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Abstract

In this paper, we propose a deep learning based assistive

system to improve the environment perception experience of

visually impaired (VI). The system is composed of a wear-

able terminal equipped with an RGBD camera and an ear-

phone, a powerful processor mainly for deep learning in-

ferences and a smart phone for touch-based interaction. A

data-driven learning approach is proposed to predict safe

and reliable walkable instructions using RGBD data and

the established semantic map. This map is also used to

help VI understand their 3D surrounding objects and layout

through well-designed touchscreen interactions. The quan-

titative and qualitative experimental results show that our

learning based obstacle avoidance approach achieves ex-

cellent results in both indoor and outdoor datasets with low-

lying obstacles. Meanwhile, user studies have also been

carried out in various scenarios and showed the improve-

ment of VI’s environment perception experience with our

system.

1. Introduction

The capabilities of environment perception are crucial

for VI [19, 28, 4], such as safe navigation without colli-

sion, understanding the room layout or traffic surroundings

and object searching in complex and unknown 3D environ-

ments. For instance, Fig. 1 shows a specific case in VI’s

daily life that he is highly expected to safely navigate while

avoiding collisions, even with low-lying obstacles (e.g., s-

mall trash can) in front of him, and perceives the 3D envi-

ronment including person, object and backgrounds without

complicated interaction.

Specifically, for obstacle avoidance task in robotics com-

munity, some sensors (e.g., Lidar, ultrasonic or range sen-

sor) are widely adopted to detect surrounding obstacles s-

cattered in certain distances around the robot, and various

conventional path planners can then be employed to instruct

the robot along traversable trails [1, 11]. The major limi-

tation is that the sensors are required to be mounted on a

fixed platform without changing in height and direction to

Figure 1. VI assistive system overview. Our wearable system in-

cludes a wearable terminal consists of an RGBD camera and an

earphone, a processor and a touch interface, which provides a

walkable instruction and scene understandings to the VI in an ef-

ficient way.

guarantee the obstacle detection accuracy. However, it is

difficult to employ for human case since the height and di-

rection of the sensor mounted on his head are changing ran-

domly when he is walking, which makes obstacle detection

more difficult [3]. Furthermore, to our knowledge, recent

approaches have rarely offered a valid way to detect low-

lying obstacles (such as curbs and small trash can etc.) that

are threats to VI’s walking [31].

It is extremely difficult for VI to well understand their

surroundings as well as the things they are interested in.

OrCAM [22] provides the means to get some special in-

formation such as reading texts and detecting traffic lights.

However, these information are not enough for VI to under-

stand their surroundings, e.g., they want further to know the

room layout and the traffic surroundings. For this, there are

two challenges. Firstly, it is not an easy task to detect and

describe the plenty of information in complicated surround-

ings. Meanwhile, few works have been proposed to discuss

what is the efficient way for VI to perceive such rich infor-

mation in 3D environment so far.

Recently, a growing amount of success has been report-

ed for vision navigation and semantic segmentation tasks

based on deep end-to-end learning networks [23, 21, 7, 18,

20, 30, 13]. Inspired by these works, this paper explores



a data-driven learning approach to predict the walkable in-

struction with supervised learning over training images col-

lected from an RGBD sensor. As shown in Fig. 1, besides

the raw RGB and depth data, we also employ semantic la-

bels as complementary to appearance and structure infor-

mation to train our networks in order to detect low-lying

obstacles. Moreover, semantic labels provide a great help to

tell the environment information around VI such as object,

road, person and so on. Thus, we also design an efficient

way to retrieve the semantic information via simple interac-

tive touching operations on the screen of a touch interface.

Both collision-free instructions and object information are

transmitted to the user via acoustic signals. We also conduc-

t both quantitative and qualitative experiments on obstacle

avoidance, and design user studies to validate our system.

The key contributions are summarized as follows:

(1) We propose a data-driven end-to-end convolutional

neural networks (CNNs) to predict collision-free in-

structions with moving forward, left and right direction-

s from RGBD data and their corresponding semantic

map.

(2) We design easy-to-use interactions to provide VI with

reliable and efficient feedbacks containing both walk-

ing instructions for avoiding obstacles and surrounding

information for perceiving 3D environments.

(3) We collect real obstacle avoidance datasets about VI

under both indoor and outdoor environments covering

from day to night, especially including various low-

lying obstacles and various illustration conditions for

quantitative evaluation.

(4) We conduct objective evaluations on obstacle avoidance

and other perception tasks by some VI in practical life.

2. Related Work

2.1. Visual Assistive Systems

Up to now, there exists some vision-based assistive

systems, which aim to improve perception experience of

VI [10, 12, 5]. In particular, OrCAM [22] equipped with

monocular camera is used to provide some special object

information to VI, such as reading text and face recognition,

etc. It is more suitable for persons with low-vision impaired

than for blind persons because it cannot provide the sur-

roundings layout and obstacle information. Another wear-

able system [29] provides a feedback using range sensor and

haptic device when there is an obstacle in front of VI. Sim-

ilar to this, [3] proposes a smart guiding glasses that tells

the walkable instruction using ultrasonic and range sensor.

However, both of them do not provide scene understand-

ing ability or well-designed interactive interface. Recent-

ly, mobile phone with Talkback software is popular in VI’s

lives. For instance, NavCog3 [25] presents a smartphone-

based navigation assistant to help VI understand surround-

ings. However, it only outputs predefined landmarks via

speech interaction, which is not an efficient way to browse

the layout of environments. Generally, people make de-

cisions based on the thorough understanding of their sur-

roundings. Consequently, such current assistive systems are

valid only in limited scenarios and are far away from VI’s

demand.

2.2. Vision-based Obstacle Avoidance

Recently, many traditional techniques [15, 24] have been

reported for obstacle avoidance in robot navigation tasks.

Generally, most approaches rely on range sensors to infer

maps of the environment and then compute obstacle-free

trajectories. However, these methods are not suitable for VI

usage because of the challenges caused by dynamic captur-

ing views mentioned above. By adapting traditional robotic

methods for VI, the walkable instruction is detected by an-

alyzing the depth map block-by-block and finding the most

distant blocks [3]. However, this kind of method usually

requires a large number of manually tuned parameters in

order to adapt for different height of person, and is diffi-

cult to detect low-lying obstacles. Another prevalent alter-

native is to use deep learning networks, which enables the

development of end-to-end learning approaches to predic-

t the navigation instructions directly from the raw sensory

data. Such learning-based algorithms usually rely on super-

vised training data collected from a human expert controls

in a real-world environment. However, the model behaved

well just in some special path-like environments with a large

amount of RGB training images [26]. In contrast, VI would

walk at more complicated indoor and outdoor environment,

where additional sensor (e.g., range sensor) and high level

information is needed to ensure navigation. Moreover, low-

lying obstacle avoidance is particularly challenging, which

is often discarded by existing algorithms. Thus, this paper

aims to learn a VI navigator especially for low-lying obsta-

cles from practical datasets collected with an RGBD sensor.

2.3. Semantic Segmentation

CNN-based semantic segmentation has become a pop-

ular research topic in the computer vision nowadays. For

example, some works [2, 7] use encoder-decoder networks

to estimate semantic labels from RGB images. Meanwhile,

other segmentation networks with higher performance are

proposed by combining the RGB and depth images [14, 17].

Intuitively, the semantic labels tell the floor, wall, objects

and even small low-lying objects (often regarded as obsta-

cles for VI) on floor. Thus, it is possible to exploit semantic

segmentation techniques combined with the appearance and

structure information (i.e., RGB and Depth image) to poten-

tially improve the classification accuracy for walkable in-



struction in this paper. Moreover, semantic information al-

so provides high-level information for the VI to understand

the room layout or traffic surroundings, and even helps them

to find an object in somewhere. However, few works have

been proposed to discuss how to transmit such rich informa-

tion to VI in an efficient way. Inspired by this consideration,

we design an efficient interaction method with a touch in-

terface to help VI locate objects situated in front of them.

3. System Description

3.1. System Overview

The system architecture and main components are illus-

trated in Fig. 1.

3.1.1 Wearable terminal

The wearable terminal consists of sunglasses, stereo-based

RGBD camera (e.g., Inuitive M3.2 [16]) and Bluetooth ear-

phone. The RGBD camera can provide highly accurate

depth data in a wide variety of indoor and outdoor environ-

ments. It provides RGB and depth images both at a resolu-

tion of 640×480 pixels at 30 frames per second. The output

of the instruction and object information will be translated

as audio messages through the earphone to the user. The

total weight of the wearable terminal is no more than 150 g.

3.1.2 Processor (e.g., Laptop)

In order to satisfy a real-time performance, we chose a lap-

top containing powerful CPU (Intel I7 8700K) and GPU

(NVIDIA GeForce GTX 1080) as processor. Therefore, the

CNNs inferences for segmentation and obstacle avoidance

tasks are implemented in it. In future, we will implement

it on embedded chips. The laptop receives RGB and depth

data from RGBD camera via a USB 3.0 cable. Then the

collision-free instructions are resent to earphone as soon as

possible. On the other hand, it provides the semantic and

depth results to the touch interface via Bluetooth transceiv-

er as user needs retrieval.

3.1.3 Touch interface (e.g., Smart phone)

The smart phone serves as the main touch-based interac-

tion device in our system. It firstly installs Talkback soft-

ware to help VI operate the phone. The user can browse

the 3D environment information including object class and

distance via interactive touching operations on the screen of

the phone. This interaction information is sent to earphone

through wireless network and play as a voice feedback.

3.2. Perception Networks

As shown in Fig. 2, the perception networks of our wear-

able system include segmentation and learning navigation

Figure 2. Perception networks overview. Segmentation network-

s provide semantic image using RGB and depth images. While

learning navigation networks predict collision-free instructions

(turn left, go straight and turn right) using RGB, depth and se-

mantic images.

networks.

3.2.1 Segmentation networks

We employ FuseNet [14] as segmentation networks. It is

worth to mention that we firstly retrain the networks using

two pixel-level Scannet [9] and Cityspace [8] datasets for

both indoor and outdoor usages respectively. In particular,

25k training frames with 40 object class labels (i.e. wall,

floor, cabinet, bed and chair, etc.) are selected from Scan-

net, while 5k Cityspaces fine training frames with 30 classes

(i.e. road, sidewalk, person, car and building, etc.) are em-

ployed. In addition, we also collect 10k and 4k frames with

labels from indoor and outdoor for VI’s usage, which are

used to fine-tune the networks. Here, we train the indoor

and outdoor models with optimal parameters CS1 and CS2

as follows:

argmin
CSk

1

2
‖CSk‖

2
−

λ

mhw

m∑

i=1

h×w∑

j=1

log pCSk
(yij |xij) (1)

where x and y are the training image and its correspond-

ing ground-truth semantic labels, respectively. i and j in-

dicate the ith image and its jth pixel element. The hyper-

parameter λ > 0 is a weight for the regularization of the

networks parameters. m is the number of training im-

ages, and h×w represents image size. In order to infer-

ence in real time, we resize both of the RGB and depth im-

ages to 320×240 and upsample the results with the nearest-

neighbor interpolation to the 640×480. The inference runs

approximately 25 fps in average in our laptop, which satis-

fies the real time requirement.

3.2.2 Learning navigation networks

To our knowledge, there are rare real world RGBD datasets

for VI navigation in the literature since collecting such da-



ta in reality is difficult and time consuming. Therefore, we

design a special way to grasp RGBD data for navigation in

real lives. Firstly, a normally-sighted person as pilot, wears

our glasses and then walks without collision in both indoor

and outdoor environments to collect training datasets com-

posed of RGBD data and three categories of pilots actions

(i.e. turn left, go straight and turn right). In particular, we

capture the datasets when the camera looks to object situat-

ed in the right hand side and the action is labeled as turn left,

as illustrated in Fig. 3(a). Alternately, turn right datasets are

captured when looks to another side, e.g. Fig. 3(c). While

the rest of them are labeled as go straight datasets, as shown

in Fig. 3(b). Totally, we collect 15000 and 6000 annotat-

ed images for indoor and outdoor respectively, which also

cover day and night scenes under various light conditions.

Among them, we highlight that our dataset contains 6000

low-lying obstacle and low-quality depth images, which is

rare to consider before. Secondly, we infer the semantic

labels from all of them using our segmentation networks.

Finally, these labeled datasets are used to train a model

to mimic the pilots actions, which is directly known to clas-

sify RGBD and semantic images across three categories.

Our learning networks are based on standard GoogLeNet

but with several changes: we concatenate the RGB, Depth

and semantic images as a 299×299×5 input, and add out-

put layers consisting of Maxpool, Dropout and a fully con-

nected layer with three outputs (i.e. probability of turn left,

go straight and turn right), activated by a Softmax layer.

We utilize binary cross-entropy to train indoor and outdoor

models with optimal parameters CN1 and CN2 through:

argmin
CNk

1

2
‖CNk‖

2
−

λ

m

m∑

i=1

log pCNk
(yi|xi) (2)

where x and y are the training input and its correspond-

ing ground-truth action labels, respectively. i indicates the

ith image. The hyper-parameter λ > 0 is a weight for the

regularization. m is the number of training images. Af-

ter training, given an input data, the maximum output of

the three probabilities indicating the turn left, go straight or

turn right is used to instruct VI through collision-free trails.

Note that, it runs approximately 10 ms per frame in average

in our laptop.

Figure 3. Some views from the indoor training datasets related to

(a) turn left, (b) go straight and (c) turn right, respectively.

3.3. Interaction

3.3.1 Collision-free navigation feedback

As we mention above, our system adopts the earphone to

provide a text-to-speech feedback. Here, the guiding in-

struction is sent to VI in real time through a speech inter-

face. Specifically, only two instructions, turn left and turn

right, are needed to transmit since go straight is redundant

to remind VI. For example, there is no alarm when there are

not obstacles in front of VI, thus he can go straight forward.

If he receives an alarm from the earphone as turn left or turn

right, the VI can then move by turning left or right to avoid

the obstacle.

3.3.2 Other perception feedback

This system adopts an easy-to-use interaction design in-

cluding touch screen and voice play. The first operation

is mainly used for sending instructions to actively acquiring

the environmental information, and the latter provides feed-

back of the users request. An example of the detailed inter-

action procedure is illustrated in Fig. 4. When the VI stops

anywhere and touches the screen to ask for recognition ap-

plication, then the phone receives a semantic image with

depth of the current scene from laptop via wireless trans-

mission. The application will play a ding sound to indicate

the user that the information is ready for retrieval. The user

can then touch the screen and swipe around with a single

finger to get the information. Each time the finger enters a

new region, the name of the object corresponding to this re-

gion will be played out through the earphone. The volume

of voice is proportional to the distance of the selected object

to the user. The higher the volume is, the nearer the object

locates to the user. The current session will stop when the

user presses the return key and new sessions are ready to

start when the user touches the screen.

Figure 4. The interaction procedure of the proposed system. The

user taps or swipes the areas and their class (a) human and (b)

ground are played out with different volumes according to their

distances.



4. Experimental Results

In this section, we show both quantitative and qualitative

results of our obstacle avoidance networks with a set of nor-

mal and challenging datasets. Then, we objectively evaluate

the performance in guiding and perception for VI in various

cluttered environments.

4.1. Technical Evaluation

4.1.1 Training setup

Our segmentation networks are trained followed the instruc-

tion [14]. For navigation networks, Gradient Descent Opti-

mizer is employed with up to 100 epochs and the batch size

is 16. The learning rate started from 0.001 and decreased by

half for every 1/10 of total iterations. We also include Batch

Normalization to accelerate convergence and dropout prob-

ability is set to 0.2 as a regularization measure. Note that,

we utilize 10k indoor datasets for training and the rest of

5k ones are used for testing. While 4k outdoor datasets are

used for training and the rest of 2k ones are used for test-

ing. In order to prove that our method generalizes well to

new scenarios, test datasets are visually different from the

training ones.

4.1.2 Quantitative results of obstacle avoidance

To quantify the networks performance on instruction pre-

diction, we use average classification accuracy (ACA) as

metric. Four testing scenarios are considered including both

Indoor and Outdoor (consists of day and night), Poor depth

whose image misses some depth values and Low obsta-

cle which has low-lying obstacles (such as curbs and s-

mall trash can etc.). We compare our approach (named as

RGBDS) against three baselines: (1) RGB-C is the one of

the most state-of-the-art learning approaches who uses RG-

B as input to predict the three flight-instructions [6], (2)

Depth-T is the traditional work by [3], and (3) we imple-

ment another RGBD-C architecture based on our networks

that just removes the semantic labels from the inputs. To

our knowledge, there are no learning-based approaches us-

ing RGBD data and semantic labels for VI navigation task.

Table 1. Accuracy results on collision-free instruction classifica-

tion tasks. (ACA: %)

RGB-C Depth-T RGBD-C RGBDS

Indoor
Day 92.2 94.1 95.7 99.6

Night 87.4 92.3 93.3 98.2

Outdoor
Day 90.0 93.0 94.0 98.7

Night 78.1 90.0 92.3 97.9

Poor depth 90.2 77.1 93.8 99.3

Low obstacle 57.6 70.5 74.4 98.6

Quantitative results are presented in Table 1, the compar-

ison demonstrates that the proposed approach outperforms

the three baselines. More specifically, our method has ex-

cellent performances in indoor navigation task, where the

accuracy achieves 99.6% and 98.2% for day and night sce-

narios, respectively. In contrast, outdoor navigation task is

more challenging since it contains big changes in the illumi-

nation, visual artifacts or various types of motion. Thus, the

accuracy falls to 98.7% and 97.9% for day and night scenar-

ios, respectively. For Poor depth datasets, we get a highest

accuracy 99.3% since the segmentation results compensate

the missing depth values efficiently. The last Low obstacle

tests show that our method pays successful attention to the

low object in front of user that results in accuracy 98.6%.

Representative views and results are illustrated in Fig. 5.

4.1.3 Qualitative results of obstacle avoidance

As we all know, vision based perceptions are heavily affect-

ed by various lighting conditions, but our method is able

to successfully predict a safe instruction even in the case

that the sun is shining through the window as illustrated

in Fig. 6(a)-RGB. Moreover, low obstacles are dangerous

and common to see in VI’s daily lives, such as curbs illus-

trated in Fig. 6(b)-RGB. It is difficult to distinguish from

raw depth since low obstacles are close to the ground lev-

el (as Fig. 6(b)-Depth). Thus, traditional obstacle detec-

tion algorithms often limit a certain height of the object

above ground. In contrast, the segmentation (i.e. Fig. 6(b)-

Segmentation) of curb is obvious and beneficial to improve

the obstacle avoidance performance in our experiments. A

key observation is that depth sensor always comes across

failure at glass wall or door, which is common to see in in-

door places, as illustrated in Fig. 6(c)-Depth. However, our

method is able to learn features from the segmentation that

help it avoid influence from glass walls or doors.

Although our method has been proved considerable po-

tential for VI navigation, some inherent drawbacks need to

be overcome. Firstly, the performance is not sufficiently

accurate for poor textured regions since the framework is

dependent on the quality of the estimated segmentation, as

shown in Fig. 6(d). Secondly, when walking very close to

an object or wall, it lacks the perspective view needed to

estimate the object label and the framework shows its lim-

itations, see in Fig. 6(e). Finally, Table 1 indicates that our

performance is inferior at night, and Fig. 6(e) is an example

acquired at night. We observe that the illumination condi-

tion is poor at the left bottom resulting in a wrong instruc-

tion.



Figure 5. Representative samples of our navigation including (a) Indoor day, (b) Indoor night, (c) Outdoor day, (d) Outdoor night, (e) Poor

depth and (f) Low obstacle. Red arrow means walkable instruction.

Figure 6. Representative samples of our benefits and limitations including (a) various lighting condition, (b) low obstacle, (c)glass wall, (d)

poor segmentation, (e) close to obstacle and (f) low lighting condition. Red arrow means walkable instruction.

4.2. User Studies

4.2.1 Navigation tasks

Our system can help users complete safe navigation tasks

that they normally perform with the white canes. To ac-

complish this, we validated our solution through user stud-

ies with 20 VI who were totally blind. In the first test, the

VI navigated through a 100m long hallway using either a

white cane or our system, as shown in Fig. 7(a). The second

test was similar to the first one, but included moving, low

and static obstacles situated within the hallway, as shown

in Fig. 7(b). Their walking trajectories were recorded us-

ing a Google Tango tablet running a built-in Visual Odome-

try APP [27]. Here, trajectories for one representative VI’s

performance are illustrated. The comparative metrics are

the mean duration until completion and the number of wall

collisions with the white cane or VI’s body respectively.

In Fig. 7(a), we can observe from mean performances

that VI took an average of 589s to traverse the hallway using

the white cane while 245s with our system. Furthermore,

VI made 11 collisions with white cane while 0 collision

with our system. While in the second scenario as shown in

Fig. 7(b), both performances were worse than before with

white cane, up to 760s and 20 collisions. In contrast, our

system achieved 298s duration with 0 collision as well. The

navigation studies suggest that our system improves the mo-

bility performance of the VI by at least 58% than the users

using their white canes in the navigation tasks. Moreover,

the system is able to detect all obstacles, both stationary

and moving, even low obstacles while continuously moving

through the hallway. In addition, trajectories generated by

Table 2. Results of user studies on four tasks.

Tasks Traditional Ours EE

Navigation Cane AI 70%
Traffic surroundings Hearings AI+Hearings 52%

Object searching Touchings AI+Touchings 57%
Layout parsing Hearings AI+Hearings 65%

our proposed navigation system are close to the ideal trajec-

tories as normal.

4.2.2 Other perception tasks

Besides the test of the navigation function, we also asked

the participants to perform three other tasks to validate the

Figure 7. VI Navigation studies on (a) hallway with turns and (b)

hallway with several obstacles. Walking trajectories are recorded

with cane (black) and our system (red), respectively. Comparative

metrics are the duration until completion and the number of wall

collisions.



enhancement of the VI’s experience on environment percep-

tion with our system. These tasks include traffic surround-

ings, object searching, and environment layout parsing. For

the first task, the users were asked to walk for 20 minutes

on 10 different streets, and estimate the traffic surroundings

(nearby cars, bicycles, pedestrians, etc.), which they used to

perform with their own hearings. For the object searching

task, each user was led into 5 rooms, including 2 rooms they

are familiar with and 3 they have never been before. For

the new rooms, they were given 10 minutes to get familiar

about the objects through touching in advance. Then they

are allowed to take 10 minutes to get a coarse location of the

objects with our system and confirm through touching them.

Similarly, in the layout parsing test, each participant is al-

lowed to walk in 5 different indoor environments (2 old and

3 new), accompanied by an assistant with normal vision.

They were also given 10 minutes to learn the layout of the

surroundings in the new places beforehand. Then they were

asked to describe the layout to the assistant. Examples of

the descriptions include: the sofa is in front of me, there is a

chair on right of the desk, etc. The assistants would give in-

stant feedback if the description was inaccurate. After each

test, the participant was given 3 options: better, moderate

and worse, to indicate whether our system had improved

their experiences over traditional methods. We computed

the percentage of the better options over all the results for

each test to quantify the experience enhancement and listed

it (e.g., EE) in Table 2.

It can be seen that the enhancement for the navigation

task is quite obvious, as the VI participants do not need to

use the white cane to explore the obstacles back and forth.

By using our system, it also becomes easier to get aware of

the object positions and types, as well as the spatial lay-

out of indoor environment. Note that these scores are a

little lower than that in the navigation task as the familiar

environments which the participants already had a detailed

knowledge of were also included, while our system seemed

less useful to them in such conditions and ’moderate’ or

even ’worse’ was thus usually selected. The improvemen-

t of estimating the surrounding traffic with our system is

less obvious. This is mainly because the traffic condition-

s usually vary within a short period of time, while getting

aware of the current conditions through touch screen may

result in some delay. Generally, the users find our system

quite useful in performing these tasks, as it indeed helps

them complete the operations which they usually need to

do in daily lives. Some examples and the users feedback

are shown in Fig. 8. Through this evaluation, it can be seen

that our system works effectively for VI’s navigation and

object recognition tasks. As one of our participants con-

cludes: It enables me to walk more freely and know more

about the surroundings. I feel like having a pair of powerful

eyes when using it!

Figure 8. Results of VI participants using our system and their

feedback. The users were performing (a) traffic surroundings and

(b) object searching tasks respectively.

5. Conclusion

We present a deep learning based wearable system to

improve the VI’s quality of life. The system is designed

for safe navigation and comprehensive scene perception

in real time. Specifically, our obstacle avoidance engine,

which learns from RGBD, semantic map and pilots choice-

of-action input, is able to provide safe feedback about the

obstacles and free space surrounding the VI. By making

use of the semantic map, we also introduce an efficient in-

teraction scheme implemented to help the VI perceive the

3D environments through a smart phone. Extensive exper-

iments on obstacle avoidance demonstrate that our system

achieves higher performance in various indoor and outdoor

scenarios compared to existing approaches. Furthermore,

the user studies on navigation and perception tasks prove

that our system improves the mobility performance and en-

vironment perception capability in various real scenarios,

such as helping to understand the room layout and traffic

surroundings, or even helping to find an object at unfamil-

iar places. Next, the implementation of the algorithms in

embedded system will be provided, and the sonar or bump

sensor will be incorporated to confirm safety in some ex-

treme case.
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