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Abstract

To improve the experiences of face-to-face conversation

with avatar, this paper presents a novel conversation sys-

tem. It is composed of two sequence-to-sequence models re-

spectively for listening and speaking and a Generative Ad-

versarial Network (GAN) based realistic avatar synthesizer.

The models exploit the facial action and head pose to learn

natural human reactions. Based on the models’ output, the

synthesizer uses the Pixel2Pixel model to generate realis-

tic facial images. To show the improvement of our system,

we use a 3D model based avatar driving scheme as a ref-

erence. We train and evaluate our neural networks with the

data from ESPN shows. Experimental results show that our

conversation system can generate natural facial reactions

and realistic facial images.

1. Introduction

Recently, virtual assistants have been playing a more and

more important role in our daily life, such as the question-

answering assistant Apple Siri and Amazon Alexa, which

may be the most popular virtual assistants at now. How-

ever, they provide only verbal response, lacking of nonver-

bal feedback.

Alternatively, some 2D or 3D avatars have been intro-

duced to virtual assistants [14, 23, 5], which can provide

both verbal and nonverbal interaction experiences. Never-

theless, few of them can exhibit realistic nonverbal reactions

while speaking, e.g., realistic facial expressions. What is

more, no natural reactions are exhibited during the listening
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Figure 1. Regularity of human-human conversation. TiA and TiB

(i = 1, 2, 3, ...) denotes person A and B is speaking or listening

in the i-th time period respectively. Blue blocks indicate that the

person is a speaker, while orange blocks a listener. Arrows imply

the dependence between different roles in different time periods.

phase when the avatars are talking with human[5]. Gener-

ally, they either keep still or randomly react within a series

of predefined actions while listening to human. That is far

from human’s expectation on realistic and nature conversa-

tion.

We aim to fill the gap between present virtual assistants

and the demand of realistic and natural interaction. Our

work is based on the observations of conversational regu-

larity illustrated in Figure 1. In human-human communi-

cations, the two roles, listener and speaker, are alternative

between the two parties involved in the conversation. The

speaker often makes verbal actions (speech) and nonverbal

actions (head movements and facial expressions) simulta-

neously. While listening to the speaker, the listener receives

verbal information as well as nonverbal cues and gives non-

verbal feedback. Their roles exchange when the previous

speaker stops talking. And the new speaker makes verbal

and nonverbal responses accordingly. This procedure car-



ries on repeatedly until the conversation ends.

Motivated by the great success of Sequence-to-Sequence

(Seq2Seq) network [33] and Generative Adversarial Net-

work(GAN) [10, 15, 43, 2, 38, 37], we propose a novel

face-to-face conversation system which consists of seq2seq

based listening and speaking models and a GAN based real-

istic avatar synthesizer. The listening and speaking models

serve as generators of natural facial reactions and head pose.

The realistic avatar synthesizer is used to produce a realistic

portrait looks like a real human. Generally, the facial ac-

tion and head pose to some extent imply the intentions and

emotions of both speaker and listener. The listening model

takes speaker’s facial action and head pose as input and gen-

erates facial action and head pose as listener’s nonverbal re-

sponse. The speaking model takes the verbal response as

input and generates facial action and head pose as speaker’s

nonverbal accompaniment. The realistic avatar synthesizer

takes the outputs of alternative listening model and speak-

ing model as input and produces a realistic image sequence

for avatar. Compared to traditional 3D data based realistic

face synthesizer, our avatar synthesizer is free from the need

for expensive 3D or motion capture data.

The rest of the paper is organized as follows. Some re-

lated works are reviewed in Section 2. In Section 3, the

proposed conversation system is presented in detail. Ex-

perimental results and discussions are given in Section 4.

Finally, Section 5 draws the conclusion.

2. Related works

Generally, a realistic face-to-face conversation system is

able to understand the human’s speech and action, then de-

cide how to response in verbal and nonverbal manners, and

finally drive the avatar. Although few mature end-to-end

systems exist till now, there have been many works related

to each of the steps.

To understand humans in interaction, some means have

been proposed, including head pose estimation [29, 32, 16,

21], gesture recognition [36], gaze tracking [25], and multi-

modal fusion [17]. Especially, analyzing facial actions to

get emotion information is important for face-to-face con-

versation. Generally, face landmarks [8] are used for fa-

cial analysis, which tells the 2D or 3D positions of key

points of the face. Alternatively, action unit has been widely

used for face expression analysis or face avatar synthesis

[19, 20, 34, 41, 42], which represents face components’ lo-

cal movements. Different from face landmark, action unit

contains only the relative motion of face components while

no head pose or face size. Additionally, action unit, as a

nonverbal feature, can also be used for verbal analysis, e.g.,

lip reading [19]. It means that action unit contains both ver-

bal and nonverbal information. Motivated by it, in this pa-

per, we extract action unit and head pose from a face image

as face features.

For verbal chatting, various conversation models have

been widely used. For example, [35] proposed a transla-

tion model based on the encoder-decoder architecture. [33]

presented a LSTM [13] based seq2seq structure to solve the

training problem of long sequences. However, for nonver-

bal conversation or verbal-nonverbal combined conversion,

there is few mature works. The latest one [35] adapted the

seq2seq structure from verbal domain to nonverbal domain,

and proved the seq2seq model works for nonverbal scenar-

ios, although it considered only the speaking phase. In-

spired by the work, we also use the seq2seq structure to de-

sign nonverbal models, including both the speaking model

and listening model, which produces facial action units and

head pose for avatar.

For avatar synthesis, the action unit based avatar driving

technique [36, 5] has often been used, which activates the

predefined 2D or 3D avatar by an action unit sequence. For

example, the work in [5] also proposed a face-to-face con-

versation model which could drive a 3D avatar to answer

human’s questions. However, avatars are either not realistic

enough or difficult to obtain by such means as accurate 3D

model scanning. What is more, no natural reactions are ex-

hibited for the 3D avatar during the listening phase in [5].

Fortunately, due to the rapid development of Generative Ad-

versarial Networks (GAN) in image generation [10], it is

able to synthesize photo-realistic facial image without com-

plex 3D models. For example, Pix2PixHD [38] and Cycle-

GAN [43] offer appealing and succinct alternative for facial

image synthesis. Recently, Chan et al. applied Pix2PixHD

to learn a motion transformation between two video sub-

jects [2]. Wang et al. presented the framework of Vid2Vid

[37] to learn mappings between different videos. Motivated

by these works [2, 38, 37, 5, 39, 22] , we also adopt the

GAN to generate the realistic avatar with facial action units

and head pose as input.

3. The proposed system

3.1. System overview

In this paper, we propose a novel face-to-face conversa-

tion system. As shown in Figure 2, there are two phases

in our system: one is for listening, and the other for speak-

ing. When the virtual avatar is communicating with human,

the speech audio and face images are input into our system.

The face images are processed by face parsing module that

produces face information including facial action units and

face pose. This information is then passed into the Seq2Seq

based listening model whose output is fed into the avatar

synthesizer to produce realistic face images as nonverbal

reactions when the virtual avatar is listening. The speech

audio is transformed into text using the speech recognition

algorithm proposed in [12, 11], and then passed into the

conversation module for generating response sentence. The
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Figure 2. Overview of the proposed realistic face-to-face conversation system. Blocks colored orange indicate our contributions.

response sentence is passed to the Text-to-Speech (TTS)

module proposed in [9, 40] to produce synthesized speech.

At the same time, the response sentence is passed to the

Seq2Seq based speaking model whose output is also input

into the avatar synthesizer to produce realistic face images

as the accompaniment of speech for the speaking phase.

The avatar synthesizer serves listening and speaking alter-

natively during the whole conversation.

To train our system, we collect 700 videos of ESPN

shows (First Take and Undisputed) from youtube that con-

tain the scenes of face-to-face conversation.

3.2. Face parsing

To get the facial feature representation, we have sev-

eral choices such as facial landmark (FL) [28], action unit

[17, 31] and head-pose. FL carries detailed information on

facial features and outlines. However, it has three disad-

vantages. First, FL lacks information on some areas such

as forehead and cheeks. Second, FL cannot directly reflect

the movement of facial muscles. Third, compared to the

action unit, FL is more personalized and we want our high-

level features to carry more generalized information. So

we combine action-unit and head-pose (AU+POSE) to rep-

resent facial features. Compared with the combination of

head-pose and text or the combination of text and action-

unit, AU+POSE retains sufficient semantic information. In

the listening phase, AU+POSE can maintain the smooth of

dataflow in the deep network because no extra coding is

needed, and this is conducive to the training of the entire

system.

The Open-Face [1] can consistently predict the action

units using Support Vector Machine (SVM) and Support

Vector Regression (SVR) [3] with concatenated HoG fea-

ture [6] and facial shape, and accurately estimate head

pose by solving PnP problem. Thus, we use it to ex-

tract AU+POSE from both the speaker and listener. The

AU+POSE is a 20-D vector which comprises of a 17-D AU

and a 3-D head pose. On the acquisition of text data, the

sentence is obtained directly from the video with python li-

brary AutoSub and TTS.

3.3. Listening model

The listening model takes the AU+POSE of speaker as

input and outputs the AU+POSE of listener. We base our

listening model on the Seq2Seq [33] architecture (as shown

in Figure 3).

Listening encoder: The AU+POSE sequence extracted

from the face sequence of speaker is employed as the input

of the listening encoder. Let d1, d2, . . . , dn represent the

AU+POSE sequence extracted from the consecutive n face

images, and h1, h2, . . . , hn represent the hidden transitions

of encoder for each input frame. The model is defined as

it = σ
(

Wi

[

ht−1, dt
]

+ bi
)

f t = σ
(

Wf

[

ht−1, dt
]

+ bf
)

ot = σ
(

Wo

[

ht−1, dt
]

+ bo
)

c−t = relu6
(

Wc

[

ht−1, dt
]

+ bc
)

ct = ft ⊙ ct−1 + it ⊙ c−t

ht
enc = ot ⊙ relu6(ct)

(1)

where σ denotes the sigmoid function, relu6 is the piece-

wise linear function, ⊙ denotes the element-wise multipli-

cation, it, ft, ot represent input gate, forget gate, output gate

of t-th LSTM unit respectively. ct and ht are the t-th cell

state and hidden state. W and b are the trainable weights.

Listening decoder: The decoder model in the listening

phase maintains the same n serialized outputs as the inputs.

The output can be formulated as

hl
dec = LSTM

(

hl−1
dec |henc, y

l−1
)

(2)

where hdec is the hidden state of l-th decoder, and yl−1 is

the output AU+PUSE of the (l − 1)-th decoder.



3.4. Speaking model

The speaking model takes the response text of listener as

input and outputs the AU+POSE as the accompaniment of

speech. We also base our speaking model on the Seq2Seq

[33] architecture(as shown in Figure 3).

Speaking encoder: There exist some popular word em-

bedding methods, e.g., Word2Vec [24], GloVe [26], ELMo

[27] and BERT [7] to represent the text. Here, for simplic-

ity, we employ a pre-trained Word2Vec model to embed

each word into a 200-D vector. Our speaking encoder is

defined as

hn
text = LSTM

(

{xn,l
text}l

)

(3)

where the LSTM [13] computes the forward sentence en-

codings, and applies a linear layer on top.

Speaking decoder: The speaking decoder outputs an

AU+POSE sequence used to synthesize the face sequence

for the speaker (i.e., the previous listener).

3.5. Seq2Seq training

It is intuitive to use Mean Square Error (MSE) loss func-

tion to train our listening and speaking models, and the

MSE loss can be formulated as

lossmse =
1

nau

nau
∑

i=1

∥

∥aui
gt − aui

pred

∥

∥

2
+

γ

npose

npose
∑

i=1

∥

∥poseigt − poseipred
∥

∥

2

(4)

where γ denotes the weight parameter, aui
gt and aui

pred

denote the action-units vector in the ground truth and pre-

dicted sequence respectively, poseigt and poseipred denote

the head-pose vector in the ground truth and predicted se-

quence. ‖.‖2 denotes the Euclidean norm and n is the di-

mension of action-unit or head-pose.

However, the MSE loss cannot ensure the output conti-

nuity which is significant for generating realistic face se-

quences. To solve this problem, we introduce another loss:

continuity loss to assist the Seq2Seq training. The conti-

nuity metric loss utilizes the constraints of adjacent frames

which can considerably boost the performance of our mod-

els. The continuity metric loss can be formulated as:

loss(i, j) =
∥

∥

∥

(

y
i−j
gt − y

i−j−1
gt

)

−
(

y
i−j
pred − y

i−j−1
pred

)∥

∥

∥

2

losscon = 1
nb

l
∑

i=nb

max ({loss(i, j)|j = 1, . . . , nb − 1})

(5)

where yigt and yipred denote the AU+POSE vector in the

ground truth and predicted sequence respectively, and nb

denote the number of the adjacent frames used for calculat-

ing continuity metric loss. Thus, combining the MSE with

continuity loss, we get the total loss as:

losssum = lossmse + α · losscon (6)

where α is a weight used to adjust the two loss components.

Note that the head-pose and each component of the

action-unit have different variation ranges. Hence, both the

input and output of the listening model are normalized dur-

ing training, and the output of the speaking model is also

normalized during training.

Moreover, all frames in the video clips involving face-

to-face conversation are used for training our listening and

speaking models to get a smoother and more realistic face

sequences.

3.6. Face synthesizer

With the AU+POSE as input, the face synthesizer aims

to generate face images of the target person with corre-

sponding postures and expressions. To accomplish this task,

we adopt the state-of-the-art generative adversarial network

Pix2PixHD [38] to complete this transfer. Specifically, we

employed a combined loss widely used in generation tasks:

L = LGAN (G,D) + LL1 (G (x) , y) + LV GG (G (x) , y)
(7)

where LGAN (G,D) is the temporal smoothing adver-

sarial loss presented in paper [2], which modified from

Pix2PixHD [38]. When synthesizing the current face im-

age G (xt), Generator G conditions on its corresponding

current AU+POSE image x and the previously synthesized

frame G (xt−1) to obtain temporally smooth outputs. Dis-

criminator D then attempts differentiate the “real” tempo-

rally coherent sequence (xt−1, xt, yt−1, yt) from the “fake”

sequence (xt−1, xt, G (xt−1) , G (xt)):

LGAN (G,D) = E(x,y) [logD (xt−1, xt, yt−1, yt)] +

Ex [log (1−D (xt−1, xt, G (xt−1) , G (xt)))]
(8)

where LL1 is an L1 reconstruction loss that measures the

pixel-level deviation between the synthesized image G (x)
and ground truth y. LV GG is the perceptual reconstruction

loss which measures the L2 distance between relu2 2 and

relu3 3 features of a pre-trained VGGNet [30].

The full transfer system is shown in the Figure 4. We

use corresponding (xt−1, xt, yt−1, yt) pairs to learn a map-

ping G which synthesizes images of the target person given

AU+POSE. It is noteworthy that we do not directly feed

the AU+POSE feature values into the network. Instead, we

fill the feature values into the center of an empty image x,

where x has the same size with the ground truth y. This

allows our network to have spatial coordinate constraints

when training, which can accelerate the convergence.
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Figure 3. Architecture of listening model and speaking model. In the listening phase, the encoder takes the AU+POSE as input. And in

speaking phase, the encoder takes the text as input. In both phases, decoder outputs AU+POSE. MSE and Continuity Losses are employed

to supervise the training for both phases.
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Figure 4. Architecture of the face synthesizer. We first map AU+POSE to image x. In the training phase, we use pair (xt, G (xt−1))
to learn the mapping G to generate G (xt). Discriminator D then attempts to differentiate the “real” temporally coherent sequence

(xt−1, xt, yt−1, yt) from the “fake” sequence (xt−1, xt, G (xt−1) , G (xt)).

4. Experimental results

4.1. Implementation details

We implement our seq2seq-based listening and speaking

models by using TensorFlow framework [4]. In listening

phase, we construct a 4-layer encoder-decoder model us-

ing LSTM as shown in Figure 3. We substantiate all these

LSTMs with a 1000-d LSTM cell on top of a 1000-d embed-

ding layer, followed by a linear layer with piecewise-linear

relu6 to compute the final encoding. At each stage, both

the decoder and the encoder have 10 cells cascaded, that is,

corresponding consecutive 10 frames of data as input. The

learning rate is set to 0.0001, the batch size is 16, and the

ADAM [18] is used as the optimizer. The training process



stops after 80,000 iterations.

In speaking phase, the model uses only two layers of

1000-dimensional LSTM cell nested structure with relu6 on

the activation function. The learning rate, batch size and

optimizer selection are consistent with the listening phase,

the γ in Eq. 4 is set to 8.1, the α in Eq. 6 is set to 0.1,

and the training stops after 40,000 iterations. At each stage,

the encoder has 25 cells cascaded and the decoder has 370

cells cascaded. We first pre-train the encoder and decoder

on a small subset of our training set, after that, the encoder

is frozen and the decoder is trained. After these tasks are

completed, we finally fine-tune the whole encoder-decoder

network.

We train our face generation network for 100 epochs us-

ing the ADAM optimizer [18] with lr=0.0002.

4.2. Evaluation on Seq2Seq models

We use MSE as well as cosine similarity in Eq. 9 to eval-

uate the performance of the listening model and the speak-

ing model separately on the test set. Correspondingly, test

data are divided into two parts. In the listening test set,

each sample is comprised of a sequence of AU+POSE of

the speaker as input, and a sequence of AU+POSE of the

listener as ground truth. In the speaking test set, the input

is just a sequence of words spoken by the speaker, and the

ground truth is a sequence of the speaker’s AU+POSE. We

compare our approach to the baseline: The classic Seq2Seq

[33] method that uses MSE loss only.

dmse =
1
n

∑

limse

lmse =
1

nau

nau
∑

i=1

∥

∥

∥
aui

gt − aui
pred

∥

∥

∥

2
+

1
npose

npose
∑

i=1

∥

∥

∥
poseigt − poseipred

∥

∥

∥

2

dcon = 1
n

n
∑

i=1

yi
gt·y

i
pred

‖yi
gt‖·‖yi

pred‖

(9)

Method
Metric

MSE Cosine

Baseline 0.0565 0.983

Ours 0.0540 0.992

Table 1. Evaluation of training methods in listening phase.

Method
Metric

MSE Cosine

Baseline 0.195 0.9635

Ours 0.141 0.980

Table 2. Evaluation of training methods in speaking phase.

In the listening phase as shown in Table 1, our method

performs a little better than the baseline method in both

MSE metric and cosine similarity metric. In the speaking

phase as shown in Table 2, our method also outperforms the

baseline method. It is noteworthy that the gap between out

method and baseline in speaking phase is much larger than

that in listening phase. One reason is that, when human is

speaking, the diversity of facial action units and head poses

is much more than when human is listening. So the variance

of training data in speaking phase is much larger than that

in listening phase. Consequently, the speaking model bene-

fits more than the listening model from our proposed metric

learning. The other reason is that, compared to the speaking

model, the listening model is much deeper. Hence, the lis-

tening model has stronger learning ability which makes the

gap between the baseline and our method in listening phase

smaller than that in speaking phase.

4.3. Evaluation on avatar synthesizer

We run facial action units and head pose extractor on the

output of our avatar synthesizer, and compare these recon-

structed action units and poses to the counterpart of the orig-

inal input video. To assess the performance of our model,

we employ the average error defined by

dau = 1
m∗nau

m
∑

j=1

nau
∑

i=1

∥

∥

∥
au

ij
gt − au

ij
reocnstructed

∥

∥

∥

1

dpose =
1

m∗npose

m
∑

j=1

npose
∑

i=1

∥

∥

∥
pose

ij
gt − pose

ij
reocnstructed

∥

∥

∥

1

(10)

where augt, aureocnstructed, posegt, posereocnstructed de-

note the ground truth of action unit, the reconstructed ac-

tion unit, ground truth of pose, the reconstructed pose and

n denotes the number of frames in test set.

Phase
Metric

AU Pose

Listening 0.046 0.038

Speaking 0.105 0.073

Table 3. Evaluation of avatar synthesizer.

As shown in Table 3, in both the listening and speaking

phases, the difference between the synthesized images and

the original images is minor in terms of action unit and pose.

4.4. Evaluation on End-to-End system

Here we employ a 3D model based avatar directly driven

by facial action unit and head pose as comparison. Four ex-

amples (two for listening and another two for speaking) are

illustrated in Figure 5 and Figure 6 to show the compari-

son between ground truth and predictions of our models, as

well as the results of 3D avatar and our synthesizer. As can

be seen, the facial images generated by our synthesizer are

more similar to the ground-truth, and more realistic than the

3D model based avatar.



Figure 5. Experimental results of our models in listening phase. Two scenes are shown here, each of which includes the conversation scene

(the first row), the speaker’s images (second row), the listener’s ground truth images (third row), the listener’s 3d avatar (fourth row), and

the listener’s synthesized images (last row).

Figure 6. Experimental results of our models in speaking phase. Two scenes are shown, each of which includes the conversation scene (the

first row), the verbal cues of two persons in the scene (second row for the previous speaker and third row the present speaker), the speaker’s

ground truth images (fourth row), the speaker’s 3d model based avatar (fifth row), and the speaker’s synthesized images (last row).

5. Conclusion

We present a realistic face-to-face conversation system

based on deep neural networks. In listening phase, the

speaker’s face features including action unit and head pose

are firstly extracted, then transformed into the avatar’s face

features by a seq2seq model, and finally used to generate

realistic face images (avatar) by a pix2pix based GAN net-

work. In speaking phase, the previous speaker’s words are

turned into word features by word2vec, then transformed

into the avatar’s face features by another seq2seq model,

and finally used to generate realistic face images (avatar) by

the pix2pix based GAN network. The model is trained and

evaluated with the video data from the ESPN shows. For

comparison, both the realistic avatar generated by the pro-

posed models and the one driven by traditional 3D model

based method are given. It shows that the proposed conver-

sation system can generate natural and realistic avatars. In

the future, multi-modal information will be considered to

produce more personalized conversation avatars.
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