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Abstract

To improve the experiences of face-to-face conversation
with avatar, this paper presents a novel conversation sys-
tem. It is composed of two sequence-to-sequence models re-
spectively for listening and speaking and a Generative Ad-
versarial Network (GAN) based realistic avatar synthesizer.
The models exploit the facial action and head pose to learn
natural human reactions. Based on the models’ output, the
synthesizer uses the Pixel2Pixel model to generate realis-
tic facial images. To show the improvement of our system,
we use a 3D model based avatar driving scheme as a ref-
erence. We train and evaluate our neural networks with the
data from ESPN shows. Experimental results show that our
conversation system can generate natural facial reactions
and realistic facial images.

1. Introduction

Recently, virtual assistants have been playing a more and
more important role in our daily life, such as the question-
answering assistant Apple Siri and Amazon Alexa, which
may be the most popular virtual assistants at now. How-
ever, they provide only verbal response, lacking of nonver-
bal feedback.

Alternatively, some 2D or 3D avatars have been intro-
duced to virtual assistants [14, 23, 5], which can provide
both verbal and nonverbal interaction experiences. Never-
theless, few of them can exhibit realistic nonverbal reactions
while speaking, e.g., realistic facial expressions. What is
more, no natural reactions are exhibited during the listening
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Figure 1. Regularity of human-human conversation. 754 and T;p
(i = 1,2,3,...) denotes person A and B is speaking or listening
in the ¢-th time period respectively. Blue blocks indicate that the
person is a speaker, while orange blocks a listener. Arrows imply
the dependence between different roles in different time periods.

phase when the avatars are talking with human[5]. Gener-
ally, they either keep still or randomly react within a series
of predefined actions while listening to human. That is far
from human’s expectation on realistic and nature conversa-
tion.

We aim to fill the gap between present virtual assistants
and the demand of realistic and natural interaction. Our
work is based on the observations of conversational regu-
larity illustrated in Figure 1. In human-human communi-
cations, the two roles, listener and speaker, are alternative
between the two parties involved in the conversation. The
speaker often makes verbal actions (speech) and nonverbal
actions (head movements and facial expressions) simulta-
neously. While listening to the speaker, the listener receives
verbal information as well as nonverbal cues and gives non-
verbal feedback. Their roles exchange when the previous
speaker stops talking. And the new speaker makes verbal
and nonverbal responses accordingly. This procedure car-



ries on repeatedly until the conversation ends.

Motivated by the great success of Sequence-to-Sequence
(Seq2Seq) network [33] and Generative Adversarial Net-
work(GAN) [10, 15, 43, 2, 38, 37], we propose a novel
face-to-face conversation system which consists of seq2seq
based listening and speaking models and a GAN based real-
istic avatar synthesizer. The listening and speaking models
serve as generators of natural facial reactions and head pose.
The realistic avatar synthesizer is used to produce a realistic
portrait looks like a real human. Generally, the facial ac-
tion and head pose to some extent imply the intentions and
emotions of both speaker and listener. The listening model
takes speaker’s facial action and head pose as input and gen-
erates facial action and head pose as listener’s nonverbal re-
sponse. The speaking model takes the verbal response as
input and generates facial action and head pose as speaker’s
nonverbal accompaniment. The realistic avatar synthesizer
takes the outputs of alternative listening model and speak-
ing model as input and produces a realistic image sequence
for avatar. Compared to traditional 3D data based realistic
face synthesizer, our avatar synthesizer is free from the need
for expensive 3D or motion capture data.

The rest of the paper is organized as follows. Some re-
lated works are reviewed in Section 2. In Section 3, the
proposed conversation system is presented in detail. Ex-
perimental results and discussions are given in Section 4.
Finally, Section 5 draws the conclusion.

2. Related works

Generally, a realistic face-to-face conversation system is
able to understand the human’s speech and action, then de-
cide how to response in verbal and nonverbal manners, and
finally drive the avatar. Although few mature end-to-end
systems exist till now, there have been many works related
to each of the steps.

To understand humans in interaction, some means have
been proposed, including head pose estimation [29, 32, 16,

], gesture recognition [36], gaze tracking [25], and multi-
modal fusion [17]. Especially, analyzing facial actions to
get emotion information is important for face-to-face con-
versation. Generally, face landmarks [8] are used for fa-
cial analysis, which tells the 2D or 3D positions of key
points of the face. Alternatively, action unit has been widely
used for face expression analysis or face avatar synthesis
[19, 20, 34, 41, 42], which represents face components’ lo-
cal movements. Different from face landmark, action unit
contains only the relative motion of face components while
no head pose or face size. Additionally, action unit, as a
nonverbal feature, can also be used for verbal analysis, e.g.,
lip reading [19]. It means that action unit contains both ver-
bal and nonverbal information. Motivated by it, in this pa-
per, we extract action unit and head pose from a face image
as face features.

For verbal chatting, various conversation models have
been widely used. For example, [35] proposed a transla-
tion model based on the encoder-decoder architecture. [33]
presented a LSTM [13] based seq2seq structure to solve the
training problem of long sequences. However, for nonver-
bal conversation or verbal-nonverbal combined conversion,
there is few mature works. The latest one [35] adapted the
seq2seq structure from verbal domain to nonverbal domain,
and proved the seq2seq model works for nonverbal scenar-
ios, although it considered only the speaking phase. In-
spired by the work, we also use the seq2seq structure to de-
sign nonverbal models, including both the speaking model
and listening model, which produces facial action units and
head pose for avatar.

For avatar synthesis, the action unit based avatar driving
technique [36, 5] has often been used, which activates the
predefined 2D or 3D avatar by an action unit sequence. For
example, the work in [5] also proposed a face-to-face con-
versation model which could drive a 3D avatar to answer
human’s questions. However, avatars are either not realistic
enough or difficult to obtain by such means as accurate 3D
model scanning. What is more, no natural reactions are ex-
hibited for the 3D avatar during the listening phase in [5].
Fortunately, due to the rapid development of Generative Ad-
versarial Networks (GAN) in image generation [10], it is
able to synthesize photo-realistic facial image without com-
plex 3D models. For example, Pix2PixHD [38] and Cycle-
GAN [43] offer appealing and succinct alternative for facial
image synthesis. Recently, Chan et al. applied Pix2PixHD
to learn a motion transformation between two video sub-
jects [2]. Wang et al. presented the framework of Vid2Vid
[37] to learn mappings between different videos. Motivated
by these works [2, 38, 37, 5, 39, 22] , we also adopt the
GAN to generate the realistic avatar with facial action units
and head pose as input.

3. The proposed system
3.1. System overview

In this paper, we propose a novel face-to-face conversa-
tion system. As shown in Figure 2, there are two phases
in our system: one is for listening, and the other for speak-
ing. When the virtual avatar is communicating with human,
the speech audio and face images are input into our system.
The face images are processed by face parsing module that
produces face information including facial action units and
face pose. This information is then passed into the Seq2Seq
based listening model whose output is fed into the avatar
synthesizer to produce realistic face images as nonverbal
reactions when the virtual avatar is listening. The speech
audio is transformed into text using the speech recognition
algorithm proposed in [12, 11], and then passed into the
conversation module for generating response sentence. The
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Figure 2. Overview of the proposed realistic face-to-face conversation system. Blocks colored orange indicate our contributions.

response sentence is passed to the Text-to-Speech (TTS)
module proposed in [9, 40] to produce synthesized speech.
At the same time, the response sentence is passed to the
Seq2Seq based speaking model whose output is also input
into the avatar synthesizer to produce realistic face images
as the accompaniment of speech for the speaking phase.
The avatar synthesizer serves listening and speaking alter-
natively during the whole conversation.

To train our system, we collect 700 videos of ESPN
shows (First Take and Undisputed) from youtube that con-
tain the scenes of face-to-face conversation.

3.2. Face parsing

To get the facial feature representation, we have sev-
eral choices such as facial landmark (FL) [28], action unit
[17, 31] and head-pose. FL carries detailed information on
facial features and outlines. However, it has three disad-
vantages. First, FL lacks information on some areas such
as forehead and cheeks. Second, FL cannot directly reflect
the movement of facial muscles. Third, compared to the
action unit, FL is more personalized and we want our high-
level features to carry more generalized information. So
we combine action-unit and head-pose (AU+POSE) to rep-
resent facial features. Compared with the combination of
head-pose and text or the combination of text and action-
unit, AU+POSE retains sufficient semantic information. In
the listening phase, AU+POSE can maintain the smooth of
dataflow in the deep network because no extra coding is
needed, and this is conducive to the training of the entire
system.

The Open-Face [1] can consistently predict the action
units using Support Vector Machine (SVM) and Support
Vector Regression (SVR) [3] with concatenated HoG fea-
ture [0] and facial shape, and accurately estimate head
pose by solving PnP problem. Thus, we use it to ex-
tract AU+POSE from both the speaker and listener. The

AU+POSE is a 20-D vector which comprises of a 17-D AU
and a 3-D head pose. On the acquisition of text data, the
sentence is obtained directly from the video with python li-
brary AutoSub and TTS.

3.3. Listening model

The listening model takes the AU+POSE of speaker as
input and outputs the AU+POSE of listener. We base our
listening model on the Seq2Seq [33] architecture (as shown
in Figure 3).

Listening encoder: The AU+POSE sequence extracted
from the face sequence of speaker is employed as the input
of the listening encoder. Let dy,ds,...,d, represent the
AU+POSE sequence extracted from the consecutive n face
images, and hy, ha, ..., h, represent the hidden transitions
of encoder for each input frame. The model is defined as

it=o (Wz [ht_l,dt] + bz)
fr=o (W [h=1d"] +by)
ol=o (WO [htfl, dt] + bo)

™t =relu6 (W, [p'~1,d"] + b.)
d=fo0qa+iOc!

hi, .= o ® relub(c;)

where o denotes the sigmoid function, relu6 is the piece-
wise linear function, ® denotes the element-wise multipli-
cation, iy, f, 0; represent input gate, forget gate, output gate
of t-th LSTM unit respectively. ¢; and h; are the ¢-th cell
state and hidden state. W and b are the trainable weights.

Listening decoder: The decoder model in the listening
phase maintains the same n serialized outputs as the inputs.
The output can be formulated as

hhee = LSTM (Rl Hhene, v 1) )

dec dec

where hge. is the hidden state of I-th decoder, and y'~! is

the output AU+PUSE of the (I — 1)-th decoder.



3.4. Speaking model

The speaking model takes the response text of listener as
input and outputs the AU+POSE as the accompaniment of
speech. We also base our speaking model on the Seq2Seq
[33] architecture(as shown in Figure 3).

Speaking encoder: There exist some popular word em-
bedding methods, e.g., Word2Vec [24], GloVe [26], ELMo
[27] and BERT [7] to represent the text. Here, for simplic-
ity, we employ a pre-trained Word2Vec model to embed
each word into a 200-D vector. Our speaking encoder is
defined as

Biewe = LSTM ({aiihih1) g

where the LSTM [13] computes the forward sentence en-
codings, and applies a linear layer on top.

Speaking decoder: The speaking decoder outputs an
AU+POSE sequence used to synthesize the face sequence
for the speaker (i.e., the previous listener).

3.5. Seq2Seq training

It is intuitive to use Mean Square Error (MSE) loss func-
tion to train our listening and speaking models, and the
MSE loss can be formulated as

| Dau
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where ~ denotes the weight parameter, au}, and aul, ..,
denote the action-units vector in the ground truth and pre-
dicted sequence respectively, pose, and posel,. , denote
the head-pose vector in the ground truth and predicted se-
quence. |||, denotes the Euclidean norm and n is the di-
mension of action-unit or head-pose.

However, the MSE loss cannot ensure the output conti-
nuity which is significant for generating realistic face se-
quences. To solve this problem, we introduce another loss:
continuity loss to assist the Seq2Seq training. The conti-
nuity metric loss utilizes the constraints of adjacent frames
which can considerably boost the performance of our mod-
els. The continuity metric loss can be formulated as:

toss(i. ) = || (ve” =) = (vt = viwia )
!
= n%, > maz ({loss(i,7)lj=1,...,mp — 1})

i=ny
4 . &)
where yg, and y;, ., denote the AU+POSE vector in the
ground truth and predicted sequence respectively, and ny

1085 con,

denote the number of the adjacent frames used for calculat-
ing continuity metric loss. Thus, combining the MSE with
continuity loss, we get the total loss as:

[088sum = 1088mse + - 108Scon (6)

where « is a weight used to adjust the two loss components.

Note that the head-pose and each component of the
action-unit have different variation ranges. Hence, both the
input and output of the listening model are normalized dur-
ing training, and the output of the speaking model is also
normalized during training.

Moreover, all frames in the video clips involving face-
to-face conversation are used for training our listening and
speaking models to get a smoother and more realistic face
sequences.

3.6. Face synthesizer

With the AU+POSE as input, the face synthesizer aims
to generate face images of the target person with corre-
sponding postures and expressions. To accomplish this task,
we adopt the state-of-the-art generative adversarial network
Pix2PixHD [38] to complete this transfer. Specifically, we
employed a combined loss widely used in generation tasks:

L =Lgan (G, D)+ L (G (x) 7y) + Lvga (G (x) ,y)
(7)
where Lgan (G, D) is the temporal smoothing adver-
sarial loss presented in paper [2], which modified from
Pix2PixHD [38]. When synthesizing the current face im-
age G (z), Generator G conditions on its corresponding
current AU+POSE image z and the previously synthesized
frame G (x;_1) to obtain temporally smooth outputs. Dis-
criminator D then attempts differentiate the “real” tempo-
rally coherent sequence (x¢—1, ¢, Y¢—1, y¢) from the “fake”
sequence (z¢—1,%t, G (v1—1), G (x1)):

Lgan (G, D) = E(3 ) [log D (xt—1, ¢, Y1, Ys)] +
By log (1 = D (241,74, G (21-1) , G (24)))]

where L is an L1 reconstruction loss that measures the
pixel-level deviation between the synthesized image G ()
and ground truth y. Ly ¢ is the perceptual reconstruction
loss which measures the L2 distance between relu2_2 and
relu3_3 features of a pre-trained VGGNet [30].

The full transfer system is shown in the Figure 4. We
use corresponding (x¢—1,Z¢, Y¢—1, y¢) pairs to learn a map-
ping G which synthesizes images of the target person given
AU+POSE. It is noteworthy that we do not directly feed
the AU+POSE feature values into the network. Instead, we
fill the feature values into the center of an empty image x,
where z has the same size with the ground truth y. This
allows our network to have spatial coordinate constraints
when training, which can accelerate the convergence.
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Figure 3. Architecture of listening model and speaking model. In the listening phase, the encoder takes the AU+POSE as input. And in
speaking phase, the encoder takes the text as input. In both phases, decoder outputs AU+POSE. MSE and Continuity Losses are employed

to supervise the training for both phases.
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Figure 4. Architecture of the face synthesizer. We first map AU+POSE to image x. In the training phase, we use pair (z¢, G (x¢—1))
to learn the mapping G to generate G (x:). Discriminator D then attempts to differentiate the “real” temporally coherent sequence
(T¢—1,Tt, Yt—1, y¢) from the “fake” sequence (x¢—1,2¢, G (T1—1), G (x¢)).

4. Experimental results
4.1. Implementation details

We implement our seq2seq-based listening and speaking
models by using TensorFlow framework [4]. In listening
phase, we construct a 4-layer encoder-decoder model us-
ing LSTM as shown in Figure 3. We substantiate all these

LSTMs with a 1000-d LSTM cell on top of a 1000-d embed-
ding layer, followed by a linear layer with piecewise-linear
relu6 to compute the final encoding. At each stage, both
the decoder and the encoder have 10 cells cascaded, that is,
corresponding consecutive 10 frames of data as input. The
learning rate is set to 0.0001, the batch size is 16, and the
ADAM [18] is used as the optimizer. The training process



stops after 80,000 iterations.

In speaking phase, the model uses only two layers of
1000-dimensional LSTM cell nested structure with relu6 on
the activation function. The learning rate, batch size and
optimizer selection are consistent with the listening phase,
the v in Eq. 4 is set to 8.1, the o in Eq. 6 is set to 0.1,
and the training stops after 40,000 iterations. At each stage,
the encoder has 25 cells cascaded and the decoder has 370
cells cascaded. We first pre-train the encoder and decoder
on a small subset of our training set, after that, the encoder
is frozen and the decoder is trained. After these tasks are
completed, we finally fine-tune the whole encoder-decoder
network.

We train our face generation network for 100 epochs us-
ing the ADAM optimizer [ | 8] with 1r=0.0002.

4.2. Evaluation on Seq2Seq models

We use MSE as well as cosine similarity in Eq. 9 to eval-
uate the performance of the listening model and the speak-
ing model separately on the test set. Correspondingly, test
data are divided into two parts. In the listening test set,
each sample is comprised of a sequence of AU+POSE of
the speaker as input, and a sequence of AU+POSE of the
listener as ground truth. In the speaking test set, the input
is just a sequence of words spoken by the speaker, and the
ground truth is a sequence of the speaker’s AU+POSE. We
compare our approach to the baseline: The classic Seq2Seq
[33] method that uses MSE loss only.

MSE metric and cosine similarity metric. In the speaking
phase as shown in Table 2, our method also outperforms the
baseline method. It is noteworthy that the gap between out
method and baseline in speaking phase is much larger than
that in listening phase. One reason is that, when human is
speaking, the diversity of facial action units and head poses
is much more than when human is listening. So the variance
of training data in speaking phase is much larger than that
in listening phase. Consequently, the speaking model bene-
fits more than the listening model from our proposed metric
learning. The other reason is that, compared to the speaking
model, the listening model is much deeper. Hence, the lis-
tening model has stronger learning ability which makes the
gap between the baseline and our method in listening phase
smaller than that in speaking phase.

4.3. Evaluation on avatar synthesizer

We run facial action units and head pose extractor on the
output of our avatar synthesizer, and compare these recon-
structed action units and poses to the counterpart of the orig-
inal input video. To assess the performance of our model,
we employ the average error defined by

m Nagu

_ _1 (VY
dau = M*Ngy Z Z AUgy — AUyepenstructed ‘
j=1li=1 1
1 m Mpose .. ..
_ ] v]
dpose T M*Npose Zl z:l POsEgy — POSC e oenstructed ‘1
j: 1=

(10)
where AUgt, AUreocnstructedy POS€gt, POSEreocnstructed de-
note the ground truth of action unit, the reconstructed ac-
tion unit, ground truth of pose, the reconstructed pose and
n denotes the number of frames in test set.

Metric
Phase AU Pose
Listening 0.046 0.038
Speaking 0.105 0.073

1 .
dnse = n Z lvlnse
Nau
_ _1 ; ]
ste = Taw ; G/Ugt - a’u;re‘d ’2+
| Twese = ] ‘
-~ Zl posey, — Pose,,..q ‘2
i=
n 7 3
d — 1 ;Ugt'yprrted
on = 55 2 T vl
Metric
Method MSE Cosine
Baseline 0.0565 0.983
Ours 0.0540 0.992

Table 1. Evaluation of training methods in listening phase.

Metric
Method MSE Cosine
Baseline 0.195 0.9635
Ours 0.141 0.980

Table 2. Evaluation of training methods in speaking phase.

In the listening phase as shown in Table 1, our method
performs a little better than the baseline method in both

Table 3. Evaluation of avatar synthesizer.

As shown in Table 3, in both the listening and speaking
phases, the difference between the synthesized images and
the original images is minor in terms of action unit and pose.

4.4. Evaluation on End-to-End system

Here we employ a 3D model based avatar directly driven
by facial action unit and head pose as comparison. Four ex-
amples (two for listening and another two for speaking) are
illustrated in Figure 5 and Figure 6 to show the compari-
son between ground truth and predictions of our models, as
well as the results of 3D avatar and our synthesizer. As can
be seen, the facial images generated by our synthesizer are
more similar to the ground-truth, and more realistic than the
3D model based avatar.
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Figure 5. Experimental results of our models in listening phase. Two scenes are shown here, each of which includes the conversation scene
(the first row), the speaker’s images (second row), the listener’s ground truth images (third row), the listener’s 3d avatar (fourth row), and

the listener’s synthesized images (last row).
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Figure 6. Experimental results of our models in speaking phase. Two scenes are shown, each of which includes the conversation scene (the
first row), the verbal cues of two persons in the scene (second row for the previous speaker and third row the present speaker), the speaker’s
ground truth images (fourth row), the speaker’s 3d model based avatar (fifth row), and the speaker’s synthesized images (last row).

5. Conclusion

We present a realistic face-to-face conversation system
based on deep neural networks. In listening phase, the
speaker’s face features including action unit and head pose
are firstly extracted, then transformed into the avatar’s face
features by a seq2seq model, and finally used to generate
realistic face images (avatar) by a pix2pix based GAN net-
work. In speaking phase, the previous speaker’s words are
turned into word features by word2vec, then transformed

into the avatar’s face features by another seq2seq model,
and finally used to generate realistic face images (avatar) by
the pix2pix based GAN network. The model is trained and
evaluated with the video data from the ESPN shows. For
comparison, both the realistic avatar generated by the pro-
posed models and the one driven by traditional 3D model
based method are given. It shows that the proposed conver-
sation system can generate natural and realistic avatars. In
the future, multi-modal information will be considered to
produce more personalized conversation avatars.
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