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Abstract

In this paper, we present ExerciseCheck. ExerciseCheck

is an interactive computer vision system that is sufficiently

modular to work with different sources of human pose es-

timates, i.e., estimates from deep or traditional models that

interpret RGB or RGB-D camera input. In a pilot study,

we first compare the pose estimates produced by four deep

models based on RGB input with those of the MS Kinect

based on RGB-D data. The results indicate a performance

gap that required us to choose the MS Kinect when we

tested ExerciseCheck with Parkinson’s disease patients in

their homes. ExerciseCheck is capable of customizing ex-

ercises, capturing exercise information, evaluating patient

performance, providing therapeutic feedback to the patient

and the therapist, checking the progress of the user over the

course of the physical therapy, and supporting the patient

throughout this period. We conclude that ExerciseCheck

is a user-friendly computer vision application that can as-

sist patients by providing motivation and guidance to en-

sure correct execution of the required exercises. Our re-

sults also suggest that while there has been considerable

progress in the field of pose estimation using deep learning,

current deep learning models are not fully ready to replace

RGB-D sensors, especially when the exercises involved are

complex, and the patient population being accounted for

has to be carefully tracked for its “active range of motion.”

1. Introduction

Home-based exercising can become an essential part of

any physical therapy program. With enough motivation and

correct execution of the exercises at home, a patient can

achieve faster recovery than with conventional in-clinic-

only physical therapy. To help patients improve their ex-

perience during home-based physical therapy by providing

them with guidance and feedback, the design of an ideal as-

sistive system needs to tackle two difficult challenges: First,

the system has to be capable of performing accurate, real

time analysis of the movements of the patient during his or

her exercise and provide the patient with motivating feed-

Figure 1: Overview of task

back. Second, it has to summarize the patient performance

consistently so that the physical therapist (and patient) can

evaluate the patient’s performance both quantitatively and

qualitatively both at the clinic and patient’s home. Both

challenges require a computer vision module to compute

and analyze human pose estimates from video input.

We designed and developed ExerciseCheck with the goal

to overcome the two challenges described above. Exer-

ciseCheck is an interactive computer vision system that

tracks human body movement and provides analysis. It

serves as a rehabilitation platform that remotely monitors

users and evaluate their performance at home. It allows

data to be captured in a modular fashion. The data source

can be joint coordinates estimated through a deep learn-

ing framework or can be provided through a depth camera.

By leveraging the motion data captured, it performs quan-

titative analysis based on the recorded trajectories of a pa-

tient’s movements and provides the patient and the therapist

with visual and quantitative feedback. The analysis aims to

address problems such as inaccurate movements, improper

speed, and inadequate range of motion.

In this paper, we address two tasks. First, we evaluate

whether current deep learning models designed for Human

Pose Estimation (HPE) on RGB input can provide estimates

of joint positions that are sufficiently accurate and granular

so that they can be incorporated into ExerciseCheck (Sec-

tion 3). Second, we describe our continued work on Ex-

erciseCheck in Section 4 (an earlier version is described

in [31, 34]) and then report our new experiments and re-

sults using ExerciseCheck at patients’ homes in Section 5.

We present our results both quantitatively and qualitatively

based on working with Parkinson’s disease patients. The



patients used ExerciseCheck at their homes for a period

ranging from two weeks to a month. Finally, in Section

6, we discuss the potential long-term effects of our system

in benefiting patients in performing their home-based exer-

cises and our future work based on the feedback we received

from the participants.

2. Related work

With studies reporting that physical therapy benefits the

treatment of neurodegenerative diseases [5, 14, 40], ef-

forts has been made to design monitoring systems that sup-

port home-based exercise and rehabilitation. These sys-

tems track human movement to perform analysis and pro-

vide feedback to the users. They have been reviewed for

physical therapy in either therapeutic settings or daily life

[1, 9, 23, 29, 37, 44, 45]. They are designed to address the

inherent problems of home-based physical therapy: poor

adherence to the correct exercise movement and the lack

of motivation in exercising alone at home.

As for motivating patients, gamification as an occupa-

tional therapy intervention [2, 6, 20] is attaining research

interest. There exists evidence showing that games could to

be powerful motivators for engaging users in physical activ-

ity, especially games for clinical or rehabilitation purposes.

However, there is relatively less public research on how

effective the motion sensing capabilities of commercially

available gaming devices are [10, 12, 19]. Accurate per-

formance measurements and real time feed back also helps

alleviate the problem of poor exercise adherence. Systems

that work directly with patients lack quantitative analysis

to evaluate the patients’ performance to ensure a good ad-

herence to a correct exercise [10, 16, 17, 18, 19, 20, 36]

and those that do performance analysis are not evaluated

by patients [13, 41, 43, 49]. Contact-based motion tracking

devices, although have been proven useful in patients’ reha-

bilitation process, raise concerns for it can cause burden and

discomfort to patients with physical injury [7]. In addition,

efficacy of such systems may also suffer from patients’ low

motor control or the lack of synchronization between the de-

vice and body parts involved [47]. Hence, in recent years,

non-intrusive and contact-less rehabilitation techniques us-

ing computer vision have started to become more popular.

Gesture Therapy [37] is a vision-based system using a grip-

per with a pressure sensor to facilitate hand and finger reha-

bilitation after stroke. A classifier based on computer vision

that can discriminate rehabilitation-relevant hand postures

has also been proposed for upper limb rehabilitation sys-

tem [49]. In addition, MotionTalk [43] and VERA (Virtual

Exercise Rehabilitation Assistant) [17] are examples of sys-

tems that employ a Microsoft (MS) Kinect sensor for track-

ing a patients movements. Among other notable RGB-D

cameras1, the Intel RealSenseTM camera has been used for

1Other notable RGB-D cameras include BlasterX Senz3D (Creative

rehabilitation [4, 8, 11]

Pushing forward on the contact-free and low-cost de-

vices, the computer vision community enjoys the challenge

of using RGB cameras only to analyze three-dimensional

(3D) body pose [24, 25, 26, 28]. In fact, accurate human

pose estimation is considered one of the most challenging

tasks in the field of computer vision [21, 42], because im-

ages of people have large in-class variations caused by the

intrinsic deformation of the shape of the human body and

high variability in human clothing and environmental fac-

tors [22]. For these reasons, deep learning has been con-

sidered as a primary candidate for visual recognition tasks.

In 2014, Toshev and Szegedy formulated the human pose

estimation problem as a regression problem for estimating

the position of body joints to be solved with a deep neural

network [39]. Since then, a variety of models using deep

learning have been proposed to address this problem. For

example, a network named “stacked-hourglass” has been

proposed that consecutively and repeatedly applies down-

pooling and up-sampling so the information is captured at

every scale [30]. After that, a “Pyramid Residual Module”

has been proposed that can be added as a building block to

the architecture of other deep convolutional neural networks

to enhance their scale invariance [48].

Other work exploited the temporal information in

videos and proposed a spatial ConvNet for human pose

estimation [32]. Instead of providing estimates of joint

coordinates, the model regresses to a heatmap of joints.

Optical flow was used for the heatmap alignment, and

spatial fusion layers were added to implicitly learn the

dependencies between human body parts.

How does our research improve previous work?

Our evaluation of deep learning models on exercise data and

their comparison with estimates obtained from a depth cam-

era (Kinect) provides insights on how well the models are

posed to provide accurate estimates for assessment of phys-

ical therapy, where not only joint locations but orientation

and depth accuracy are important. ExerciseCheck provides

quantitative analysis to measure patients’ performance. Ex-

erciseCheck was evaluated by patients who used it at home

for a period of time. We collected their feedback and made

improvements accordingly, from the user interface to the

technical functionality.

3. Evaluation of Deep Learning Models for Hu-

man Pose Estimation
There are many available computer vision and deep

learning pipelines available for Human Pose Estimation.

These models [27, 30, 32, 38, 39, 46, 48, 50] provide a set

of 2D or 3D coordinates for various joints in the human

Labs), Xtion Pro Live (AsusTek Computer Inc.), ZED Stereo Camera

(Stereolabs Inc.)



Table 1: Comparing the loss between four deep learning

models against the MS Kinect. Averages are taken over

joint positions estimated by both the deep learning method

and the Kinect. The 2D Loss represents the percentage of

difference between pixel estimates provided by deep mod-

els and Kinect. 3D estimates were reported if available.

Pose 1 Pose 2 Pose 3

L
E

D
O

M

2D 3D (cm) 2D 3D (cm) 2D 3D (cm)

[27] 5.11 4.86 5.42 8.19 11.40 8.03

[38] 3.76 9.45 3.12 7.62 9.54 20.80

[46] 5.54 - 6.22 - 12.22 -

[33] 3.81 - 3.95 - 10.96 -

body. Most of these models have been trained and tested on

datasets having a large number of varied images, such as the

Human 3.6M dataset [15] and the MPII dataset [3]. Our ap-

proach demonstrates how to compare the pose estimates as

provided by depth cameras such as the MS Kinect to those

provided by research pipelines based on convolutional and

deep learning techniques. This would allow us to check the

feasibility of potentially replacing the additional piece of

camera hardware that assistance systems often require and

perform computations using just the built in device camera

such as a webcam on a computer system.

Experimental setup to gather pose data: (1) The webcam

and the Kinect were carefully kept at the same height and

angle so as to remove positional bias in the image. (2) The

user stands in a particular pose in front of the setup, from

a simple one such as a Shoulder Abduction to a more com-

plex one such as a Hip Abduction. (3) Coordinates from

the depth camera (Kinect in our case) were stored directly

with timestamps. (4) The image frames from the webcam

were fed into the deep learning models of choice (as listed

in Table 1) to obtain corresponding coordinates for the same

pose. (5) For a given pose, comparison between the coordi-

nates provided by the depth camera and the model estimates

were evaluated using a multi-step approach, which we dis-

cuss in the next section.

Algorithm for Evaluation:

• We make the height of the skeletons of both models

100 units so that they can be compared.

• We take the pelvis joint to be the origin for both images

(in their own separate coordinate systems). The pelvis

is chosen because deep learning models also select it

to be the origin if they provide 3D predictions.

• The pairwise Euclidean (L2) distance between each

joint is the chosen loss metric. We report the mean

loss across all joints for the 2D analysis, defined as:

Loss =
1

N

N
∑

i=1

∣

∣

∣

∣

∣

∣
(xim, yim), (xik, yik)

∣

∣

∣

∣

∣

∣

2

(1)

where the (xim, yim) are the normalized coordinates

from the model and (xik, yik) are the normalized co-

ordinates from the Kinect. N=16 is the number of

joints being evaluated upon, namely: Left/Right An-

kle, Left/Right Knee, Left/Right Hip, Pelvis, Thorax

(SpineMid), Neck, Head, Left/Right Wrist, Left/Right

Elbow, Left/Right Shoulder.

• Since the heights of skeletons are 100, this can be

viewed as a difference in percent - e.g., we can now

say that the head position from the model was 5% dif-

ferent from the Kinect prediction.

• For comparing the depth estimates, we first convert

predictions from all models and the Kinect into met-

ric units (cm). Since most models align the z data with

respect to the pelvis, we perform the same alignment

for the Kinect, and then compute the mean loss (Eq. 1)

based on pairwise distance in the z dimension.

• We also perform a joint-wise analysis to find the joint

with the most inaccurate location estimates for each

pose.

Evaluation Results and Conclusions:

• The availability of code and ease of its use guided our

model selection. We evaluated four systems [27, 33,

38, 46]. We report the overall comparison in Table 1

and the results for joint-wise analysis in Table 2.

• Important joints such as SpineMid, Knee and Wrist

seem to suffer the most from inaccurate estimation.

• We found that for simple poses like Pose 1 and 2, the

2D predictions are manageable. However, the error in-

creases substantially with a complex pose like Pose 3.

• Fewer models provide 3D estimates, which however

is crucial to measuring accuracy in exercises such as

squat, lunge, and etc.

• The average error in 3D estimation is almost 10 cm,

which would be misleading in understanding patient’s

performance, especially patients with neurodegenera-

tive diseases where even small distances count.

To summarize, we suggest that although deep learning

models have made progress, there are still issues to be re-

solved before we can use them in a clinical setting to pro-

vide accurate performance measure on patients exercises.

4. ExerciseCheck

4.1. Workflow and Hardware Components

The workflow of using the platform is as following.

First, during the patient’s clinic visit the physical thera-

pist (PT) and the patient are registered into the system and

paired. Then the PT shows the patient an exercise, and the



Table 2: Joints with the most inaccurate location estimated by deep learning models compared to the Kinect

Model Pose 1 - 2D Pose 1 - 3D Pose 2 - 2D Pose 2 - 3D Pose 3 - 2D Pose 3 - 3D

[27] Spine Mid Right Knee Spine Mid Right Knee Left Wrist Left Knee

[38] Pelvis Right Hip Right Wrist Left Ankle Right Shoulder Left Ankle

[46] Spine Mid - Spine Mid - Left Wrist -

[33] Spine Mid - Spine Mid - Left Wrist -

patient performs the exercise under the PT’s supervision.

Once the patient can perform the exercise correctly, the tra-

jectory of the movement is saved into our ExerciseCheck

as the referenceExercise. After that, when the patient goes

home and does the exercise on his/her own, the patient can

follow the previously recorded reference to practice the ex-

ercise. If satisfied with his/her practice, the patient can save

it into the database as a practiceExercise for further review.

Performance feedback on accuracy and speed is given to

the patient at the end of the practice session and is saved so

that the patient and the PT can track the performance over

time. Since ExerciseCheck evaluates the patients’ perfor-

mance based on their own referenceExercise, an individu-

alized performance measure is ensured. Moreover, the ref-

erenceExercise can always be updated during the patient’s

clinic visit. This enables updates in the expectation of the

therapist for a particular patient over the course of his or her

physical therapy.

ExerciseCheck requires two hardware components, a

motion sensor (webcam or depth camera) and a computer

with internet connection (Fig. 1). The motion sensor is to

capture the movement trajectories of the performed exer-

cises, and the computer to visualize, process, and transmit

them. For therapist to monitor patients and review their

performance, any device with a web-browser will suffice,

including a cell phone. As discussed above, we use the

MS Kinect as the visual sensor, as it is the most accurate

(non-wearable) sensor available. ExerciseCheck captures

the data of all the joints for the referenceExercise and prac-

ticeExercise. Given the large volume of the data, compres-

sion is employed before storing the data. All data are stored

in MongoDB on a server. For more detailed information,

please refer to our previous work [31].

4.2. Design and Development

Research and development of ExerciseCheck were done

in three phases, where each phase contains design and de-

velopment of the system accompanied by a set of experi-

ments. The experiments in each phase provided us feed-

back and directions on what needed to be added in the next

phase.

Phase 1: Building a prototype that consists of design-

ing the initial architecture and data storage on a server, im-

plementing a process for quantitative analysis of an exer-

cise, including accuracy and speed, and designing the ini-

tial graphical user interface [35]. In our experiment, two

physical therapists and two users without physical disabil-

ity evaluated our platform.

Phase 2: Major development in the system architec-

ture, data storage, and graphical user interface [31]. The

speed analysis was revisited. Exercise repetition counting

and analysis of the patient’s active range of motion were

added [34]. Parkinson’s disease patients evaluated our sys-

tem in their clinic.

Phase 3 (this paper): System updates were made based

on the feedback of the participants of the clinic experiments.

We prepared ExerciseCheck for the final deployment at the

patients’ homes. Updates included methods to stop the

recording of exercise data automatically and with a mini-

mum amount of error. We tested ExerciseCheck in the pa-

tients’ homes and performed an analysis of the experimental

results.

The user interface of ExerciseCheck is shown in Fig. 2:

During the practice exercise, the user can see, in real time, a

stick figure of themselves in the Live View on the right and

the recorded reference trajectory in the Reference on the left

of the screen. This side-by-side visual feedback is designed

so that the patients can easily follow the reference exercise

that has been previously approved by their physical thera-

pist. In addition to the stick figures, the interface provides

other information such as the name of the exercise, number

of sets and repetitions required, and the actual number of

the repetitions completed (Fig. 2D).

ExerciseCheck provides the patient and the therapist

with an analysis of the accuracy and speed of the patient’s

movements during the exercise. To do that, ExerciseCheck

first normalizes the recorded trajectories. Both the reference

trajectory and the practice trajectories are normalized by the

corresponding neck point captured in the beginning of the

exercise, as well as the “body width” and “body height”

variables [34]. Then Dynamic Time Warping is employed

to calculate accuracy, and the average over the speed mea-

surements per frame above a given threshold to obtain the

user’s speed during the exercise excluding the rest time.

Our previous results (based on phases 1 and 2) show

that our quantitative analysis is accurate when our system

is used in the clinic. All the patients liked the repetition

counter, as well as the performance feedback provided to

them in the interface. Moreover, we found that the real-

time visual feedback helped improve the patients’ perfor-

mance in executing the exercise in a way that their physical

therapist recommended. In addition, patients all reported



that the system was easy to use. In the following, we focus

on phase 3 of our work, in which our system was used by

patients in their homes during the course of their physical

therapy.

4.3. Challenges of Phase 3

Our experiments in phase 2 were conducted in the clinic

and involved both the physical therapist and the patient.

In those experiments, the therapist controlled the computer

and told patient when to start. The therapist also stopped

the recording when a set of exercise was completed by the

patient. However, our phase-3 experiment needs to consider

the fact that patients do not always have a companion when

performing exercises at their homes. The start of the record-

ing is not a problem because it occurs automatically: After

somebody presses the start button, the actual recording will

not begin until 5 seconds after the patient’s neck is detected

in the alignment circle. In this way, the patient can take time

to move to the right position. But the design for the stopping

of the recording is challenging. Without a second person to

click the stop button, the patient has to take several steps

to reach the computer and then click the button him/herself,

after he/she has finished the practice exercise. These extra

movements introduce noise in the data of the practice ex-

ercise, which makes measuring the performance accurately

difficult. In order to address this problem, we implemented

two versions of the stopping procedure; one version intro-

duces a virtual stop button that the user can press with their

hands after taking one step forward (Figure 2). The other

version automatically stops the recording 3 seconds after

the desired number of repetitions are completed (Figure 3).

Both versions were tested with users without physical

disabilities, and the accuracy of both methods were accept-

able. When asking the patients to try the two approaches,

we realized that the virtual stop button adds an additional

step for patients to remember and is not visually pleasing.

Furthermore, in some cases, it took a long time for the pa-

tients to stop the exercise, which compromised the move-

ment accuracy and the speed calculations. On the other

hand, the automatic stop button worked perfectly and re-

quires no extra effort from the patient. Thus, for the pa-

tients’ home-based experiments, we decided to use the ver-

sion of ExerciseCheck with automatic stopping. Note that

the automatic stopping works based on the number of rep-

etitions, thus it cannot be used for the reference exercise.

However, this is not causing any problems, since the refer-

ence exercise is recorded in the clinic, and, there, the thera-

pist is always present to stop the recording of the exercise.

5. Experiment at Patients’ Home

For the third phase of our experiments, we tested our sys-

tem at patients’ homes, so that they can evaluate our system

in a real scenario. The goals of this set of experiments are:

Figure 2: Version of visual stop button. The red visual stop

button (A) in the live view (C), where current motion is

shown, is placed in a way that takes advantage of the Kinect

using a depth camera. The patient must take one step toward

the camera in order to activate the visual stop button. The

reference view (B) displays the previously recorded refer-

enceExercise performed by this patient in clinic. (D) The

exercise information includes a repetition counter (blue),

which is updated in real time.

Figure 3: Version of auto-stop. (A) The green pop out mes-

sage indicates that the program is stopping the recording

since the required repetition number is met.

1. To study how patients can work with the system and

perform the exercises on their own.

2. To explore the possible scenarios at home that may

confuse the system and lead to inaccurate results.

3. To investigate a longer-term impact of the system on

the patient during the physical therapy period. For

example, to examine the motivational aspect of exer-

cising with a remote monitoring system and receiving

performance results after each exercise.

5.1. Design of the Experiment

Similar to our previous experiments, patients were first

prescribed an exercise in the clinic, and the reference ex-

ercise was recorded under the supervision of the physical

therapist. During an exercise session, the user stood ap-

proximately 0.75 m from the wall, and the motion capture



device was placed approximately 3.3 m from the wall and

0.9 m from the floor. Then patients were asked to repeat the

same exercise at home, at least three times per a week for

the duration of a minimum of two weeks. To facilitate the

procedure and ensure that the home-based exercise space is

correctly set up, we, as investigators of this study, set up

ExerciseCheck at each patient’s home, following the same

layout to the extent possible in the patient’s home.

5.1.1 Recruitment Criteria

The recruitment procedure followed the Institutional Re-

view Board (IRB) approved protocol. The inclusion criteria

identified by our physical therapists for recruiting the par-

ticipants in our experiments were: (1) age range = 40 to 80

years; (2) Mini-Mental State Exam > 23; (3) able to sit and

stand for at least 5 minutes independently; (4) able to under-

stand, communicate with and be understood by recruitment

personnel; (5) diagnosed with Parkinson’s disease; (6) in-

terested in participating and provide informed consent; and

(7) able to perform exercises for 10 minutes.

5.1.2 Study and Exercise Duration

The patients were asked to repeat their prescribed exercises

at least three times a week for the minimum of five times

total, to the extent it is compliant with their physical con-

dition. If interested, they continued the experiment for a

longer period. The first patient worked with our system for

24 days for a total of eight times. Due to a physical prob-

lem, the therapist advised him to stop the exercises for a

week time between day 10 and 17. He performed two ex-

ercises, the hip abduction and lunges. He performed both

exercises on both left and right sides.

The second patient used our system for the total of 41

days, thirteen times. Due to a physical problem, she stopped

for two separate weeks between day 13 to 20 and 23 to 37.

She performed two exercises: (1) marching with one leg (or

knee raise) and (2) lunges; both exercises on the left and

right sides.

The third patient used our system for two weeks and per-

formed arm raise and lunges for both right and left sides,

each five times.

5.2. Results and Discussions

Here, we present the results of our experiment both quan-

titatively, based on the recorded trajectories, and qualita-

tively by reviewing the feedback we received from the pa-

tients in form of written responses to the interview questions

and verbal discussions.

5.2.1 Quantitative Results

The performance scores of the three patients over the course

of the home-based experiment are shown in Fig. 4. This fig-

ure presents the accuracy and speed ratio values for the right

and left sides (leg or hand) of the body. According to the

physical therapist’s evaluation, all three patients performed

well in this experiment. Patient 1 was able to perform the

lunge exercise well, where the accuracy score was always

above 0.8 (top graph of Fig. 4a). In terms of speed, however,

he tended to perform the lunge exercise faster than expected

in some cases, especially with the left side (bottom graph of

Fig. 4a). Using our system, he was able to correct himself

and perform the exercise at the right speed. The first patient

found the hip abduction exercise challenging. His accuracy

score went down as low as 0.6, and the speed ratio ranged

between 0.9 and 1.4 ( Fig. 4b). He needs to put more effort

on practicing this exercise.

Patient 2 maintained a good performance for the lunge

exercise, both in accuracy and speed (Fig. 4c), except in a

few cases. For example, on day 4, she performed the lunge

exercise, but the results were not satisfactory, so she de-

cided to repeat the same exercise again to obtain a better

score. This result was very motivating for us, as it shows

that the patients cared about their performance and, using

our system, they attempted to perform their daily exercises

accurately. Our results also show that patient 2 found the

marching exercise more challenging, especially for the left

side, shown in red in Figure 4d, where the accuracy score is

fluctuating and the speed ratio is above 1 in most cases.

The third patient performed both exercises well, as rep-

resented in Figures 4e and 4f. The accuracy and the speed

ratio scores are very close to one for both the lunge and the

shoulder abduction exercises.

The daily analysis, in addition to informing the patient

about the performance scores right after each exercise, high-

lights how the physical therapist can benefit from our sys-

tem in order to gather an overall evaluation of the patient’s

performance and progress over time.

In order to provide the patient and the physical therapist

with a better understanding of the performance and the un-

derlying reasons for a given score, we also present them

with further analysis regarding one important joint angle

that is engaged significantly during a specific exercise. For

example, for the hip abduction exercise, ExerciseCheck an-

alyzes the angle between the two legs during the exercise.

Figure 5 shows such an analysis for the four exercises. On

the right of each graph, you can see the exercise illustration

with the corresponding angle highlighted. For each graph,

the reference exercise, shown in blue, is compared against

two randomly selected practice exercises shown in red and

green respectively.

For the hip abduction exercise in Figure 5a, the patient

managed to maintain the desired amplitude for the angle,

which is around 40 degrees for the reference as well as the

two practice exercises. The marching exercise in Figure 5b

however, seems to be challenging for the second patient. By

comparing the reference (blue line) and the second practice

exercise (green line), one can see that the amplitude of the



(a) Patient 1 - Lunge exercise (b) Patient 1 - Hip abduction exercise (c) Patient 2 - Lunge exercise

(d) Patient 2 - Marching exercise (e) Patient 3 - Lunge exercise (f) Patient 3 - Shoulder abduction exercise

Figure 4: Performance scores for accuracy and speed of the three patients during the home-based experiments obtained by

our system. All three patients performed reasonably well according to the therapist’s qualitative evaluation. Note that the

performance of each patient should be evaluated based on his or her physical capabilities and should not be compared against

each other. The blue and red represent the right and left limb respectively

specified angle is decreasing over time for the practice exer-

cise. This analysis informs the patient that the knee was not

raised adequately and thus the exercise was not performed

accurately. The patient rested for a longer time between

each repetition, leading to a longer time over all. However,

this rest time did not impact the performance considerably.

The third patient performed the shoulder abduction exer-

cise accurately (Fig. 5c) and managed to reach the desired

angle. The last graph represents the lunge exercise for the

right leg, performed by the third patient. This exercise can

be explained in two parts. First the patient took a large step

to move the right leg forward, then he moved the hip toward

the ground by bending the right knee. Figure 5d highlights

the two parts. The small changes in the angle represents

stepping forward and the larger peaks represent when the

knee is bent. Comparing the reference exercise (blue line)

and the second exercise (green line), one can see that the

patient did not bend the knee forward enough to reach the

expected angle. Our system can notify the patient to go

lower for subsequent trials.

5.2.2 Qualitative Results

After the home-based session, each patient was given a set

of follow-up questions asking about their experience using

ExerciseCheck. We learned the following points: Visual

feedback was helpful for the patients to adjust their exercise

speed and also to remember what to do and not to do. Two

of the patients found it easier to let the reference exercise

start playing before they started to move. They followed af-

ter approximately two seconds. They stated that, this way,

they could easily follow the reference and make sure that

they were performing the exercise correctly. One of them

reported that the side-by-side view with the reference set

was her favorite. The third patient, on the other hand, found

it overwhelming. The patient reported that, in his first ses-

sion, he could not use all the information provided to him

while doing the practice exercise. To be more specific, he

mentioned that, since he was trying to match his speed to

that of the reference exercise, he could not check the repe-

tition counter at the same time. However, he reported that,

after multiple times working with the system, he was more

familiar with the interface, and he felt he was getting bene-

fits from the presented information on the screen during the

practice exercise.

In addition, we learned that, as opposed to the clinic

where the patients begin the exercise at the right time, when

they are doing an exercise at home, they may begin the ex-

ercise a couple of seconds after the recording has started.



(a) Patient 1 - Hip Abduction exercise

(b) Patient 2 - Marching exercise

(c) Patient 3 - Shoulder Abduction exercise

(d) Patient 3 - Lunge exercise

Figure 5: Joint angle most engaged in a particular exercise

as a function of time during reference (blue) and two prac-

tice (red and green) movements of four exercises.

This has no effect on the speed calculation due the adjusted

speed formula implemented in our previous version. How-

ever, the accuracy measure may be compromised if a patient

begins the exercise late or the length of the rest time is more

than expected by the system. Thus, in future work, we need

to update the accuracy analysis to be responsive to this type

of unexpected noise.

Furthermore, we learned that our normalization mecha-

nism enables our system to handle errors in setting up the

exercise and recording space. It works even if the patient

does not stand exactly at the same distance from the camera

during the practice and reference exercises. However, the

height of the table, onto which the camera is placed, is im-

portant. Our current system requires that we ensure that the

camera is placed at the same height for recording both ref-

erence and practice exercises. Future work will investigate

how to relax this requirement.

Overall, all three patients mentioned that the Exer-

ciseCheck was a user friendly system, and they were happy

with their experience. We also noticed that the quantitative

performance measure was a positive factor in motivating the

participants to do their exercises and try to improve their

performance.

6. Conclusions and Future Work

In this paper, we evaluated the feasibility of using RGB

data and deep learning models for human pose estimation

for rehabilitation therapy. Our evaluation suggests that deep

models are not ready to replace depth cameras for clinical

based experiments and analysis. One possible future ap-

proach is to employ transfer learning, where we re-train the

last few layers of models previously trained on large pose

datasets, and then use those for the pose estimates. We

will continue experimenting with more models and hope

that with current advances in deep learning, we will soon

be able to use deep models in real time to provide accurate

3D pose estimates. Moreover, we hope that our paper mo-

tivates computer vision researchers to consider the use-case

scenario of physical therapy in order to guide their work on

improving 3D human pose estimation.

We presented a full-fledged system and experiments at

patients’ homes. Patients who participated in our experi-

ments found ExerciseCheck easy to use and were able to

interact with it well. Our results show the great potential

ExerciseCheck has for improving the experience of patients

when they are engaged in home-based physical therapy.

Future improvements will be made to ExerciseCheck

based on the patients’ feedback. One idea is to overlay

the practice skeleton on the reference, which appears as a

“ghost.” This may make it easier for the user to compare

speed and motion. In addition, we want to provide users a

side-view option. Exercises like squat and lunge can hence

have a better visualization. We also plan to develop an al-

gorithm that gives more detailed feedback on how the pa-

tient is doing. Instead of giving feedback based on the over-

all performance, our system will provide instructions like

“your third repetition is too fast or not high enough.” In

such a way, we can direct the patients’ focus to where it is

needed most and help them improve.

Last but not least, we plan to test the new cloud-based

Kinect 2 with our system. Backed by Azure, the computa-

tion capability will no longer be limited by our server, and

so we will be able to afford computation-intense algorithms

and provide users with even more accurate feedback.
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