely on different

projections of the underlying mesh.

Directly regressing to point cloud or mesh data from im-

age(s) is a severely ill-posed problem and there are very few

attempts in deep learning literature in this direction [32, 18].

With regard to point cloud regression, most of the attempts

have focused on rigid objects, where learning is done in a

class specific manner. Apart from a very recent work [13],

learning a mesh hasn’t been explored much for reconstruc-

tion, primarily because of lack of deep learning constructs

to do so.

In this paper, we attempt to work in between a generic

point cloud and a mesh - i.e., we learn an ”implicitly struc-

tured” point cloud. We hypothesize that in order to per-

form parametric body model based reconstruction, instead

of learning the highly non-linear SMPL parameters, learn-

ing its corresponding point cloud (although high dimen-

sional) and enforcing the same parametric template topol-

ogy on it is an easier task. This is because, in SMPL like

body models, each of the surface vertices is a sparse linear

combination of the transformations induced by the under-

lying joints i.e., implicitly learning the skinning function

by which parametric models are constructed is easier than

learning the non-linear axis-angle representation itself (pa-

rameters). Further, such models lack high-resolution local

surface details as well. Therefore, there are far fewer ”repre-

sentative” points that we have to learn. In comparison with

generic point cloud regression as well, this is an easier task

because of this implicit structure that exists between these

points.

Going ahead, attempting to produce high resolution

meshes are a natural extension that is easier in 3D space

than in the parametric one. Therefore, we believe that this

is a direction worth exploring and we present an initial so-

lution in that direction - HumanMeshNet that simultane-

ously performs shape estimation by regressing to template

mesh vertices (by minimizing surface loss) as well receives

a body pose regularisation from a parallel branch in multi-

task setup. The image to mesh vertex regression is further

explicitly conditioned on the neighborhood constraint im-

posed by the mesh topology, thus ensuring a smooth sur-

face reconstruction. Figure 2 outlines the architecture of

HumanMeshNet.

Ours is a relatively simpler model as compared to the

majority of the existing methods for volumetric and para-

metric model prediction (e.g., [29]). This makes it effi-

cient in terms of network size as well as feed forward time

yielding significantly high frame-rate reconstructions. At

the same time, our simpler network achieves comparable



accuracy in terms of surface and joint error w.r.t. major-

ity of state-of-the-art techniques on three publicly available

datasets. The proposed paradigm can theoretically learn lo-

cal surface deformations induced by body shape variations

which the PCA space of parametric body models can’t cap-

ture. In addition to predicting the body model, we also show

the generalizability of our proposed idea for solving a sim-

ilar task with different structure - non-rigid hand mesh re-

constructions from a monocular image.

To summarize, the key contributions of this work are:

• We propose a simple end-to-end multi-branch, multi-

task deep network that exploits a ”structured point

cloud” to recover a smooth and fixed topology mesh

model from a monocular image.

• The proposed paradigm can theoretically learn local

surface deformations induced by body shape variations

which the PCA space of parametric body models can’t

capture.

• The simplicity of the model makes it efficient in terms

of network size as well as feed forward time yielding

significantly high frame-rate reconstructions, while si-

multaneously achieving comparable accuracy in terms

of surface and joint error, as shown on three publicly

available datasets.

• We also show the generalizability of our proposed

paradigm for a similar task of reconstructing the hand

mesh models from a monocular image.

2. Related Work

Estimating 3D Body Models: The traditional approach

for parametric body model fitting entails iteratively optimiz-

ing an objective function with 2D supervision in the form of

silhouettes, 2D key points etc [24, 10, 3, 14]. However, they

often involve manual intervention and are time-consuming

to solve as well as susceptible to converge at local optima.

On the deep learning front, [12] proposes an iterative

regression with 3D and 2D joint loss as a feedback and an

adversarial supervision for each joint. However, this archi-

tecture has a large number of networks and takes 5 days

to train. [19] predicts a colour-coded body segmentation

that is used as a prior to predict the parameters. Similarly,

in [20], 2D heatmaps and silhouettes are predicted first,

which are then used to predict the pose and shape param-

eters. All of the above methodologies calculate the loss on

2D keypoints or silhouette projections of the rendered mesh,

which significantly slows down training time (due to model

complexity), in addition to requiring additional supervision.

[29] proposes a complex multi-task network with a total

of six networks (having respective losses computed on 2D

and 3D joint locations, 2D segmentation mask, volumetric

grid and silhouette reprojection of volumetric and SMPL

model). This makes it a significantly heavy network with

a longer feed forward time. The focus of reconstruction is

to retrieve the boundary of the subject in 3D space. How-

ever, in a volumetric representation, predicting the volume

within the surface is counterproductive. On the other hand,

we focus on direct image to mesh vertex regression for re-

covering the surface points. The most recent state-of-the-art

work proposed in [13] also recovers sparse surface points

using Graph Neural Network(GCN). However GCNs expe-

rience troubles learning the global structure because of its

neighbourhood aggregation scheme [34].

Estimating Hand Models: While most of the hand re-

covery methods typically estimate the 3D pose from one or

multiple RGB/Depth images, hand shape estimation hasn’t

been extensively explored. For a detailed survey of the field,

we refer to [26, 35]. Recent effort in [17] was the first at-

tempt to predict both the pose and the vertex based full 3D

mesh representation (surface shape) from a single depth im-

age. The recently proposed MANO [23] model is an SMPL

like model that describes both the shape and pose, and is

learned from thousands of high resolution scans. [5] pre-

dicted the MANO parameters from a monocular RGB im-

age, but, they don’t show much shape variations. [8] use

a graph CNN to recover the hand surface from monocular

RGB image of the hand.

3. Proposed Method: HumanMeshNet

In order to learn this structured point cloud, we use an

encoder- and multi-decoder model, which we describe in

this section. Figure 2 gives an overview of our end-to-end

pipeline. Our model consists of three primary phases:

Phase 1 - RGB to Partwise Segmentation: Given an input

RGB image of size 224x224, we first predict a discrete

body part label for each pixel in the input image (for a total

of 24 body parts) using just the body part labeling network

from [1]. A part-wise segmentation enables a tracking of

the human body in the image, making it easier for shape

estimation.

Phase 2 - Image Encoders and Joint Embedding: Both

the RGB image and segmentation mask are passed through

separate encoders, each a Resnet-18, and their respective

CNN feature vectors, each of dimension 1000 are concate-

nated together to obtain a joint embedding.

Such fusion of RGB and segmentation mask was

employed to combine complementary information from

each modality. This is important as a segmentation mask

predictions can be very noisy in many scenarios (see

Figure 3), e.g., low lighting, distance of the person from

the camera, sensing noise, etc., leading to failures like

interchanged limbs or missing limbs.



(a) (b) (c) (d)

Figure 3: Noisy Segmentation Masks predicted from im-

ages (a) and (c) in Phase 1. The figure shows (b) missing

body part masks (d) confusing between leg limbs.

Phase 3 - Multi-branch Predictions: From our concate-

nated feature embedding, we branch out into two com-

plementary tasks via Fully Connected layers (FCs). Each

branch consists of two FCs, each of dimension 1000 fol-

lowed by the respective output dimensions for the 3D joints,

and 3D surface respectively. It is to be noted that our pre-

dictions are in the camera frame.

Loss Function. We use a multi-branch loss functions to

train our network i.e, LS , LJ and LJS . We regularized the

loss functions such that they contribute equally to the over-

all loss. This translates to Equation 1.

L = LS + (λ1 ∗ LJ) + (λ2 ∗ LJS) (1)

The surface loss LS in Equation 2 gives the vertex-wise

Euclidean distance between the predicted vertices Vi and

ground truth vertices V̂i for the 3D mesh prediction branch

in Figure 2 (e).

LS =
∑

∀Vi

||Vi − V̂i||2 (2)

However, this loss does not ensure prediction of smooth sur-

faces as each vertex is independently predicted.

Nevertheless, each mesh vertex has a neighborhood

structure that can be used to further refine the estimate of

individual vertex. Here we make use of smoothing regular-

isation [25] (as shown in Equation 3), where the position of

each vertex, Vi, is replaced by the average position, of its

neighbours N(Vj).

Vi =
1

|N(Vi)|

∑

Vj∈N(Vi)

Vj ∀Vi (3)

This is achieved by first applying the smoothness mesh reg-

ularization given by Equation 3 and then calculating LS .

This helps in limiting the number of surface jitters or irreg-

ularities.

In order to enforce 3D joints consistency, we minimize

joint loss LJ defined in Equation 4, which gives the eu-

clidean distance between the predicted joints Ji and ground

truth joints Ĵi in the 3D joint prediction branch as shown in

Figure 2(d).

LJ =
∑

∀Ji

||Ji − Ĵi||2 (4)

The 3D joints JSi under the surface are recovered using

the SMPL joint regressor [15]. We also minimize the

loss LJS defined in Equation 5 which gives the euclidean

distance between the joints Ji predicted from the joints

branch and the joints JSi from the surface branch. It helps

both the branches to learn consistently with each other.

LJS =
∑

∀Ji

||Ji − JSi||2 (5)

Network Variants: We define two different variants of Hu-

manMeshNet in order to perform an extensive analysis:

(a) HumanMeshNet (HMNet) - The base version which

uses an ”off-the-shelf” body part segmentation net-

work ( [1]).

(b) HumanMeshNetOracle (HMNetOracle) - A refined

version using a more accurate body part segmentation

given by the dataset. However, in some datasets (e.g.,

UP-3D, [14]), these segmentation masks can be noisy

due to manual annotations.

4. Experiments & Results

In this section, we show a comprehensive evaluation of

the proposed model and benchmark against the state-of-the-

art optimization and deep learning based Parametric (P),

Volumetric (V) and Surface based (S) reconstruction algo-

rithms. It is to be noted that we train on each dataset sep-

arately and report on its given test sets. All of the trained

models and code shall be made publicly available, along

with a working demo. Please view our supplementary video

for more results.

4.1. Datasets

SURREAL [30]: This dataset provides synthetic image

examples with 3D shape ground truth. The dataset draws

poses from MoCap [11] and body shapes from body

scans [22] to generate valid SMPL instances for each

image. Although this dataset is synthetically generated,

it emulates complex real poses and shapes, coupled with

challenging input images that contain background clutter

and are reflective with low resolution. It has a total of 1.6

million training and 15,000 test samples.

UP-3D [14]: It is a recent dataset that collects color

images from 2D human pose benchmarks and uses an

extended version of SMPLify [3] to provide 3D human

shape candidates. The candidates were evaluated by human

annotators to select only the images with good 3D shape
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Figure 4: This figure depicts the quality of ground truth fits

provided on UP-3D. (a) The input RGB image is fit using

SMPLify [3] to give (b) the ground truth. Our fit (c) makes

use of more accurate markers or keypoints in a multi-branch

setup, to account for noisy ground truth mesh data.

fits. It comprises of 8,515 images, where 7,126 are used for

training and 1,389 for testing. However, the ground truth

meshes are sometimes inaccurately generated as shown

in Figure 4. We separately train the network and report

results on full test set of UP-3D.

Human3.6M [11]: It is a large-scale pose dataset that

contains multiple subjects performing typical actions like

”eating” and ”walking” in a lab environment. It consists of

a downsampled version of the original data with 300,000

image-3D joint pairs for training and 100,000 such for

testing. Since ground truth 3D meshes for any of the com-

monly reported protocols [4] for evaluation aren’t available

anymore, we finetune SURREAL-pretrained network using

joint loss only. We report the joint reconstruction error

(trained as per Protocol 2 of [4]) and therefore compare

with those methods that don’t use mesh supervision for this

dataset in Table 3.

4.2. Implementation Details

Data Pre-processing We use the ground truth bounding

boxes from each of the datasets to obtain a square crop

of the human. This is a standard step performed by most

comparative 3D human reconstruction models.

Network Training We use Nvidia’s GTX 1080Ti, with

11GB of VRAM to train our models. A batch size of 64 is

used for SURREAL and Human 3.6M datasets and a batch

size of 16 for UP3D dataset. We use the ADAM optimizer

having an initial learning rate of 10−4, to get optimal per-

formance. Attaining convergence on the SURREAL and

Human3.6M takes 18 hours each, while on UP-3D takes 6

hours. We use the standard splits given by the datasets, for

benchmarking, as indicated in Section 4.1.

Procrustes Analysis (PA) In order to evaluate the quality

of the reconstructed mesh, we also report results after

solving the Orthogonal Procrustes problem [9], in which

we scale the output to the size of the ground truth and solve

for rotation. Additionally, we also quantitatively evaluate

without this alignment.

Evaluation Metric

(a) Surface Error (mm): Gives the mean-per-vertex error

between the ground truth and predicted mesh.

(b) Joint Error (mm): Gives the mean-per joint error be-

tween the ground truth and predicted joints. All re-

ported results are obtained from the underlying joints

of the mesh, rather than the alternate branch, unless

otherwise mentioned.

(c) PA. Surface/Joint Error (mm): It is the surface/joint

error after Procrustes Analysis (PA).

4.3. Comparison with State-of-the-art

Baseline We define our baseline as the direct prediction of

a point cloud from an RGB image, using a Resnet-50. This

enables us to show the novelty introduced by our pipeline

and the usefulness of learning in this output space.

Results & Discussion For qualitative results on all of the

three datasets refer to Figures 5, 6. A large amount of

training data is required to learn a vast range of poses and

shapes. However, [30, 20] show a good domain transfer to

real data by training on the synthetic SURREAL dataset.

Since our supervision is dominated by surface meshes,

SURREAL plays an important role in benchmarking our

method. We show comparable performance on it, as indi-

cated by Table 2. In Table 2, we also show our results with

a subsampled mesh (subsampled as per [13]) from 6890

to 1723 vertices with almost no change in reconstruction

error. This is a good proof of our hypothesis that there are

far fewer representative points to learn in this structured

point cloud.

UP-3D is an ”in the wild” dataset, however, has inac-

curate ground truth mesh annotations, as shown in Fig-

ure 4. Most circumvent this issue, by avoiding 3D super-

vision altogether and projecting back to a silhouette or key-

points [12, 20]. Further, training on such a small dataset

doesn’t provide a good generalisation. Therefore, we ob-

serve a higher error in HMNet. However, HMNetOracle

produces a significant increase in accuracy with the increase

in quality of the input image and segmentation mask (Ta-

ble 4). Similar to state-of-the-art methods [29, 31, 13],

we rely on 3D body supervision and providing more super-

vision like silhouette and 2D keypoint loss like [29, 12]

can improve the performance further. For Human3.6m, we

compare with those that don’t use mesh supervision (since

this data is currently unavailable) and achieve comparable

performance.



(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

Figure 5: Qualitative Results on SURREAL [30] (first six columns) and UP-3D [14] (next six columns) where (a) represents

the input view, (b) our mesh reconstruction aligned to the input view, and (c) aligned to another arbitrary view.

Surface Joints PA. Surface PA. Joint

Output Method Error Error Error Error

P Pavlakos et al. [20] 117.7 - - -

P Lasner et al. [14] 169.8 - - -

P NBF [19] - - - 82.3

V BodyNet [29] 80.1 - - -

S Baseline 151.4 130.8 93.8 83.7

S HMNet 130.4 112.5 77.6 69.6

S HMNetOracle 60.3 51.5 42.9 37.9

Table 1: Comparison with other methods on UP3D’s full test set [14].

Surface Joint

Output Method Error Error

P

Tung et al. [28] 74.5 64.4

Pavlakos et al. [20] 151.5 -

SMPLR [16] 75.4 55.8

V BodyNet [29] 65.8 -

S
Baseline 101 85.7

HMNet[subsampled] 86.9 72.4

HMNet 86.6 71.9

HMNetOracle 63.5 49.1

Table 2: Comparison with state-of-the-art methods on SUR-

REAL’s test set [30].

3D mesh PA. Joint

Supervision Method Error

No

Ramakrishnan et al. [21] 157.3

Zhou et al. [36] 106.7

SMPLify [4] 82.3

SMPLify 91 kps [14] 80.7

Pavlakos et al. [20] 75.9

HMR [12] 56.8

HMNet(Ours) 60.9

Yes

NBF [19] 59.9

SMPLR [16] 56.4

CMR [13] 50.1

Table 3: Joint Reconstruction error as per Protocol 2 of

Bogo et al. [4] on Human 3.6M [11]. Refer to Section 4.1

for details on 3D mesh supervision.



(a) (b) (c) (a) (b) (c) (a) (b) (c)

Figure 6: Qualitative Results on Human3.6M, where (a) represents the input view, (b) our mesh reconstruction aligned to the

input view, and (c) aligned to another arbitrary view.

4.4. Discussion

Ablation Study: Directly regressing the mesh from

RGB leads to sub-par performance. Limbs are typically the

origin of maximum error in reconstruction, and the segmen-

tation mask provides a better tracking in scenarios such as

leg-swap shown in Figure 7. The first two rows of Table 4

quantitatively explain this behaviour. Further, by having a

more accurate segmentation mask, HMNetOracle achieves

a significant reduction in surface error (↓ 34.7mm). In

scenarios with inaccurate ground truth 3D (Figure 4), the

regularisation 3D joint loss in our multi-branch setup helps

us in recovering better fits (row 4 for UP3D). In datasets

such as Human3.6m where accurate MoCap markers are

given, this multi-branch loss provides a good boost - with

and without joint loss, the joint reconstruction error is

60.9mm v/s 67.3mm respectively.

(a) (b) (c) (d) (a) (b) (c) (d)

Figure 7: Given an input RGB image (a), this figure de-

picts a comparison of the baseline (b), against our output,

HMNet (d). The predicted part-wise segmentation mask (c)

assists HMNet to track the body parts and therefore solve

the confusion between the legs as well as complex poses.

Effect of Mesh Regularisation Our mesh regularization

module adds a smoothing effect while training, therefore

ensuring that the entire local patch should move towards the

ground truth for minimizing the error. Although intrinsic

geometry based losses can also be used here, we hypothe-

size that they have a larger impact when more complex local

surface deformations (e.g., facial expressions) are present.

Figure 8 shows the impact of this regularization.

Config. Input PA. Surface PA. Joint

Error Error

Baseline RGB 93.8 83.7

Single Task SMDP 82.9 74.6

Single Task RGB+SMDP 79.2 71.04

HMNet RGB+SMDP 77.6 69.6

HMNetOracle RGB+SMGT 42.9 37.9

Table 4: Effect of each network module on the reconstruc-

tion error on UP-3D dataset. SMDP and SMGT denotes

segmentation obtained from Densepose and groundtruth re-

spectively.

Figure 8: Results showing the effect of our mesh regular-

ization module while learning. The figure on the left shows

the irregularities in the mesh reconstructed, without our reg-

ularization, while the one on the right shows the smoothness

induced by our regularizer.

Recovering Shape Variations Most parametric mod-

els prediction work with a neutral template model [12],

and would have to learn the gender from the image. In

our method, a direct mesh regression can learn the local

shape variations (as long as training data has such varia-

tions) which extend to inherently learning gender invariant

meshes. Two such samples are showing in Figure 9.



(a) (b) (c) (a) (b) (c)

Figure 9: Sample Shape Variations recovered by our model

given an input image (a), rendered from the recovered view

(b) and another arbitrary view (c)

Generalizability to Hand Mesh Models. We show the

generalizability of our model to a similar task with a

different structure. First, we populated a SURREAL like

synthetic hand dataset using the MANO hand model [23],

similar to [8] with a total of 70,000 image-mesh pairs. We

train our model on this dataset to predict hand surface and

joints from an input RGB image using the same pipeline

described in Figure 2. The training setting remains the

same as earlier, and we obtain impressive qualitative results

as shown in Figure 10. The average surface error across

the test dataset is 1mm, which acts as a proof of concept

that polygonal mesh reconstruction of non-rigid hands

(although in a simplistic scenario), is feasible.

(a) (b) (c) (d) (e) (f)

Figure 10: Reconstruction Results on our Hand Mesh. Each

column consists of the RGB image, its corresponding re-

construction from the same view, and from another arbitrary

view.

Network Runtime. Table 5 list out run-time of various

methods. Comparing this with HMNet with HMNetOracle,

it is evident that a major part of HMNet’s complexity arises

from the multi-human pixel wise class prediction, which

runs at around 30 FPS for an image of size 224x224. [6] is

an accurate real time body part segmentation network which

runs at 120 FPS, and can be incorporated into our system to

produce accurate, real time reconstructions.

Limitations and Future Work. Since we do not enforce

Method Output FPS

SMPLify [3]

P

0.01

SMPLify, 91 kps [14] 0.008

Decision Forests [14] 7.69

HMR [12]

P

25

Pavlakos [20] 20

Direct Prediction [14] 2.65

Baseline

S

175.4

HMNet 28.01

HMNetOracle 173.17

Fusion4D [7] S 31

Table 5: Overview of the run time (in Frames Per Second,

FPS) of various algorithms. Numbers have been picked up

from the respective papers. All methods have used 1080Ti

or equivalent GPU.

any volume consistency, skewing/thinning artifacts might

be introduced in our meshes. We would like to account

for these in a non-handcrafted anthropomorphically valid

way by either learning the SMPL parameters on top of it

using an MLP similar to [13] or by using a GAN to pe-

nalize fake/invalid human meshes. Further, we have made

use of the mesh topology in two ways in this work - (a)

implicitly, to make the learning easier and (b) for smooth-

ing. Going ahead, we would like to make use of the mesh

topology and geometry details is a more explicit manner, by

using intrinsic mesh/surface properties. We believe that this

is a largely unexplored space and applying such a regular-

ization can result in better exploitation of surface geometry

for reconstruction.

Figure 11: Failure Cases of Our Method.

5. Conclusion

We proposed a multi-branch multi-task HumanMeshNet

network that simultaneously regresses to the template mesh

vertices as well as body joint locations from a single monoc-

ular image. The proposed method achieves comparable per-

formance with significantly lower modelling and computa-

tional complexity on three publicly available datasets. We

also show the generalizability of the proposed architecture

for a similar task of predicting the mesh of the hand. Look-

ing forward, we would like to exploit intrinsic mesh prop-

erties to recover a more accurate surface reconstruction.
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