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Abstract

This paper provides a simple solution for reliably solving

image classification tasks tied to spatial locations of salient

objects in the scene. Unlike conventional image classifica-

tion approaches that are designed to be invariant to trans-

lations of objects in the scene, we focus on tasks where the

output classes vary with respect to where an object of in-

terest is situated within an image. To handle this variant

of the image classification task, we propose augmenting the

standard cross-entropy (classification) loss with a domain

dependent Forced Spatial Attention (FSA) loss, which in

essence compels the network to attend to specific regions

in the image associated with the desired output class. To

demonstrate the utility of this loss function, we consider the

task of driver foot activity classification - where each activ-

ity is strongly correlated with where the driver’s foot is in

the scene. Training with our proposed loss function results

in significantly improved accuracies, better generalization,

and robustness against noise, while obviating the need for

very large datasets.

1. Introduction

Image classification being one of the fundamental tasks

in computer vision receives large amounts of research ef-

fort, and consequently sees remarkable progress year after

year [7, 15, 19–21, 29, 32]. This is true, especially for ap-

plications with sufficient training data per class, which is

a well understood problem. To ensure better generaliza-

tion, traditional image classification approaches introduce

certain inductive biases, one of which is invariance to spa-

tial translations of objects in images, i.e. the locations of

objects of interest in an image does not change the true out-

put class of the image. This is typically enforced by data

augmentation schemes like random translations, rotations,

crops etc. Even convolution kernels - the basis of most Con-

volutional Neural Networks (CNNs) are shared across the

entire spatial extent of features as a means to learn trans-

lation invariant features. In this paper, we are interested in

image classification applications where these assumptions

Figure 1: Overview of the pipeline to continuously esti-

mate the driver’s vigilance and readiness to takeover con-

trol from a semi-autonomous driving agent. We highlight

the parts relevant to this study (foot behavior analysis) in

bold. To ensure smooth control transitions, the final estima-

tion framework, and thus each individual analysis block that

feeds into it needs to be reliable and robust under a variety

of conditions.

do not necessarily hold true. Specifically, we focus on tasks

where relative locations of objects in the scene influence the

output class of the image.

Many real world examples of such tasks can be found

in the surveillance domain. For example, consider the sce-

nario where we would like identify when an unauthorized

person is in close proximity to a stationary object like a

car/door/safe etc. If this were set up as an image classifi-

cation problem, the desired output class would vary based

on where the unauthorized person is in the image i.e. if the

person is very close to the stationary object and exhibiting

unusual behavior, then trigger an alarm; else do not. In this

study, we try to solve a similar problem from the automo-

tive domain. In particular, we wish to design a very simple

and reliable system to classify the foot activity of drivers

in cars. This problem is comprised of 5 classes of inter-

est, namely - away from pedals, hovering over accelerator,

hovering over break, on accelerator, and on break. As can

be inferred from the individual class identities, the desired

output changes based on where the driver’s foot is in the

image. We chose these classes as they are good indicators

of a driver’s preparatory motion, and are also strongly tied

to the time it takes for a driver completely regain control



of the car from an autonomous agent [1, 14] - also known

as the takeover time. Figure 1 depicts the goal of this study

and its role in solving the bigger problem of driver vigilance

and takeover time estimation.

Before describing our approach, we would also like to

address some straightforward ways in which one could po-

tentially solve such problems. One obvious way to encode

spatial information in predictions is to use a fully connected

(FC) output layer. This however comes at a huge cost of

computation, storage, and possibly generalization. Intro-

ducing an FC layer would also increase the data require-

ments considerably, something that is not available in many

applications. Another way to approach these problems is

to split the task into specialized portions, leading to bet-

ter generalization and interpretability [5]. For instance, you

could have one algorithmic block dedicated to detecting all

objects of interest in an image, followed by a second block

that would reason over their spatial locations. The major

drawback of such approaches is the requirement of ground

truth object locations in the image for training the individual

blocks. Once again, this is quite expensive to obtain and is

not available in many applications of interest. Our proposed

approach attempts to reliably solve this class of problems

without introducing any of the aforementioned drawbacks.

Our main contributions in this work can be summarized

as follows - 1) We propose a simple procedure to modify the

training of CNNs that make use of Class Activation Maps

(CAMs) [31] so as to introduce spatial and domain knowl-

edge related to the task at hand 2) To this end, we propose

a new Forced Spatial Attention (FSA) loss that compels the

network to attend to specific regions in the image based on

the true output class. 3) Finally, we carry out qualitative and

quantitative comparisons with standard image classification

approaches to illustrate the advantages of our approach us-

ing the task of driver foot activity classification.

2. Related Research

Driver foot activity research: Tran et al. conducted some

of the earliest research on modeling foot activity inside cars

for driver safety applications. In [22, 23], they track the

driver’s foot using optical flow, while maintaining the cur-

rent state of foot activity using a custom Hidden Markov

Model (HMM) comprising of seven states. Maximizing

over conditional state probabilities then produces an esti-

mate of the most likely foot activity at any given time step.

This system was intended as a solution to identify and pre-

vent pedal misapplications, a common cause for accidents

at the time. More recently, Wu et al. [27] propose a more

holistic system comprising of features obtained from visual,

cognitive, anthropometric and driver specific data. They use

two models - a random forest algorithm was used to pre-

dict the likelihood of various pedal application types, and a

multinomial logit model was used to examine the impact of

prior foot movements on an incorrect foot placement. Al-

though these resulted in high classification errors, the au-

thors were able to identify features important for identify-

ing and preventing pedal misapplications. In their following

study [28], the authors analyze foot trajectories from a driv-

ing simulator study, and use Functional Principal Compo-

nent Analysis (FPCA) to detect unique patterns associated

with early foot movements that might indicate pedal errors.

Inspired by previous work, the Zeng et al. [30] also incor-

porated vehicle and road information by looking outside

the vehicle to model driver pedal behavior using an Input-

Output HMM (IOHMM). Unlike most other methods that

make use of potentially privacy limiting video sensors, the

authors in [4] use capacitive proximity sensors to recognize

four different foot gestures.

Driver foot activity has also been an area of interest for

many human factors studies. Recent examples include [12],

where the authors collect and reduce naturalistic driving

data to identify and understand problematic behaviors like

pressing the wrong pedal, pressing both pedals, incorrect

trajectories, misses, slips, and back-pedal hooks etc. Else-

where, Wang et al. [25] conduct a simulator based study

to compare unipedal (using the right foot to control the ac-

celerator and the brake pedal) and bipedal (using the right

foot to control the accelerator and the left foot to control

the brake pedal) behavior among drivers. They found the

throttle reaction time to be faster in the unipedal scenario,

whereas brake reaction time, stopping time, and stopping

distance showed a bipedal advantage. For a more detailed

and historical perspective on driver (and human) foot behav-

ior and related studies, we refer the reader to [2,3,10,13,24].

Class Attention Maps (CAMs): In this study, we manip-

ulate CAMs by forcing them to activate only at certain pre-

defined regions depending on the output class. CAMs orig-

inated from weakly-supervised classification research [31],

where the authors demonstrated that using a Global Average

Pooling (GAP) operation instead of an output FC layers re-

sulted in per-class feature maps that loosely localize objects

of interest. This offered additional benefits such as rela-

tively better interpretability and reduced model size. More

recently, several studies have tried to improve the localiza-

tion in CAMs in the weakly supervised regime. Singh et

al. [18] improve the localization in CAMs by randomly hid-

ing patches in the input image, thereby forcing the network

to pay attention to other relevant parts that contribute to an

accurate classification. Other popular methods [8, 11, 26]

typically contain multiple stages of the same network. The

CAMs from the first stage are used to mask out the in-

puts/features to the second stage, thereby forcing the net-

work to pay attention to other salient parts of an image. This

results in a more complete coverage of parts relevant to the

true class of an image.
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Figure 2: Proposed network architecture for training and inference. The network is based on the Squeezenet v1.1 architec-

ture [6] with an additional training-only output branch used to force the network’s spatial attention.

3. Methodology

3.1. Network Architecture

Our primary focus in this study is to propose a gen-

eral procedure for training CNNs for image classification

in a setting where the output classes are tied to domain de-

pendent spatial locations of activity. Although any CNN

architecture could be chosen, we decide to work with the

Squeezenet v1.1 architecture [6] for the following reasons:

the Squeezenet model is extremely lightweight and there-

fore less data-hungry, while still retaining sufficient repre-

sentation power. The model also makes use of CAMs in-

stead of FC layers, thereby making it naturally amenable

to the proposed FSA loss that we apply to the normal-

ized CAMs. It must however be noted that models with

FC layers can also be made compatible with our proce-

dure by using Gradient-weighted Class Activation Maps

(Grad-CAMs) [16]. Finally, using a lightweight architec-

ture like Squeezenet is extremely useful deployment in the

real world, where power and computational efficiency are

critical.

Most of our experiments begin with a Squeezenet v1.1

model pretrained on Imagenet. During training, we aug-

ment the existing architecture with a Forced Spatial Atten-

tion (FSA) head that branches off from the existing conv10

layer that produces the CAMs, before the global average

pooling operation (GAP) is applied. This modification is

illustrated in Figure 2. The FSA head takes as input the

CAMs, then normalizes them to [0, 1] through a sigmoid

operation. These normalized CAMs along with predefined,

domain dependent spatial masks are then used to compute

the FSA loss which is backpropagated throughout the net-

work along with the conventional cross entropy (classifica-

tion) loss. The FSA head and the corresponding FSA loss

are used only during training, as a means to inject domain

specific spatial knowledge into the network. Once trained,

the FSA head is removed and the architecture reverts to its

original form.

3.2. Forced Spatial Attention

Class Activation Maps (CAMs) are generally used as

a means to provide visual reasoning for observed network

outputs, i.e. to understand which regions a network attended

to, while producing the observed output. Conversely, if one

knows which spatial locations the network must attend to

for a desired output class, this can be used as a supervisory

signal to train the network. If done correctly, this should re-

duce overfitting and improve generalization, as the network

is forced to attend to relevant regions only, while ignoring

extraneous sources of information. This is the goal of our

proposed FSA loss. We explain this loss more concretely in

the context of our desired application, i.e. driver foot activ-

ity classification.

The goal of our driver foot activity classification task is

to predict one of five activity classes: away from pedals,

hovering over accelerator, hovering over break, on accel-

erator, and on break, using images from a camera observing

the driver’s foot inside a vehicle cabin. Examples of these

images are provided in Figure 3. The next step in our proce-

dure is to create spatial attention masks for some/all output

classes. The key idea is to create spatial attention masks

with peaks at regions depicting the activity corresponding

to the output class. Examples of these predefined atten-

tion masks for various images and different classes are il-

lustrated in Figure 3. Note that the Away from pedals class

is not associated with any attention maps because it is not

tied to any spatial location by definition. On the other hand,

certain classes are associated with multiple spatial locations

due to slight changes in camera perspective, and also be-

cause of the very nature of the activity. For example, the

activity On break could be associated with different atten-

tion masks depending on how far the break pedal is pushed

(see Figure 3). One issue with having multiple attention

masks per class is that we do not know which mask is to be

used for a given training image. We address this issue using

a two stage training approach described below.

Let AC denote the CAM and HC =
{HC

1
, HC

2
, · · · , HC

NC
} denote the set of predefined

spatial attention masks for class C. Note that the number of
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Figure 3: Predefined spatial attention masks for each class overlaid on an exemplar input images from the class. Classes are

associated with multiple attention masks to account for different foot positions during activities, and slight camera move-

ments. The class away from pedals is not associated with a spatial attention mask and has been omitted above.

spatial attention masks NC could be different for each class

C. Our classes range from C = 1, 2, · · · , 5 to indicate the

five possible output classes. As mentioned earlier, we first

apply a pixelwise sigmoid transformation to the CAMs to

normalize them to [0, 1]:

T (AC) =
1

1 + exp(−AC)
. (1)

Next, to resolve the ambiguities arising from having mul-

tiple predefined attention maps per class, we use a two stage

training procedure - each associated with a different FSA

loss. In the first stage, we force the network to attend to

all possible regions of interest per class. This is achieved

through the loss function:

L
stage−1

FSA =
(

T (AC∗

)−max(HC∗

)
)2

+

λ
reg
FSA

5
∑

C=1

C �=C∗

mean
(

T (AC∗

)⊙ T (AC)
)

,
(2)

where C∗ denotes the ground truth class for a given input

image, max(HC∗

) denotes the pixelwise maximum oper-

ation applied to all transformed attention maps of the true

class C∗, and ⊙ denotes the Hadamard product between

two matrices. We note that the first term of the FSA loss

is simply the MSE loss between the ground truth CAM and

the pixelwise maximum of all predefined attention masks

belonging to the same class. The second term is a regular-

izer term to encourage independence between CAMS. We

observe that omitting the second term leads to activation

leakage, where CAMs for other classes have high activa-

tions in spatial locations corresponding to the ground truth

class. The total loss for the network in stage-1 of training is

thus given by

Lstage−1 = LCE + λFSAL
stage−1

FSA , (3)

where LCE denotes the standard cross entropy classifica-

tion loss.

In stage-1 of training, the network is forced to attend to

all possible regions of interest for a specific class. In stage-2

of training, we would like the network to contract its atten-

tion to the region pertinent to the input image. With this in

mind, the FSA loss for stage-2 is defined as:

L
stage−2

FSA = min
i

(

(

T (AC∗

)−HC∗

i )
)2

)

+

λ
reg
FSA

5
∑

C=1

C �=C∗

mean
(

T (AC∗

)⊙ T (AC)
)

,
(4)

where we modify only the first term of the FSA loss. Specif-

ically, we only apply an MSE loss between the ground truth

CAM and the predefined attention mask that is most similar

in an L2 sense. The reasoning behind this is to make the

network choose attention masks that retain features that are

most discriminative for each input image. As before, the

total loss for the network in stage-2 of training is given by

Lstage−2 = LCE + λFSAL
stage−2

FSA . (5)

We demonstrate through our experiments that such a two

stage loss results in the network learning to choose the cor-

rect attention mask without explicit supervision.

3.3. Implementation Details

To create the class specific attention masks HC , we

first collected a set of representative images for each class.

These images were chosen to represent the different regions

of activity within a given class. Next, we created the vari-

ous attention masks by manually overlaying a 2D Gaussian

peak with suitable variance over each image. For certain

classes such as hovering over accelerator, we placed two

Gaussian peaks in close locality to cover the larger spatial

extent of such activities. The resulting attention masks for

each class are depicted in Figure 3.

For our classification model, we initialize the Squeezenet

v1.1 model with Imagenet pretrained weights. The training
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Figure 4: Plot of training and validation accuracies for dif-

ferent values of hyperparameter (a)λFSA and (b)λ
reg
FSA.

is carried out in two stages for a total of 30 epochs. Standard

mini batch Stochastic Gradient Descent (SGD) with a batch

size of 64 is used to train the network. We use a learning

rate of 0.0005 with a momentum equal to 0.9, and a weight

decay term to reduce model complexity.

The network is trained for the first 15 epochs using the

Lstage−1 loss (Eq. 3), and then using the Lstage−2 loss

for the remaining epochs. The hyperparameters λFSA and

λ
reg
FSA are determined through extensive cross-validation,

the results of which are shown in Figure 4. Our final choices

for hyperparameters λFSA and λ
reg
FSA were 10 and 0.2 re-

spectively. The qualitative effect of our two stage training

approach is illustrated in Figure 5 for further clarity. In the

depicted examples from the training and validation sets, we

observe that during the first stage of training, the network

learns to attend to large regions corresponding to various

possible regions of activity, while the region of attention

gradually contracts to the specific region of activity corre-

sponding to the given input image in the second stage of

training. In particular, we observe that the attention con-

tracts to the location where the foot hits the pedal, for dif-

ferent locations of the foot and pedal.

4. Experimental Evaluation

4.1. Dataset

To train and evaluate our proposed model and its vari-

ants, we collect a diverse dataset of images capturing driver

foot activities. This data was collected during naturalistic

drives, with many different drivers as subjects. Details of

our complete dataset and the train, validation, and test splits

are listed in Table 1. In particular, we ensure that no sub-

jects overlap between the three splits so as to test the cross-

subject generalization of our models. We also try our best

to keep the class distributions similar across the three splits.

4.2. Results

We first compare the overall classification accuracies of

different variants of our Squeezenet v1.1 model on the test

split (see Table 2). All variants of Squeezenet v1.1 were ini-

tialized with pretrained Imagenet weights before training.

Training stage 1 Training stage 2

# of epochs
6 12 18 24

Figure 5: Class Activation Maps (CAMs) for the correct

output class as a function of the number of training epochs.

Each row is a different example.

Table 1: Details of the train-val-test split used for the exper-

iments.

Split
Number of

unique drivers
Number of images

Train 7 19, 385

Validation 1 1, 867

Test 3 7, 698

Table 2: Classification accuracies for different model vari-

ants on the test split.

Model Loss Accuracy (%)

SqueezeNet v1.1 CE 85.99

SqueezeNet v1.1 CE+MSE 89.67

SqueezeNet v1.1
CE +

FSA (stage 1 only)
92.30

SqueezeNet v1.1
CE +

FSA (stage 2 only)
85.49

SqueezeNet v1.1
CE +

FSA (both stages)
97.49

SqueezeNet v1.1 w/ FC output layer CE 63.31

AlexNet v1.1 w/ FC output layer CE 60.99

VGG16 v1.1 w/ FC output layer CE 67.03

CE: Cross Entropy loss

MSE: Mean Squared Error loss

FSA: Forced Spatial Attention loss

First, we have the model trained only using the standard

cross entropy classification loss. This model produces a

reasonable accuracy of 85.99% and provides a strong base-

line to compare our proposed approach against. Next, we

compare different versions of our model that make use of



(a) CE loss (b) (CE + MSE) loss (c) (CE + FSA) loss

Figure 6: Confusion matrices on the test split for networks trained using different losses.

the predefined attention masks during training, but differ in

the losses they use to force spatial attention. It is observed

that simply incorporating domain specific spatial knowl-

edge leads to an improvement in overall accuracy, irrespec-

tive of the specific choice of the loss function. Adding a

simple MSE loss (i.e. using only the first term from the loss

defined in Eq. 5) between the CAMs and their correspond-

ing attention masks leads to a modest improvement over the

baseline. We also observe that using either one of the two

stages of the FSA loss also improves the overall accuracy,

but not as much as when they are used in conjunction over

two stages. Our proposed two stage FSA loss leads to the

best overall accuracy of 97.49%- a significant improvement

over the baseline. Finally, we also provide accuracies for

Squeezenet v1.1, AlexNet [9], and VGG16 [17] with output

FC layers. Even though an FC layer by nature can produce

location specific features, we observe that the large size of

the models and limited size of the dataset make it a bad fit

for the task at hand.

We can also gather some insights about the performance

of each variant by looking at both their confusion matrices

on the test split (Figure 6) and their CAMs for different in-

put images (Figure 7). Although the baseline model results

in a reasonable overall accuracy, it fails to learn the true con-

cept of each class and overfits to background information.

This is illustrated by its confusion between classes that are

very different to one another and its mostly uniform CAMs.

Next, we observe that incorporating domain specific spatial

information using predefined attention masks and an MSE

loss makes the model better and more robust, with much

more informative CAMs. However, we can also see activa-

tion leakage between classes (CAMs with high activations

in the same region), resulting in confusion between simi-

lar classes. Finally, we see that adding a regularizing term

as in the two stage FSA loss resolves these issues. It not

only reduces the confusion between similar classes, but also

produces more confident outputs as illustrated by the corre-

sponding CAMs.

The failure cases we generally observe are at the bound-

aries of the hovering over and the on classes,

especially when the foot is hovering very close to one of

the pedals. We find this to be acceptable because of the

relative difficulty that humans have in confidently labelling

these examples.

5. Concluding Remarks

In this study, we introduce a simple approach to solve

image classification tasks where the output classes are tied

to relative spatial locations of objects in the image. We

do so by augmenting the standard classification loss with

a Forced Spatial Attention (FSA) loss that compels the net-

work to attend to specific regions in the image associated to

the desired output class. The FSA loss function provides a

convenient way to incorporate spatial priors that are known

for a certain task, thereby improving robustness and gen-

eralization without requiring additional labels. The benefits

of our approach are demonstrated for the driver foot activity

classification task, where we improve the baseline accuracy

by approximately 13% without modifying the network ar-

chitecture. Such an improvement is especially valuable for

ensuring the robustness and reliability of downstream safety

critical tasks such as driver vigilance and takeover time es-

timation.
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