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Abstract

Real-world environments, inhabited by people, still pose

significant challenges to deep learning methods. Object oc-

clusion is one of such problems. Humans deal with the oc-

clusion in a complex way, by changing the viewpoint and us-

ing hands to manipulate the scene. However, not all robotic

systems can do that due to cost or design constraints. The

question we address in this paper is, how well modern ob-

ject detection methods work on a model case of an intel-

ligent household refrigerator, where numerous occlusions

occur. To motivate our research, we actually performed a

worldwide survey of refrigerator occupancy to realistically

judge the extent of the problem, but the results could be

generalized to any unstructured storage environment where

people are in charge. The survey results enabled us to

generate a dataset of photo-realistic renderings of a typi-

cal refrigerator interior, where the object identity, location,

and the degree of the refrigerator occupancy are all readily

available. Our results are represented as the Average Pre-

cision depending on a refrigerator occupancy for two well

known deep models.

1. Introduction

Object detection is an important field in computer vision.

The task is to detect objects which appear in individual im-

ages or image sequences. It is an important part of various

robotic applications, such as autonomous driving (detecting

obstacles or pedestrians), assistive technologies [19], and

in many tasks that involve manipulating objects in the real

world.

Recently, deep learning models have drastically im-

proved the performance of the object detection [19]. De-

spite the success of deep learning, the methods still have

problems with occluded objects. Occlusion is inevitable in

real-world scenarios. In robotics, for instance, there is the

Amazon Picking Challenge (APC) [6], where we want to

Figure 1: Two examples of human-designed ”order”. Left:

contents of the actual household refrigerator, supplying a

4-member family. Right: a marina, with the row of boats,

neatly moored to a pier. Image is taken from the publicly

available Marine Obstacle Detection Dataset (MODD) [17].

Heavy occlusion is visible in both images.

automatically pick or stow objects in unstructured environ-

ments. In the APC picking task, a robot has to put objects

from a partially filled shelf into a tote. The stowing task

is the opposite of the picking task. The objects are stored

mixed and partially occluding each other which makes it

difficult to detect them [6].

1.1. Human environment

The problem of occlusions is not as severe if the access to

the environment is restricted to robots only – then, by neces-

sity, all or most positions of objects in the environment are

the consequence of robot picking, placing and stowing oper-

ations, which can be documented. However, the challenges

arise, when robots need to operate alongside humans.

The human idea of order and organization is very differ-

ent from the organization that would be best for an exclu-

sively robotic environment. Human abilities to adapt their

viewpoint, recognize objects, pick, manipulate and stow

them are yet unsurpassed. Last but not least, the human



ability to adapt to different environments is staggering. Un-

fortunately, future robots will have to work in conjunction

with humans, and it will be expected of them to work in an

environment that is organized in a way that humans prefer.

This leads to the question, how effective are state-of-the-

art methods in the environment, that is created with humans,

not robots, in mind. Two such environments that are very

different, but share important common characteristics, are

shown in Figure 1.

1.2. Household refrigerator as the model of human-
influenced environment

As can be seen from Figure 1, there exist environments,

which have been constructed with order and organization

in mind, but nevertheless, pose an extremely difficult chal-

lenge to computer vision algorithms. One of those challeng-

ing cases of object detection and recognition is occlusion.

We chose a household refrigerator (“fridge”) as a model

for the human-influenced environment for multiple reasons.

For one, ”intelligent” refrigerators or refrigerator add-ons

are already being marketed, and sometimes the ability to

recognize the contents inside is being promised. Secondly,

a refrigerator is still not human environment as such, it is

subject to technology and engineering constraints, but peo-

ple still have (albeit limited) influence on its organization.

Engineering constraints make the inside standardized to a

certain degree, which makes our problem easier. Third,

refrigerators are a common household item and household

robotization will definitely have to include them in an active

or passive form, that is, either as ”intelligent refrigerator”

or the object, the robot has to mechanically interact with to

fetch certain food item.

The remaining questions are: is the refrigerator an appro-

priate model for this task? Is the refrigerator content from

Figure 1 an exception or a rule? At which occupancy level

are methods allowed to degrade? To answer that, we carried

out a simple user study. 100 subjects from five English-

speaking countries were shown photo-realistic images (Fig-

ure 2, top) of a shelf in the refrigerator at different degrees

of occupancy. Participants were asked to select an image

that resembles the appearance of their refrigerator shelves

most closely. As one can see, 70% filled refrigerator ap-

pears basically full. Note that occupancy was determined

from the geometry of 3D CAD models of a refrigerator and

3D models of objects. Results are shown in the bottom part

of Figure 2. We can see that for most real-world fridges out

there, occlusion is a serious problem. Further details of the

study can be found in the experimental design section.

1.3. Object detection in a refrigerator

It is obvious that object detection inside of a household

refrigerator is one of the more challenging detection tasks.

First, we have many intra-class and inter-class occlusions.

How full is your refrigerator on average?

b) 20 %a) 10 %

c) 30 % d) 50 %

e) 70 %

10 20 30 50 70

Refrigerator occupancy (%)

0.0

0.1

0.2

0.3

0.4

R
e
la
ti
v
e
fr
e
q
u
e
n
c
y

Results

Figure 2: Simple user study to determine how full are

fridges on average. Top: Human subjects were shown those

images and they were asked to select the one that repre-

sents the average occupancy of their refrigerator. Bottom:

results show the distribution of answers (bars and the box

plot shown). The calculated average refrigerator occupancy

was 30%.

Terms were defined by Wang et al. [39], where objects are

occluded by the objects from the same or different cate-

gories. Second, objects at the back are normally heavily

occluded and almost impossible to detect. Third, objects

in use (groceries) are non-rigid and therefore susceptible to

deformations when fridges are filled up.

In such a challenging environment we assume the perfor-

mance of the state-of-the-art detection algorithms will drop,

and the amount of drop will depend on the occupancy of

the refrigerator. The more full the refrigerator is, the big-

ger will be the performance drop, due to occlusions. So the

main question which we want to address in this study (Fig-



ure 3) is how well modern object detection methods work in

unstructured storage environments?

To perform that study using real-world images on state-

of-the-art algorithms, it would require to manually fill the

refrigerator hundreds or thousands of times, and somehow

assess its occupancy and occlusion rate, in addition to label-

ing. Due to a large number of images needed by deep learn-

ing algorithms, this is an impossible task. To tackle this

problem we generated synthetic images from CAD models,

where we can precisely asses the occupancy and occlusion

rate for each generated synthetic image.

There already exists some tests based on the rate of the

occlusion [28, 16, 41, 42, 32, 27, 10], but they do not as-

sess the performance of the latest state-of-the-art detection

algorithms. In this work, we will test the performance of

2 state-of-the-art deep learning detection algorithms with

COCO evaluation metrics [20].

Our contributions in this work are:

• The worldwide survey and statistical analysis of the

importance of an AI (robotics, computer vision) prob-

lem that involves both algorithms and human be-

haviour.

• New large scale dataset for evaluation of occlusion

handling. Dataset consists of synthetic images where

object identity, location, and the degree of the refriger-

ator occupancy are all readily available.

• Evaluation of occlusion handling performance of state-

of-the-art deep learning detection algorithms.

2. Related work

2.1. Training with synthetic images

Using synthetic images for training deep learning algo-

rithms can be very attractive because eliminates expensive

and time consuming manual annotation of images. But syn-

thetic images are unable to fully reproduce the statistics of

real-world data [14]. This is mainly due to the fact that some

physics cannot be captured by rendering engines [36]. Be-

cause of that, we can assume algorithms trained on such im-

ages will have difficulties getting good results on real data.

Nevertheless, some authors [26, 33] showed that one can

still get decent results when using synthetic images that uti-

lize domain-specific image statistics. They generated im-

ages by adding random background and textures from real-

world images.

Authors [23, 30] proposed using photo-realistic render-

ing, where we reproduce the statistics of real-world data by

controlling the lighting and camera properties. With such

approach models trained on rendered data were good as

those trained on real data. Movshovitz et al. [23] pointed

out that models trained on rendered data could be even bet-

ter as they need to adapt to the real domain which brings an

additional level of difficulty. By supplementing real-world

training data with photo-realistic images [23, 30] showed

models outperformed those trained only in one domain.

However, photo-realistic rendering is hard and slow,

which makes it an expensive task [37]. Dwibedi et al. [8]

therefore proposed a patch level realism. They cut ob-

ject instances and pasted them on random backgrounds.

Their approach eliminated the requirement of scene geom-

etry estimation but pixel artifacts between object instances

and background changed object features. The problem was

solved by forcing algorithms to ignore those artifacts.

Better approach than [8] was proposed by Tremblay et

al. [37] and Tobin et al. [36]. They used a technique called

a domain randomization where rendering parameters (light-

ning, textures) are randomized in non-realistic ways. The

hypothesis is that enough variability in rendered data will

help models generalize to the real world. The real world

then appears to the model as just another variation [36].

Hinterstoisser et al. [14] argued that the domain random-

ization works only on simple objects and scenarios and is

therefore not so useful. They proposed new effective train-

ing where we use the models pre-trained on real images and

train only the last layers with synthetic images.

2.2. Occlusion datasets

There already exists a number of datasets tackling the oc-

clusion problem [15, 16, 24, 13, 3, 38] but they are mainly

too small and cannot be used to successfully train deep

learning models.

CMU Grocery dataset (CMU10_3D) [15] has 620 im-

ages of 10 grocery items in a natural kitchen environment.

The Items and the environment are very similar to our

dataset. It is well suited for testing the domain adaptation of

selected models but cannot be used for sufficient training.

Hsiao and Hebert [16] generated CMU Kitchen Occlu-

sion Dataset (CMU_KO8). Dataset consists of 1600 images

with 8 texture-less household items. Items have severe oc-

clusions and are positioned in a kitchen environment.

A similar environment was done by Walas and

Leonardis [38] in UoB Highly Occluded Object Challenge

(UoB-HOOC). Challenge was used for detection and scale

and pose estimation of objects in RGB-D scenes with 20

objects.

Pose estimation was also the main problem in ICCV2015

Occluded Object Challenge [13, 3]. 8 objects were posi-

tioned in a realistic setting of heavy occlusion.

CUHK Occlusion Dataset [24] is specifically used only

for pedestrian occlusions. It was obtained by selecting the

images from popular pedestrian datasets and contains 1063

images with occluded pedestrians.
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Figure 3: We build a new large scale FridgeNet dataset. The dataset is a COCO style [20] dataset and contains 95 000
synthetic images. Images contain 36 different categories of common grocery items on a glass shelf in a standard free-standing

refrigerator. Two state-of-the-art deep learning detection algorithms were studied: MASK_RCNN [11] and YOLO9000 [29].

Models were pre-trained on COCO [20] in ImageNet [7] dataset respectively and fine-tuned on FridgeNet dataset. PASCAL

VOC metric AP@50 and strict metric AP@75 [20] used as performance metrics. Metrics were analyzed on the refrigerator

occupancy and IoU object occlusion.

2.3. Occlusion handling

Occlusion handling was extensively researched mainly

in pedestrian detection where occlusion remains one of the

hardest challenges [40]. A common approach to tackle the

problem is to train part-based detectors [24, 22, 25, 35, 41,

42], where each model detects only part of a human body.

Detections are then combined to localize occluded pedestri-

ans.

In many cases, a detector is often confused since pedes-

trians have similar appearances [39]. Therefore Zhang et

al. [40] and Wang et al. [39] proposed new loss functions to

reduce false detections of overlapping pedestrians.

Lin Chu and Krzyżak [21] tested a hypothesis that deep

belief network architectures perform better than convolu-

tional neural networks when recognizing occluded objects.

The hypothesis comes from the fact that DBNs can partially

reconstruct the image which can aid in classification. They

found that the architecture and training algorithm does not

contribute to better recognition.

Researchers in [32] investigated the difference between

recurrent and feedforward networks when recognizing par-

tial occluded objects. They introduced two recognition

tasks digit clutter and digit debris. In former task, multiple

target digits occlude one another and in latter target, digits

are occluded by digit fragments. They showed that recur-

rent neural networks outperform feedforward networks.

Models for detection occlusion patterns were proposed

by [28]. They showed that occlusion patterns can be mined

and can aid object detection.

Hsiao and Hebert [16] showed that a model of 3D in-

teraction of objects can be used to represent an occlusion.

With such a model additional training data is not needed.

Occlusions in semantic segmentation were researched by

Chen et al. [4]. They proposed a top-down approach with an

energy minimization problem to handle occluded regions.

Occluded regions are fed into classifiers to obtain categories

and likelihood maps. Meanwhile, examples are used in the

shape predictor to obtain better shape estimation. All out-

puts are then used in an energy minimization problem to get

better segmentation.

Occlusion handling performance was more systemati-

cally studied in [28, 22, 16, 41, 42]. Pepik et al. [28] studied

the recall of deformable part models for 5 occlusion lev-

els in intervals of 20%. In [22] mean recall and miss rate

were assessed on occlusion levels from 0% to 50%. Mod-

els in [16] were tested for occlusion handling in low 35%
and high < 35% occlusion levels. Authors in [41, 42] tested

pedestrian detection miss rate on three occlusion levels: rea-

sonable (1%), partial (1%–35%), and heavy (36%–80%).

Pepik et al. [27] found out that AlexNet [18],

GoogleNet [34] and VGG16 [31] are not invariant to ap-

pearance factors such as rotation, size, occlusion and trun-

cation. For occlusion, adding training data didn’t im-

prove the results. They suggested architectural changes are

needed to obtain improvements.

3D object recognition was evaluated in [10]. Authors

implemented a special ConvNet for 3D object recognition

and studied its performance over a 3D CAD model dataset.

They simulated occlusions and noise with respect to RGB-

D sensors and showed that the important factor for occlu-

sion robustness are volumetric representations of 3D mod-

els.



3. FridgeNet Dataset

Current datasets are mainly too small to successfully

train deep learning models. One could argue for the use

of pre-trained models to tackle the problem, but still, those

models need around 2000 images per category to fine

tune them appropriately [1]. For example, the CMU_KO8

dataset [16] contains roughly 200 images per category,

which is 10 times smaller than the recommended value.

Therefore, we built a large scale FridgeNet dataset from

synthetic images that can be used for deep learning algo-

rithms. The dataset is currently not available to the general

public, but we plan to release it at a later time.

FridgeNet Dataset

Figure 4: Sample images of the large scale FridgeNet

dataset. An object identity, location as segmentation, and

the degree of the refrigerator occupancy are readily avail-

able.

FridgeNet is a COCO style dataset [20] and contains

72 000 training samples, 17 000 validation samples, and

6000 test images. Object identity, pixelwise segmentation,

bounding boxes and the degree of the refrigerator occu-

pancy for each image are also included. Sample images

are shown in Figure 4. There are 36 categories of common

grocery items that can be found in a refrigerator. All sam-

ples are 1024× 576 photo-realistic images rendered from

3D CAD models by Cycles renderer [2]. All images repre-

sent realistic occupancy of a glass shelf in a standard free-

standing refrigerator with dimensions 60× 185× 64 cm
(W×H×D).

3D CAD models except refrigerator were bought from

online repositories. Refrigerator model has been kindly

supplied by the home appliance manufacturer. It is a pro-

fessional engineering CAD model used for production pur-

poses. 36 diverse grocery models were carefully selected

based on the following criteria. A category of a model must

be a common grocery item. Common items are the ones that

can be identified by most of the people like milk, cucum-

ber or water bottle. Models had to have physically based

rendering (PBR) materials and be compatible with Blender

format. With PBR materials we assured best photo-realistic

results.

Images were generated by placing grocery items on a

glass shelf. To simplify the procedure, CAD models were

considered to be rigid cuboids. Without this simplification,

the algorithm to automatically place the objects in the re-

frigerator would be too complex and too slow for this task.

Also, we didn’t vary the camera pose. Varying camera

pose would simulate how humans help themselves in rec-

ognizing objects by changing the viewpoint. This would

possibly also help the algorithms and therefore, evaluation

of the algorithms’ occlusion invariance would not be real-

istic. Algorithms would fail on datasets without additional

assisting data.

We decided to put the objects on the single shelf, as the

variation between the different shelves is too small to war-

rant the increase in complexity of the experiment, and on the

other hand, adds very little to realism regarding occlusions.

Object rotations were constrained to prevent visual arti-

facts or unnatural positions such as bottles oriented upside

down. Physics simulation of gravity was not used to save

processing time. Other physics properties were still used

to prevent collisions between the objects. To assure that

the poses were diverse we randomly put objects on non-

occupied surfaces of glass shelf and already positioned ob-

ject cuboids to fill the free space in the refrigerator.

Additional occupancy parameter was used to indirectly

influence the occlusion rate. All training and valida-

tion samples were rendered with occupancy of 10± 1%.

For testing data we used occupancies 10± 1%, 20± 1%,

30± 1%, 50± 1%, and 70± 1%.

Rendered images were augmented to add an additional

layer of realism and to randomize the domain. The training

set was augmented by Gaussian blur, affine transformations

(scale, rotation, and shear), changing brightness, contrast

normalization, and additive Gaussian noise. Affine trans-

formations were not used on testing images.

The reason why we use synthetic images and not real-

world data is mainly because of the complexity of the

dataset. With real-world images, one immediately runs into

the problem of how to objectively measure the occupancy

of the shelf. Enrolling a large group of human labelers

could perhaps be used to group the images by occupancy,

but would still provide a rather subjective result. Obtaining

tens of thousands of images that show realistic refrigera-

tor interior is another problem. Using web-crawling runs

into a problem where there are far too few images that rep-

resent realistic occupancy of the refrigerator. Images that

are available are mainly promotional images from home ap-

pliance makers, where image aesthetics, not realism, is the

main objective. A better approach would be to photograph

our own refrigerator and randomly fill it with groceries but

the procedure would be impossibly time-consuming, should



we target the same number of images we have now, that is

90.000 total images.

As pointed out in Sec. 2.1 there are four main ap-

proaches to generate appropriate synthetic images (adding

domain-specific image statistics, photo-realistic rendering,

patch level realism, and domain randomization). Given our

problem, the best solution is the use of photo-realistic ren-

dering to get clean images, and then to augment them to

additionally randomize the domain.

4. Experimental design

First, we performed a worldwide survey of refrigerator

occupancy to estimate the degree of a problem the object

detection methods face. Human subjects were recruited

from UK, Ireland, USA, Canada, and Australia to mini-

mize the effect of the language barriers and were shown

photo-realistic images (Figure 2) of a shelf in the refrigera-

tor, each with different occupancy (10%, 20%, 30%, 50%
and 70%). Subjects were asked to select an image that rep-

resents the normal occupancy of their refrigerator. The user

study was done on 100 subjects. The one-sample Wilcoxon

signed rank test [9] was used for statistical analysis of the

study.

Then we tested the following deep learning detection

algorithms: MASK_RCNN with ResNet-50-FPN back-

bone [12] and YOLO9000 [29]. Detection algorithms can

be roughly sorted into two groups: region-based and single

shot methods. In region based methods object proposals are

made and then sent to classification stage. Single shot meth-

ods eliminate proposal generation by incorporating propos-

als and classification into a single network. MASK_RCNN

is a state-of-the-art representative of the former group and

YOLO9000 of the later.

To avoid any unexpected problems caused by dif-

ferent domains, we used pre-trained models and only

fine-tuned them. The process was proposed by [14].

MASK_RCNN was pre-trained on the COCO dataset [20]

and then fine-tuned the network heads on our dataset for

40 epochs. MASK_RCNN backbone wasn’t addition-

ally trained. YOLO9000 was pre-trained on ImageNet

dataset [7]. The whole network was then fine-tuned on

our dataset for 18 000 iterations or roughly 6 epochs. Note

that YOLO9000 was trained on slightly adjusted FridgeNet

dataset. Dataset format for YOLO9000 implementation

from [1] is different from the COCO dataset format [20],

therefore we generated a modified FridgeNet dataset specif-

ically for YOLO framework. Modified FridgeNet con-

tains roughly 6000 training samples per category (total of

175 622 train samples and 43 915 validation samples). The

number of test samples stayed the same. Because the modi-

fied dataset was generated from the same population of ren-

dered images, dataset statistics are the same as from Frid-

geNet with COCO format.

To evaluate the performance of modern object detection

methods in unstructured storage environments, we used two

different metrics. First, we determined PASCAL VOC met-

ric AP@50 and strict metric AP@75 (defined in [20]) over

selected occupancies. Occupancies for each image were de-

termined from the rendering process by calculating volumes

of models’ cuboids. Second, the same AP metrics were

calculated over the occlusion rate. The occlusion rate was

determined as the standard Intersection over Union (IoU)

of objects’ bounding boxes. The standard IoU of a ground

truth (gt) and detected object (dt) is defined by (1).

IoU(gt, dt) =
area(intersect(gt, dt))

area(union(gt, dt))
(1)

In evaluating occlusion invariance of the algorithms av-

erage performance drop rate (ADR) at different IoU thresh-

olds was used. ADR is defined by (2), where y is AP and x

refrigerator occupancy or occlusion.

ADR =
1

N

N∑

i=1

yi − yi−1

xi − xi−1

(2)

5. Results

Regarding the user study, the power analysis of 100 user

answers resulted in 99.99% confidence for selected high

effect size 0.5 suggested by [5], and α = 0.05. Answers

are presented as the bar and box plot in the bottom part

of Figure 2. Results indicate that refrigerator occupancy

is mainly in 30%–50% range. To further investigate the

occupancy we analyzed the null hypothesis that the average

occupancy of a household refrigerator is 50%. For the alter-

native, the average occupancy is less than 50%. Hypotheses

were tested by the one-sample Wilcoxon signed rank test for

0.01 significance level. With the results of p = 3.318e−12,

we are confident that the average household refrigerator oc-

cupancy is 30%.

The performance of selected deep models based on the

refrigerator occupancy is shown in Figure 5. IoU threshold

used is appended to the model name. The bold vertical line

in Figure 5 represents the average refrigerator occupancy

that was determined from the user study. This line repre-

sents an occupancy threshold for occlusion invariance.

One of the questions that have arisen in the analysis of

the results is the maximum achievable rate, as objects in-

evitably become fully occluded and therefore invisible, as

the occupancy increases.

AP for the occupancy threshold and below can be ide-

ally 100%. Algorithm performance should aim for this

as well. Beyond the threshold, the degradation line was

naively determined as a linear line passing through points

P1 = (30, 1) and P2 = (100, 0). Point P1 represents ideal

AP at occupancy threshold. Point P2 represents 0 precision
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Figure 5: Detector performance at refrigerator occupancy.

IoU threshold used is appended to the model name. The

Vertical line represents average refrigerator occupancy. The

green line represents the desired AP score. MASK_RCNN

is more successful regarding the AP metrics. But its ADR

is high.

at 100% refrigerator occupancy. This calculation is shown

in Figure 5 as a green line. Models should be invariant to

occlusion for occupancies less than 30% and allowed to de-

grade beyond that.

YOLO9000’s performace for AP@50 metric dropped

from 83.15% to 43.33% when refrigerator occupancy in-

creased from 10% to 30%. This is nearly 40% drop

for 20% of increased occupancy. Average drop rate at

50% IoU threshold (ADR@50) was estimated to 1.40 and

ADR@75 was 0.87.

Similarly MASK_RCNN’s perfomance dropped from

90.3% at 10% occupancy to 59.7% at 30% occupancy

(31% drop). ADR@50 was 1.30 and ADR@75 was 1.41.

MASK_RCNN has proved to be more successful in AP.

Results are better than those of YOLO9000 for every met-

ric and occupancy. Moreover, we have lower performance

drops depending on increasing the IoU threshold. Never-

theless, occupancy invariance for MASK_RCNN is quite

low for both IoU thresholds. Best occupancy invariance was

achieved by YOLO9000@75 (ADR@75 = 0.87).

Comparing the results depending on the refrigerator

occupancy to the results depending on the actual occlu-

sion (Figure 6), it can be seen that drops in perfor-

mance are smaller for the same nominal change in occu-

pancy/occlusion. This, of course, indicates that occlusion

increases quickly (non linearly) with increasing occupancy.

For AP@50 metric the performance of YOLO9000 dropped

from 81.44% at 10% occlusion to 63.39% at 30% occlu-

sion. Performance drop was around 18%. ADR@50 was

1.09 and ADR@75 was 0.93.

For MASK_RCNN the perfomance dropped from

89.70% at 10% occlusion to 77.20% at 30% occlu-
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Figure 6: Detector perfomance at refrigerator occlusions.

MASK_RCNN outperformed YOLO9000 detector in AP

metrics.

sion (12.5% performance drop). ADR@50 was 1.05
and ADR@75 was 1.23. By average precision metrics,

MASK_RCNN still outperformed YOLO9000 detector.

6. Conclusions

Object occlusion still poses significant challenges to

deep learning methods. To test how well modern object de-

tection methods work in unstructured storage environments

we worked on a model case of an intelligent household re-

frigerator. The selected environment is one of the more

challenging tasks in detection because of many intra-class

and inter-class occlusions, heavily occluded objects at the

back of the refrigerator and usage of deformable objects.

The survey of the refrigerator occupancy in human

households was used to judge the extent of the problem in

such an environment and motivate our research. Statisti-

cal analysis showed that the average household refrigera-

tor occupancy is approximately 30%, which already causes

significant occlusion. Surprisingly, the average refrigerator

occupancy was lower than expected. We anticipated higher

values, almost 70%, which is approximate amount shown

in Figure 1. Refrigerator content from Figure 1 is therefore

more of an exception than a rule. Average household refrig-

erator occupancy level was then selected as an occupancy

threshold. To avoid frustrating the majority of the user, any

models used in the real world should be invariant to occlu-

sion at least for the occupancies below that threshold, unless

the hardware mechanism to adjust the view is in place (e.g.

moving robotic head).

To perform experiments, we build a new large scale

”FridgeNet” dataset with 95 000 synthetic images, contain-

ing 36 different categories of common grocery items on a

glass shelf in a standard free-standing refrigerator. To add

variability, randomized augmentation was added to clean



rendered images. CAD models were considered to be rigid

cuboids. Without this, the algorithm for object placement

would be too complex. Unfortunately, this simplification

didn’t work well for rounded items as it produced some

minor visual artifacts, where items were floating over the

rounded objects. This could be overcome by also using

the gravity in physics simulations. Another solution would

be to use other simplified shapes besides cuboids such as

spheres, capsules, cylinders, and cones. We can consider

these visual artifacts as position offsets as they don’t influ-

ence the method’s performance. From rendering point of

view images still result as photo-realistic.

Two state-of-the-art deep learning detection algorithms

MASK_RCNN and YOLO9000 were pre-trained on COCO

and ImageNet dataset respectively and fine-tuned on Frid-

geNet dataset. PASCAL VOC metric AP@50 and strict

metric AP@75 were used as performance metrics. Metrics

were obtained for different levels of refrigerator occupancy

and IoU object occlusion.

Results confirmed our claims on performance drop when

increasing the occupancy of a refrigerator. None of the

evaluated models got near maximum achievable AP score.

Nevertheless, the models did not show up any signs of oc-

clusion invariance below occupancy threshold 30%. Min-

imum performance drop in lower occupancy area was as

high as 31% which is 11% worse than a linear drop of

20%. ADR metrics for refrigerator occupancy were also

indicating the models cannot handle occlusions well. Nev-

ertheless, MASK_RCNN outperformed YOLO9000 in AP

metrics by around 10%. This was somehow expected as

region-based methods normally have better detection per-

formances over single shot methods.

Similar results were obtained when evaluating the ac-

tual occlusion of items in the refrigerator. Drops in perfor-

mance were smaller for both methods, but still they didn’t

achieve any occlusion invariance. MASK_RCNN similarly

outperformed YOLO9000 which only further proves that

MASK_RCNN can better cope with the problem of occlu-

sion.

We conclude that using these algorithms in their present

form in the real-world household fridges is almost certain

to frustrate the majority of a refrigerator owners, and by ex-

tension, performance in other non-structured environments

(e.g. human living quarters, unless they are tidied and orga-

nized in a robot-friendly manner) is questionable as well.

Object detectors are also not ready to deal with human-

designed highly-cluttered environments. Using additional

data from different viewpoints could increase the perfor-

mance as this simulates how people are helping themselves

when recognizing items in such environments. But fre-

quently this cannot be done and also this would not system-

atically solve the occlusion invariance problem. As other

researchers pointed out, architectural changes are needed to

overcome the problem.

Our future work will include improving this aspect of

state-of-the-art detection algorithms.
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