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Abstract

Learning from demonstration (LfD) enables robots to

learn complex relationships between their state, percep-

tion and actions that are hard to express in an optimization

framework. While people intuitively know what they would

like to do in a given situation, they often have difficulty rep-

resenting their decision process precisely enough to enable

an implementation. Here, we are interested in robots that

carry passengers, such as robotic wheelchairs, where user

preferences, comfort and the feeling of safety are impor-

tant for autonomous navigation. Balancing these require-

ments is not straightforward. While robots can be trained

in an LfD framework in which users drive the robot ac-

cording to their preferences, performing these demonstra-

tions can be time-consuming, expensive, and possibly dan-

gerous. Inspired by recent efforts for generating synthetic

data for training autonomous driving systems, we investi-

gate whether it is possible to train a robot based on simu-

lations to reduce the time requirements, cost and potential

risk. A key characteristic of our approach is that the input

is not images, but the locations of people and obstacles rel-

ative to the robot. We argue that this allows us to transfer

the classifier from the simulator to the physical world and

to previously unseen environments that do not match the ap-

pearance of the training set. Experiments with 14 subjects

providing physical and simulated demonstrations validate

our claim.

1. Introduction

Machine learning has had a profound effect on robotics

over a long period of time. In the past few years, learn-

ing methods have become more data intensive and have

∗Equal contribution

achieved even higher accuracy, as long as sufficient train-

ing data are available. This requirement, however, is not

always easy to satisfy because in many cases it is hard and

expensive to acquire and annotate large datasets. Very re-

cently, scientists were able to make breakthroughs in a num-

ber of perception problems by training, or pre-training, on

synthetic datasets, which can be generated and annotated

automatically. Examples of these success stories include

progress achieved in object pose estimation [28], disparity

and optical flow estimation [25], object detection for as-

sisted and autonomous driving [1, 17], action recognition

from video [11], and RGB-D image segmentation for grasp-

ing [10].

A number of frameworks for generating synthetic data

have been created to facilitate these efforts: the MPI Sin-

tel Flow Dataset [6] has aided progress in optical flow esti-

mation; SYNTHIA [30] generates training data for seman-

tic segmentation of urban scenes; the Virtual KITTI dataset

[13] is a collection of synthetic videos for object detection,

tracking, scene and instance segmentation, depth, and opti-

cal flow estimation; AI2-THOR [39] trains a visual naviga-

tion system in synthetic environments via deep reinforce-

ment learning; Sim4CV [27] is a generator of simulated

videos for multi-object tracking and autonomous driving as

well as a number of other applications. These frameworks

can generate large amounts of annotated training data with-

out requiring any interaction with users. Ground truth for

autonomous driving in Sim4CV is automatically generated

by a waypoint prediction network, for example.

A different class of simulators generate data that are used

for learning from demonstration by observing human users

perform the tasks of interest. The most similar work to

ours is CARLA [12], an open-source framework for train-

ing navigation systems for autonomous driving. Among

many other functionalities, CARLA provides an imitation

learning capability based on observations, commands and



actions recorded by users driving through the simulator.

The success of approaches based on simulated data in

perception tasks is a very encouraging indicator of potential

success in other domains. We advocate that the capability to

train software for robotics in simulation can be transforma-

tive by reducing the cost and risk of developing such sys-

tems. It is also much more scalable, as previously argued

by Zhu et al. [39], since copies of the simulator can be

distributed to large numbers of “trainers” who do not need

access to the physical robot or to appropriate space for train-

ing it.

In this paper, we present an approach for learning from

demonstration using real and simulated data. Our approach

has been implemented for a human-robot interaction sce-

nario, the navigation of a powered wheelchair, but is appli-

cable in other settings with appropriate modifications. The

task we have targeted is learning the navigation preferences

of wheelchair users by observing the choices they make

when multiple paths are available between their current lo-

cation and their destination. The challenge lies in that, while

users can easily choose their preferred option, they have dif-

ficulty specifying an objective function that encapsulates all

the criteria they consider. This makes automatic annotation

of the data hard. To overcome this challenge, we train our

classifiers using data that can be generated more easily by

the users. Specifically, we use the ranking of the available

paths that is generated every time a user makes a navigation

choice. Each choice provides a signal that the chosen path

is superior to those that were not chosen.

An important difference between our approach and those

mentioned above is that photo-realism is not critical for

the success of our simulator. The robotic wheelchair is

equipped with a consumer depth camera (Microsoft Kinect)

that allows it to estimate a partial occupancy map of the

environment, as well as distances to obstacles and the lo-

cations of people. The planner reasons based on these data

and not on input images. Our simulator enables users to

navigate a virtual robot in maps, which is a natural task

for most people. It is also able to generate the same type

of data, namely occupancy maps and distances to obstacles

and people.

Regardless of whether the data and user commands are

captured on the physical wheelchair or in the simulator, the

back end of our system comprises the same path planner

and classifier. The planner must generate a number of di-

verse paths so that the options not selected by the user are

also represented. To this end, among other options, we em-

ploy a planner based on the Generalized Voronoi Diagram

(GVD) [5, 20, 9] that generates multiple homotopically dis-

tinct paths. During training, we map the user’s trajectory to

its homotopically equivalent path, while the other paths are

labeled as less desirable than the one chosen, as shown in

Fig. 1. A Support Vector Machine (SVM) is trained to rank

Figure 1. Examples of paths followed by a human subject (in solid

line, labeled with a ’u’) and generated by the GVD planner (in

dashed lines, labeled with numbers). The subject’s paths are ho-

motopically equivalent to path ’1’ in both cases. Note that, even

though the planner generated four homotopically distinct paths in

the right map, only two are shown to reduce clutter.

paths according to user preferences.

We believe that our framework can be used in a vari-

ety of applications where subjective user preferences need

to be captured to train a robotic system. Here, we de-

velop an instance of the framework for training an assistive

robot to select paths autonomously based on high-level user

commands. We selected powered wheelchairs due to their

importance as assistive devices to an estimated 1% of the

world’s population according to the 2010 US census and

other sources [31, 8]. Our framework is well-suited for this

problem since operating the wheelchair requires balancing

criteria such as efficiency, comfort and safety.

To validate our approach, we recruited 14 subjects who

navigated the wheelchair in 10 simulated and 2 actual en-

vironments. We first validated that the classifier can be

trained by demonstration and can achieve high accuracy on

real data with either real or simulated training data. We then

deployed the trained classifier on the wheelchair and show

that, given the destination by a voice command, the robot

can choose the appropriate path to reach it. We feel that this

last step is absolutely necessary since classifiers that achieve

high accuracy on instantaneous inputs are not guaranteed to

perform well in continuous mode in the world. The supple-

mentary video shows examples of the deployed system.

2. Related Work

In this section, we review literature on path selection

for passenger-carrying robots that take into account com-

fort and user preferences, as well as on training machine

learning based systems on simulated data.

For an overview of robotic wheelchair systems we re-

fer readers to [16] and [32]. The following publications are

particularly relevant to the human-robot interactions aspects

of our work. The approach of Gulati et al. [14] character-

izes comfortable motion taking into travel time and mea-

sures such as tangential jerk, normal jerk, angular velocity

and angular acceleration, but does not consider obstacles.



Zeng et al. [38] developed a collaborative wheelchair which

automatically plans the path based on user-specified desti-

nation and speed. The user can take over to alter the path at

any time. Urdiales et al. [35] proposed a shared control ap-

proach that combines commands generated by the robot and

the user according to their relative efficiency of each task.

A similar dynamic shared control system for wheelchairs

was designed by Li et al. [23]. The level of assistance is

adapted based on the user’s capabilities and control is de-

termined by optimizing an objective function that considers

safety, comfort and obedience to user’s commands. In the

work of Carlson et al. [7], the user guides the wheelchair

while the robot adjusts the control signals to ensure safety.

The above methods do not address the presence of peo-

ple in the environment. In addition to the following pub-

lications, we also refer readers to a relevant survey [19]

for more information. Sisbot et al. [33] presented a mo-

tion planner that integrates safety and comfort in its cost

function. Kirby et al. [18] proposed a navigation approach

that takes into account people in the environment, travel dis-

tance and distance from obstacles. The resulting system is

aware of expectations in human-robot social interaction; it

respects personal space and passes on the right. Morales et

al. [26] address wheelchair navigation emphasizing comfort

for both its passenger and nearby pedestrians. Vanhooy-

donck et al. [36] presented a framework that determines

whether a wheelchair user requires assistance based on es-

timates of the user’s intentions and user-specific model of

skills and behaviors. In this paper, we have adopted and

modified aspects of the work of Chang et al. [9] who pre-

sented a method for learning personalized models for path

selection and applied it in a shared autonomy framework

where the user and the robot jointly navigate in the scene.

All of the above methods required training and tuning the

robot in the field. In this paper, we show that training in

simulation is viable.

Soh and Demiris [34] proposed the Learning Assistance

by Demonstration (LAD) approach that focuses on assis-

tive systems and, like our approach, is implemented on

wheelchairs. The key idea is that LAD does not attempt

to learn how to drive, but rather it learns when and how

to help the user. LAD aims to train a shared control sys-

tem by demonstration using paired haptic controllers. A

simulated and a physical robot are trained separately. The

main differences with our approach are that we focus on

autonomous operation by the smart wheelchair and that we

transfer learning from a simulated to a real robot.

We now turn our attention to research on using syn-

thetic or simulated data for training. We focus on contin-

uous activities such as navigation where training is based

on demonstration, as opposed to instantaneous tasks, such

as object recognition. We assign to the latter category pub-

lications that address single-frame vehicle detection or se-

mantic segmentation for autonomous and assisted driving

[1, 13, 17, 29, 30]. As mentioned in the introduction,

Sim4CV [27] can be used to generate synthetic data for

training autonomous driving systems, but it does not sup-

port learning from demonstration. The proposed navigation

system learns to pass through the generated waypoints, but

not the driving preferences of the user. AutonoVi-Sim [4] is

a similar framework that can rapidly simulate complex traf-

fic scenarios, but also does not allow learning from demon-

stration.

CARLA [12] is an open source framework that pro-

vides a simulator with many functionalities including con-

ditional imitation learning from user demonstrations, which

is closely related to this paper. In contrast to our work, the

observations of the environment are in the form of images,

while we reason on a more abstract representation. Zhu et

al. [39] presented an approach dubbed The House Of in-

teRactions (AI2-THOR) that uses deep reinforcement learn-

ing to train a visual navigation system. AI2-THOR relies

on an actor-critic model that aids generalization, but its ac-

tion space is limited to four actions (forward, left, right and

back).

Our approach attempts to learn relatively complex rela-

tionships between the environment and the actions that the

robot should perform. Recently, Bajcsy et al. [2] proposed

an approach for learning objective functions from human

guidance focusing on the reduction of unintended learning.

All training, however, requires the physical robot. Basu

et al. [3] addressed a similar problem using comparisons

between trajectories, instead of demonstrations, as input

to train the system. To enrich the information content of

the comparisons, they automatically generate queries to the

user on the importance of features to their choices.

3. Physical and Simulated Platforms

In this section, we present the platforms used to col-

lect demonstration data for learning user preferences in

path planning. In both physical and simulated settings, we

record the environment and the trajectories as a user drives

wheelchair.

3.1. Robotic Wheelchair

To collect data in real environments, we designed a

robotic wheelchair based on a commercially available pow-

ered wheelchair controlled by a computer connected to the

joystick interface. A Microsoft Kinect provides RGB-D im-

ages for mapping and localization (Fig. 2). The GUI has

three screens, two of which are shown in Fig 3: (i) the main

screen that allows the user to select the navigation mode

(level of autonomy), (ii) the user navigation screen which

shows a virtual joystick and controls to start and stop trajec-

tory recording, and (iii) the autonomous navigation screen



which shows the map of the environment and all possible

paths.

Figure 2. A picture of the robotic wheelchair

Figure 3. The user (left) and autonomous (right) navigation screens

of the interface.

3.2. Simulation

Our simulator is built using the Robot Operating System

(ROS) and the rviz package. The physical wheelchair has

two differential drive wheels and two passive casters allow-

ing it to rotate in place. It is not holonomic, since it cannot

move sideways without rotating first. We implemented this

motion model in the simulator by modeling the wheelchair

as a Husky, an unmanned ground vehicle which is also non-

holonomic and has four differential drive wheels allowing it

to rotate in place.

We designed ten indoor environments using a free de-

sign tool, namely Homebyme (https://home.by.me/en/). We

chose daily life environments, such as dining rooms, bed-

rooms, etc. The simulator interface shows the map, with the

locations of the robot, obstacles and people, and the desti-

nation. Users can navigate the robot with realistic direction

and speed control in the map using the arrow keys. Figure

6 shows two examples of simulated environments with and

without people other than the wheelchair user. The other

environments have more furniture and therefore have more

homotopically distinct paths from one place to another.

4. The Generalized Voronoi Diagram (GVD)

Planner

Given a map from the simulator or an RGB-D scan from

the Kinect, we first convert them to an occupancy grid. Path

planners [22] take as input the occupancy grid, the current

location of the robot, its motion model and the goal loca-

tion and generate paths connecting the current and the goal

location. Most planners, however, generate only one path.

In order to learn the preferences of the robot’s users, we

must generate a number of different candidate paths. We

distinguish paths based on the concept of homotopy [5, 20].

For two paths to be homotopically distinct, there must be

one or more obstacles between them, preventing a smooth

transformation from one to the other, as shown in Fig. 5.

Considering Fig. 4(a) for example, the presence of a table in

the center of the room gives rise to two homotopy classes of

paths that pass on either side of the table. In actual naviga-

tion, a wheelchair user can clearly identify these two paths.

In the absence of the table in Fig. 4(b), the same paths can-

not be distinguished based on homotopy. A wheelchair user

is very likely to be indifferent to the choice between these

two paths.

Figure 4. Left: Homotopically distinct paths. Right: Homotopi-

cally equivalent paths.

Our strategy for generating homotopically distinct paths

relies on the GVD of the obstacles in the map, as presented

initially by [20] and for semi-autonomous wheelchair nav-

igation by [9]. It uses a property of the GVD, on which

any different paths between two vertices are homotopically

distinct. Therefore, the problem of finding k homotopically

distinct paths for navigation is converted into the problem

of finding the k shortest paths in a graph. Chang et al. [9]

relied on this property to generate discrete plan hypotheses

that were presented to the user to choose from. Here, we

learn from demonstration and map the actual trajectories of

the users to homotopically equivalent paths generated by the

planner.

Figure 5 illustrates the path generation process. The

GVD of a map is a set of unoccupied points whose dis-

tances to the nearest two obstacles are equal. It is called

“generalized” because the input sites can be of any shape,



(a) (b)

(c) (d)
Figure 5. Illustration of GVD path planner. (a) Points on the GVD

are extracted from the map. (b) Paths connecting the start and

end points to the GVD are added. (c) The graph representation is

extracted. (d) The k-shortest paths are found.

not just points. We start by computing a Euclidean distance

transform to obtain a binary grid M that indicates whether

a cell (x, y) is on the GVD or not. We then connect the start

and end point to the nearest cells already on the GVD with

straight paths.

The binary grid M is then converted to a graph represen-

tation G = (V,E). A breadth-first search is used to traverse

M and detect the vertices and edges of G. Vertices are cells

with more than two incoming edges, while the cells con-

taining the start and end points are vertices with one edge.

We apply Dijisktra’s algorithm to find the k-shortest paths

on the graph G. These k different paths are homotopically

distinct because they correspond to different paths on the

grid-represented GVD. Figure 5(d) shows the two shortest

paths in the graph of Fig. 5(c).

After we have computed the GVD of the scene, we can

map any path, complete or partial, the user has followed

to its corresponding homotopy class. We can then attach

features to the paths, as shown below, and use the classifier

to compare two or more paths.

5. Path Representation and Ranking

In this section, we discuss how paths generated by the

GVD planner or by users operating the wheelchair in a

physical space or the simulator can be encoded in a rep-

resentation that enables ranking. User-generated paths, real

and simulated, are recorded during navigation as sequences

of consecutive robot poses. They are first mapped to the

GVD-generated path in the same homotopy class using the

vector of winding angles as the descriptor of a path [20].

After this step, all paths can be treated in the same way re-

gardless of how they were generated.

Every time we record a path, we assume that the user has

selected the current path over a number of other paths gen-

erated by the planner. Therefore, the input to our path clas-

sifier comes in the form of ranking actions implicitly made

by the user. Following [9], we model the system using a

pairwise learning-to-rank model implemented as a Support

Vector Machine (SVM) [15].

We use the term scenario to refer to the navigation from

a specific start position to a specific goal position on a spe-

cific map. Hence, there can be multiple scenarios in the

same map. Training data are collected by deriving ranking

constraints from the data recorded during physical or sim-

ulated navigation. Specifically, given a user’s chosen path,

we infer that this path should be ranked higher than any of

the other available paths in the current scenario. Candidate

paths not chosen by the user cannot be ranked relative to

each other and as a result they provide no additional con-

straints. Each scenario, therefore, provides k-1 constraints

between the chosen path and each of the k-1 other paths.

5.1. Extracting Features from Paths

In this paper, unlike [9], we do not distinguish between

scenarios with and without people, since the absence of

people would set all relevant features to default values and

would not affect ranking. The same classifiers work well

with and without people. Our representation of a path com-

prises all the features in [9]. These features are: (i) path

length, (ii) average distance to obstacles, (iii) minimum dis-

tance to obstacles over the entire path, (iv) narrow passage

length, (v) sum of turning angles, (vi) average distance to

people, and (vii) minimum distance to people over the en-

tire path.

Note we do not directly compute the feature vectors of

the paths that are demonstrated by the users. Instead, we

first identify their homotopically equivalent paths, using the

vector of winding angles mentioned above. We then com-

pute the feature vector of these equivalent paths.

5.2. Support Vector Pairwise Ranking

Given a set of paths from the same scenario, we need to

rank them in order of user preference. The input to this

stage is pairwise constraints gathered at regular intervals

during navigation and the feature vector of each path. We

formulate the problem as ordinal regression using a Support

Vector Machine (SVM) with pairwise constraints [15] .

All features are normalized to have zero mean and vari-

ance one. To generate the training set, we form pairs

of preferred and not-preferred paths (from the same sce-

nario) and define preference vectors by subtracting the cor-

responding feature vectors f̂(X). A preference vector

pij = f̂(Xi) − f̂(Xj) is associated with a label to in-

dicate the preferred path.



Figure 6. Sample scenarios in the two simplest simulated environments. Top: maps generated by the home design software, with and

without people in the scene. Bottom: homotopically distinct paths for the above maps. People (shown as pink dots) may increase or

decrease (block) the number of paths. For visualization purposes, not all generated paths are shown.

y(pij) =

{

+1 if user prefers path Xi to Xj

−1 if user prefers path Xj to Xi.
(1)

We train a linear SVM on the preference vectors to pre-

dict the preferred path.

Since the SVM is linear, we can compute the inner prod-

uct of the SVM weight vector w and f̂(X) before the sub-

traction to obtain a score for each path and select the one

with the maximum score.

S(X) = wT f̂(X) (2)

6. Experimental Results

Fourteen able-bodied subjects were recruited and asked

to navigate the robot indoors and in the simulator. The

rooms where the physical experiments took place were

mapped a priori using the Kinect and the RTAB-Map soft-

ware [21]. The robot was operated in localization mode

during the experiments and its trajectory was recorded. In

both real and simulated runs, the GVD planner was applied

without any modification to generate homotopically distinct

paths. Unlike [9], in which subjects selected one of the

k paths generated by the planner, we adopted an LfD ap-

proach. In our protocol, a researcher specifies the goal lo-

cation verbally and the subject drives the robot following

the most intuitive path, which is recorded.

Training examples are generated by executing the GVD

planner at regular intervals, 0.5 m here, to produce up to

eight paths each time. Among the generated paths, the one

that is in the same homotopy class as the path taken by the

user is selected as the positive example and ranking con-

straints are introduced between the positive and each of the

remaining paths. Then, features are computed for all paths

and classifiers are trained as described in the remainder of

this section.

6.1. Data Collection in the Simulator

In the simulator, each subject was asked to navigate in

10 environments, with approximately 10 scenarios in each

environment.1 There are no people present in half of the

scenarios, while one or two simulated people were added to

the other half. We do not expect our system to accurately

predict the future locations of the simulated people, since

this would be a very error-prone strategy. Instead, our ap-

proach is to re-plan every 0.5 m to take into account new ob-

servations of the static and dynamic elements of the scene.

Subjects were asked to navigate based on their preferences,

taking into account the presence of people.

Figure 6 shows maps for simulated environments. Sce-

narios were designed to have 2–8 homotopically distinct

paths. In static environments, five scenarios have two paths,

five scenarios have four paths, and all others have eight

paths; in environments with people, five scenarios have four

paths and all others have eight paths. We set k = 8 for all

experiments and drop paths that are not among the k short-

est. No subject chose a path that was not in the top-8 in

any experiment. In total, we collected 5227 samples in the

simulator.

1A scenario is defined as a navigation between specific start and goal

positions in a specific environment.



Figure 7. Scenarios in actual environments. Top: a classroom and a conference room with and without people. Bottom: homotopically

distinct paths for the above scenarios. People (shown as pink dots) may increase or decrease (block) the number of paths. For visualization

purposes, not all generated paths are shown.

Model/Scene Static Dynamic Both

(training) to (testing) sim to sim real to real sim to real sim to sim real to real sim to real sim to sim real to real sim to real

Per-user mean 92.71 90.63 74.77 88.35 91.20 76.89 91.12 89.28 77.85

Per-user median 93.08 90.37 71.42 87.80 92.33 81.93 91.10 89.18 77.62

All users 92.60 84.84 73.91 89.32 84.75 81.88 91.01 86.20 78.44

Table 1. Average classifier accuracy using two-fold cross-validation. Left: on static scenes without people. Middle: on scenes with people.

Right: on all scenes. We trained both per-user and across-user classifiers.

6.2. Data Collection using the Robotic Wheelchair

We performed physical experiments in a conference

room and a classroom after re-arranging the furniture to cre-

ate paths wide enough for the wheelchair. The two rooms

are shown in Fig. 7. A large table is at the center of the

conference room allowing the wheelchair to pass on ei-

ther side. Therefore, there are two homotopically distinct

paths between any two locations. In some cases, for exam-

ple when the start point and the destination are on opposite

sides of the table, the top two paths have similar feature

vectors, while in other cases the top paths have consider-

ably different feature vectors. In the classroom, a table and

a podium introduce four distinct paths in general. Each sub-

ject was asked to complete ten navigation scenarios in each

room, five with and five without people present. We used

the SPENCER upper-body detector [24] to detect people.

As mentioned above, we do not attempt to predict people’s

motion due to the difficulty of the task. Re-planning is a

more effective strategy. The people in the scene were in-

structed not to behave adversarially, for example by trying

to block all paths. We expect that the wheelchair will be de-

ployed in environments in which people try to help its users.

In total, we collected 1249 samples in real scenes.

6.3. Training and Validation Results

Using the collected data, several SVM classifiers were

trained using two-fold cross-validation, according to Sec-

tion 5.2. The classifiers are different in terms of the type

of scenes they were trained on (with or without people) and

in terms of the type of training and test data (simulated or

real). We trained classifiers on: (i) data from scenes without

people, (ii) data from scenes with people, and (iii) all data.

We also trained classifiers to make predictions on: (i) sim-

ulated data based on simulated data, (ii) real data based on

real data, and (iii) real data based on simulated data. (We do

not see much value in classifying simulated data based on

physical demonstrations.) We also trained classifiers com-

bining data from all users and per-user classifiers.

When training a classifier on data from all subjects, all

data from a single subject were placed in the same fold. In

other words, each fold comprises data collected from seven

subjects and it is used as the training or the test set. No

classifier was tested on data from a subject that was included

in the training set. Moreover, the maps of the actual rooms

are not used in the simulator.

We also trained per-user classifiers. In this case, the data

are split into folds according to environment. Data from the

same map cannot belong to different folds.

Table 1 shows two-fold cross-validation results on all

the combinations described above. In addition to the ac-

curacy of classifiers trained on all data, we also report the

mean and median accuracy of the 14 per-user classifiers for

each setting. Overall, classifiers trained and tested on sim-

ulated data have the highest accuracy, most likely because

there are fewer unmodeled sources of error in the simula-

tor. Training and testing on real data achieves the second

highest accuracy, while transferring a classifier trained with

simulated data to the real domain leads to a loss of accu-

racy between 3 and 11% depending on the scene type. It is



Figure 8. Photographs of the system operating in autonomous mode. Top: static scene. Bottom: dynamic scene. The system chose

different paths due to the presence of a person in the second scenario, even though the person does not block the left path. Please see the

supplementary video.

worth noting that the presence of people has stronger effects

on navigation in real scenes, compared to navigation in the

simulator.

6.4. Autonomous Navigation

As a final validation of our system, we deployed classi-

fiers trained on simulated data on the physical robot, which

runs ROS. The ROS move-base package is used for nav-

igation after a modification that replaces the global plan-

ner by our GVD planner and the classifier. We use the dy-

namic window approach as the local planner. Given a, po-

tentially partial, map, the move-base package can execute

a path taking into account the robot’s physical properties.

We also use RTAB-Map [21] for mapping and localization

and SPENCER [24] for upper-body detection. Localization,

mapping and person detection rely entirely on a Microsoft

Kinect for input. Finally, the CMU Sphinx library [37] is

used for voice recognition.

In autonomous mode, the user gives high-level verbal

commands to specify one of the labeled areas of the en-

vironment as the destination. The planner then invokes the

classifier to select the path that the user would have taken

under the same conditions. Figure 8 includes frames of the

supplementary video showing autonomous navigation using

a user-specific classifier. Navigation is smooth, even though

the classifier has been trained using solely simulated data in

different maps than the test scene.

7. Conclusions

We have presented an approach for learning path plan-

ning preferences from demonstration, which can take place

either using a physical robot or in a simulator. After the

data have been recorded on either platform, scenarios are

generated and processed in the same way. A scenario con-

sists of a set of paths between two points in a given map.

Each path is assigned to a homotopy class and represented

by a feature vector. This representation that does not depend

on image appearance is what enables us to apply the same

training process on real and synthetic data. To achieve this

capability we built on the classifier and one of the planners

presented by Chang et al. [9], but pursue different research

objectives, specifically full instead of shared autonomy. We

demonstrate that: (i) classifiers trained on synthetic data can

be effectively deployed on the physical robot, and (ii) learn-

ing by sampling multiple decisions (every 0.5 m) from the

recorded paths leads to richer training data than observing a

single path selection per map.

Extensive experiments were performed with the aid of 14

subjects, who provide approximately 20 physical and 100

simulated demonstrations each. While there is a gap in ac-

curacy between path planners trained on real and simulated

data due to errors in localization and people detection, the

latter can be deployed successfully on the robot. We believe

that the answer to the question we posed is affirmative and

that training in simulation is viable. The implications of this

finding is that training can now be faster, safer and cheaper

compared to conventional, physical LfD approaches.

Our future work will focus on closing that gap. One

promising direction is better modeling of people in the sim-

ulator, since there are discrepancies between their influence

and that of real people on path planning. Informally, simu-

lated people appear to be easier to ignore, while real people

have a more imposing presence and stronger influence on

the subjects controlling the robot during training.
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