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Abstract

A successful rehabilitation process always requires both

medical and infrastructural support. In this paper we fo-

cus on paraplegic wheelchair users, aiming at understand-

ing the correlation between accuracy in guidance and mus-

cular fatigue, while moving on a known training path. In

particular, we study the trajectories performed and the cor-

responding shoulder forces distribution, while changing the

inclination of the seat. At the motor level, the point of inter-

est is the shoulder, as, in the prolonged use of wheelchairs

with manual self-propulsion, it is generally source of pain.

The objective is to demonstrate that there is a potential re-

lationship between trajectory discontinuities and shoulder

pain, and foster the development of best practices aimed

at preventing the raise of shoulder-related pathologies, by

correcting the users movements and the wheelchair setup.

This project is meant to be a first study of the subject, so

far little addressed, and is not meant to be a clinical study.

The experiments have been conducted within the premises

of the Living Lab AUSILIA and validated with the help of

experienced medical personnel.

1. Introduction

People with motor disabilities, whether it is a permanent

or temporary disability, often require continuous assistance.

The project AUSILIA (Assisted Unit for Simulating Inde-

pendent LIving Activities, Fig. 1)1 is a living lab, aimed at

improving the user capabilities, thanks to an advanced tech-

nological infrastructure able to measure the user’s skills and

needs, recommending the most suitable instruments to fos-

tering autonomy and independent living. As described in

[12], within the premises of AUSILIA, users perform small

daily activities in a controlled environment simulating a real

fully furnished house. In this way it is possible to observe

what difficulties they would be facing once back home. The

1http://www.ausilia.tn.it

AUSILIA living lab consists of two main environments: the

home apartment and the gym as shown in Fig. 1. Both the

apartment and the gym are equipped with a multi-sensory

infrastructure, necessary to capture the user motion and

his/her interactions with the environment. The gym is the

reference environment for this work. It is equipped with nu-

merous platforms simulating different pavements and sur-

faces, in which wheelchair users can be monitored and their

capabilities assessed. The goal of this paper is to jointly

analyze trajectory and shoulder fatigue targeting paraplegic

users, using manual self-propulsion wheelchairs, with dif-

ferent inclinations of the seat and in presence of obstacles

in the route. The system is composed of two main modules:

on the one hand we rely on a camera network for tracking

and trajectory analysis; on the other hand we focus on the

muscular activity through the positioning of an electromyo-

graph and an electrogoniometer on the shoulder and arm of

the user. The output of the analysis, conducted in synergy

with the medical personnel, aims at highlighting a potential

correlation between salient points in the trajectories and dis-

continuities in the shoulder movement. The data, as will be

shown in the experiments section, is made available through

an ad-hoc user interface, where doctors and caregivers can

assess the motion and guiding abilities with reference to the

specific wheelchair setup.

At the current stage of development, the presence of

the electromyograph and an electrogoniometer is necessary

mostly to acquire the ground truth, while in the future it

is expected that the analysis is conducted by solely using

video cameras and/or, more in general, non wearable sen-

sors, for an improved user experience and limited invasive-

ness.

2. Related work

In this paper we focus on manual wheelchairs users, as

many studies show the high correlation between the setup

of the wheelchair and shoulder pain [10, 1, 6, 9, 7]. The lit-

erature shows how the force applied to push the wheelchair



(a) Apartment (b) Gym

Figure 1: Layout of the apartment and gym of the AUSILIA

project.

Figure 2: Image of a user testing all the described equip-

ment: EMG sensors, electrogoniometer, and wheelchair.

relates to the specific type of movement performed and also

to the presence of obstacles in the user’s path, elements that

can be well modeled and described through the trajectory

performed. Studies carried out in this area cover different

topics. The authors in [6] clearly highlight how the raise

of shoulder pain in wheelchairs users during daily activities

is a widespread phenomenon, so that the authors, as a final

goal outcome of their study, define the Wheelchair User’s

Shoulder Pain Index (WUSPI). Using this index, they high-

light an increase in pain in quadriplegic users than para-

plegic users above all, in relation to increasing age [1].

2.1. Human detection and trajectory analysis

As far as the trajectory analysis is concerned the litera-

ture is very rich. Most of the approaches focus on purely

vision-based approaches, which keep the implementation

and deployment costs low, thus not requiring the adoption

of expensive wearable sensors. The most straightforward

solutions are based on background subtraction techniques

for blob detection, followed by tracking [15, 13]. How-

ever, background subtraction is generally not robust, and

tracking-by-detection algorithms are generally preferable

[3]. From the tracking perspective, the analysis is generally

conducted on the 2D trajectory. Many different solutions

have been proposed. We will adopt the methods proposed

by Piotto et al. [11], in which the authors explore the anal-

ysis and comparison of trajectory subsets: after subdividing

the trajectory into short segments, they look for temporal

discontinuities, as well as spatial discontinuities in terms of

sharp direction variations.

A recent trend in computer vision is to estimate the hu-

man pose through deep networks. Among the most cited

papers in the recent literature, we can find [5], an approach

for real-time 2D multi-person pose estimation, which serves

as a basis for the popular framework OpenPose [4]. 2D hu-

man pose estimation has become popular thanks to its ro-

bustness towards human (self-)occlusions. Moreover, pose

estimation has established a new baseline in terms of perfor-

mances and detection accuracy especially for what concerns

body joint detection, making it a perfect candidate for real-

time trajectory analysis applications. Moreover, a skeleton

(resulting by the connection of the extracted joints) can pro-

vide a much better semantic representation of a person, es-

pecially if compared to a bounding box resulting from a 2D

blob. As an example, Zimmermann et al. [17] trace the

user’s movements through 2D skeleton extraction to teach

robots, how to help the user perform the actions he is willing

to perform.

2.2. EMG signals analysis

The electromyographic (EMG) signal is used to charac-

terize the activity of a muscle. The activation of a particu-

lar muscle can be both voluntary and involuntary [2, 8, 14]

These signals are very complex to handle, since they re-

semble the combination of numerous stimuli and are gener-

ally affected by a considerably large amount of noise, thus

requiring the adoption of signal processing techniques to

highlight the meaningful signal components.

Although the applicable filters may vary depending on

the analysis, an overall good method for cleaning a signal is

proposed by [2]. This method considers four main steps: fil-

tering, rectification, smoothing and features extraction. The

filtering and smoothing steps are signal-dependent, because

every signal is affected by different noise sources and can

have different ranges, depending on the performed move-

ment, as well as the type of muscle being activated. A more

detailed explanation is available in [16], in which the au-

thors have listed possible filtering strategies together with

the corresponding references. An additional feature of the

EMG signal analysis is that it can be performed both in

the time and in the frequency domain, as underlined by

[14, 2, 16] depending on the different physical parameters

[16] analyzed. There are four fundamental physical param-



eters that can be extracted from the temporal and frequency

analysis, namely joint motion, force, velocity, and muscle

fatigue. Those of greater interest, especially with regard to

this work, are muscular force and fatigue. The first one, de-

fined as force or muscle tension, can be extracted in the time

domain analysis, due to the fact that it can be related to the

amplitude of the EMG signal. In addition, for experiments

with constant tension exercise, the average value of the sig-

nal that has been previously rectified, is a measure of ten-

sion. A feature widely used in literature to extract this value

is the Root Mean Square. Instead, the muscle fatigue is gen-

erally measured analyzing the frequency domain, as it has

been found that the fatigue produces changes in the EMG

spectrum. In particular, an increase in fatigue decreases the

high-frequency components of the spectrum.

3. Proposed model

Our focus is to jointly analyze wheelchair users’ trajec-

tories and the development of fatigue, mainly at shoulder

level, in relation to their posture. The analysis has been con-

ducted in the AUSILIA gym, by detecting sudden speed and

direction changes in the path that can be linked to incorrect

movements, to the presence of obstacles, such as steps, or

to variations in the road inclination. For the user detection

phase, we rely on the method described in [5] and [4], com-

bined with a background subtraction motion model, that can

support the algorithm is those cases, in which the skeleton

detection fails, due to severe occlusions of the body details.

For the shoulder and posture analysis instead, we adopt a

mixed approach, that links data from the EMG sensor, the

user’s body pressure distribution, and pose data in terms of

joints position. The main steps of the developed method are

shown in Fig. 3.

3.1. Sensors positioning, calibration, and recording

Four cameras have been installed on the gym perimeter

so as to guarantee the coverage of the whole area of interest.

The approximate coverage on the ground by each camera is

shown in Fig. 4.

Cameras are subject to distortions of various kinds and

therefore require calibration, to determine both the intrinsic

and extrinsic parameters. As we are working with a small

camera network, it is also necessary to relate each camera to

the others in the network, via the computation of the funda-

mental matrix, as well as linking the cameras with the real

world through the computation of the homography matrix.

With the camera network fully calibrated, it is possible

to start collecting data. Since it is not convenient, in terms

of required storage space, to record all the videos from all

the cameras in the gym simultaneously, the goal is to trigger

the recording of each camera based on the user’s position,

automatically handling the hand-off. The final video con-

sists then of the concatenation of the single views. How-

ever, in order to guarantee that no relevant data is lost, the

entire videos for each camera are also temporarily stored,

until the medical personnel confirms that no salient event

has been missed.

3.2. Trajectory analysis through skeleton detection

In order to determine the users’ trajectory, the first step

consists of determining the position of the skeleton. For this

phase, we rely on the OpenPose library [4], which allows

for a good detection also in presence of partial occlusions.

Only in case the skeleton is not found, we backtrack to

background subtraction, so as to ensure a continuous track-

ing over time (Fig. 6).

We can now define a bounding box that resembles the

position of the users at a given time instant. At each frame

pG represents the ground point. When the pose estimation

succeeds, pG can be identified as the median point of the

11th and 14th skeleton joints (heels joints). When pose es-

timation fails, pG is located at the lower median point of the

bounding box obtained via background subtraction.

At this stage, the trajectory is still noisy and uneven. As

a consequence, a filtering and smoothing phases are nec-

essary to obtain a more uniform and meaningful trajectory.

Therefore, we employ a two-step filtering approach: first,

we apply a Kalman filter; we then refine the obtained tra-

jectory with a moving average filter. The outcome of the

trajectory filtering is shown in Fig. 7.

All the extracted points that contribute to the definition of

the trajectory can now be mapped to the ground plane in the

real world coordinates thanks to the calibration procedure

described above.

Velocity and acceleration are then extracted by comput-

ing the values over a one-second window, so as to cope

also with minor irregularities that might occur at smaller

time scales. In addition, the speed value for each frame is

also used to graphically indicate on the map the exact points

where a change in speed occurs, using an ad-hoc colormap

changing from green (slow) to red (fast). Following the pro-

cedure described in [11], the trajectory is analyzed to look

for possible temporal breakpoints, defined as sudden stops

and re-starts. Such discontinuities happen when the posi-

tion of the object of interest at the beginning and end of a

defined time interval [tk, tk+1] is within a predefined range

∆. Mathematically, and according to [11], this implies:

P i
k+1 = P i

k ±∆ where P i
k = (xi

k, z
i
k, tk)

A temporal breakpoint is inserted when, within a second,

the position of the wheelchair varies less than 30cm. In [11],

also spatial breakpoints are extracted to describe the trajec-

tory, defined as sudden variations of the motion direction.

This means computing the angle between two segments of



Configuration Synchronous recording Joint trajectory and EMG analysis Fusion

Figure 3: Pipeline of the proposed method: sensor positioning, camera calibration, video recording, real-time trajectory

analysis, posture and arm fatigue analysis

Figure 4: Layout of the AUSILIA gym. The environment

is currently covered by four IP cameras, necessary to mon-

itor the wheelchair path. The approximate coverage of the

cameras is highlighted in light blue.

Figure 5: Computation of the fundamental and homog-

raphy matrices

the trajectory in order to search for sharp direction varia-

tions:

βk =

∣
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∣
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> βth

where

{

rk−1(x) = mk−1x+ qk−1

rk(x) = mkx+ qk

In our case, we use a temporal reference of two seconds

(a) Extraction of the skeleton through OpenPose [4]

(b) Motion detection via background subtraction

Figure 6: Example of skeleton extraction and motion detec-

tion through background subtraction.

in order to calculate the angle of rotation performed by the

users at a precise instant.



(a) Smoothed trajectory in the real world

(b) Projected smoothed trajectory

Figure 7: Trajectory filtering: the green line represents the

output of the Kalman filter, while the red line is the result

of the moving average filter.

Figure 8: Trajectory performed by a test user projected on

the gym map showing: speed changes, spatial breakpoints

and temporal breakpoints.

3.3. Shoulder forces and posture analysis

In addition to the extraction of the trajectory of the

wheelchair, our aim is to also study the posture and the

arm movement while pushing the wheelchair. In partic-

ular, the shoulder movement is analyzed in detail as the

prolonged use of wheelchairs with manual self-propulsion

causes shoulder disorders in most users. As a consequence,

the pushing force distribution is analyzed to understand if

there are discontinuities that, in the long period, can be a

potential source of pain. To achieve this second objective,

several tools have been used: five EMG sensors to detect

the muscular activity of the shoulder, the angle of the el-

bow extracted from the skeleton, and an electrogoniometer,

mostly used as a ground truth to measure the reliability of

the OpenPose joint extraction. Each user is asked to test

three different types of wheelchairs (Fig. 11). The EMG

and the electrogoniometer are used to directly analyze the

user’s movement. The motivation for using three differ-

ent wheelchairs, instead, is necessary to evaluate the per-

formances while changing on the one hand the weight of

the wheelchair itself, and on the other hand the responsive-

ness of the wheelchair when a force is applied to the wheels.

This second difference mostly depends on the different in-

clination of the seat and, consequently, the different posture

of the user. For this reason, in addition to the analysis of the

shoulder, the objective is also to understand if such different

postures can help in preventing shoulder pain.

The most significant data for the study of user move-

ment, and in particular the shoulder movement, is obtained

from the EMG sensors. A common framework to analyze

these data is MOKKA 2, which is is provided by the open-

source Biomechanical ToolKit (BTK) 3.

The EMG sensors measure the muscle activity, including

both voluntary and involuntary movements performed by

muscle fibers.

The amplitude of the signal is analyzed in the time do-

main, as it reflects the force used by the muscle, i.e. its

muscle activation. In the frequency domain, it is possible to

extract values related to the fatigue.

In our implementation the EMG signals have been ana-

lyzed and processed in the time domain through the follow-

ing steps (Fig. 9): data extraction, filtering, rectification and

RMS (Root Mean Square) envelope.

Figure 9: EMG signal processing: raw signal (red), band-

pass filtered signal (blue), rectified signal (green) and the

RMS envelope (violet). The signal amplitude is reported in

Volt.

2 http://biomechanical-toolkit.github.io/mokka/
3 https://code.google.com/archive/p/b-tk/



Since the signal analyzed in the time domain is a rep-

resentation of the muscular force, that is the muscular ac-

tivation, it is possible to define the mean muscle activation

by computing the mean of the signal. This average value

is extracted for every signal and for every trial using the

different wheelchair. Consequently, by calculating the ra-

tio between the average values of each signal passing from

one wheelchair to another, it is possible to understand if and

how the muscular activation changes if the seat is changed.

Together with the EMG information, the angle of open-

ing and closing of the elbow is also extracted, to have

an additional data on the control on the movement of the

arm. However, the electrogoniometer is rather invasive and

we preferred using the joints of the skeleton, providing

a weak replacement for the electrogoniometer data, for a

more comfortable experience for the user, who will not be

required to wear invasive sensors during the experiments.

From the skeleton extracted at each frame, the positions

(x, y) of three joints are extracted: the shoulder, the elbow

and the wrist. These positions are stored so that they can

be used and processed later to evaluate the variations of the

angle at the elbow level. The procedure used for the calcu-

lation of the opening and closing of the elbow, relies on the

same strategy adopted for the identification of spatial and

temporal breakpoints in the trajectory analysis.

3.4. Results correlation and displaying

At this point of the study, the data is processed, and can

be viewed by the medical personnel in order to correlate the

information coming from the different information sources,

bearing in mind that each source has different temporal res-

olutions requiring an additional effort in synchronization.

An overview of the final layout of the interface is shown in

Fig. 10b.

4. Results

The main objective of this study is to find a correlation

between the development of shoulder pain in users and the

prolonged or incorrect usage of the wheelchair. Considered

that the study presented is pioneering in its nature and not a

proper clinical study, we involved six healthy users of dif-

ferent age, musculature and gender, as shown in Table 1. In

the considered environment, users are subject to clinical tri-

als and are constantly monitored by therapists and nursing

staff on a daily basis, in order to optimize the choice of the

most suitable wheelchair.

In the tests, users were asked to perform an established

route three times, each time using a different wheelchair

model. At the end of each trial, users were required to fill

in a questionnaire to collect their direct feedback about the

level of fatigue.

(a) Graphical interface

(b) An example of extracted data

Figure 10: Graphical interface developed to display all data

at the same time. A play / pause button is present to be able

to observe in detail all the signals at a precise moment. The

displayed data includes the mean value of muscular activa-

tion for every EMG sensor, the mean and maximum velocity

of the user as well as the entire duration of the trial.

Gender Musculature
Experience

with wheelchairs

User 1 male well-developed 3

User 2 female normal 2

User 3 female normal 1

User 4 female normal 4

User 5 male normal 2

User 6 female normal 1

Table 1: Users involved in the experiments, with experience

level between 1 (beginner) and 5 (expert).

4.1. Trajectory analysis

For what concerns the trajectory analysis, the obtained

results confirm our initial hypotheses, showing how the

speed and the motion properties of users change in presence

of obstacles and turns, while maximum speed is reached

in presence of straight paths and descents. An example of

the salient interest points, represented through the tempo-

ral and spatial breakpoints, can be seen in Fig. 12. It is

shown how User 6, with a Level 1 (beginner) wheelchair



(a) ”Vega”: super light, responsive. (b) ”Ministar”: light, responsive. (c) ”Meyra”: light.

Figure 11: Characteristics of the three types of wheelchair, which vary in terms of weight and responsiveness.

usage experience, encountered severe difficulties in facing

obstacles in the pre-determined path, as also highlighted by

the breakpoints plot in Fig. 12b. The user also encounters

difficulties while getting on the ramp in Fig. 12a. To con-

tinue along the path, the user suddenly changes the motion

direction to reach for the handrail, which was not in range

along the path. We can notice that a set of useful infor-

mation can be inferred from the trajectory plot in 12b, in

particular: (i) the speed has decreased significantly (light

green) during the ascent, as shown by the presence of tem-

poral breakpoints; (ii) when the user continues the test with

the help of the handrail, a spatial interruption is drawn on

the map due to an abrupt change in direction. Such break-

points are successfully detected by our trajectory analysis

and they also match the answers that users gave in the ques-

tionnaire. Moreover, users identified the climbs, descents

and also the different terrain types as the most difficult parts

along the path, which is in line with the data observed in our

arm movement and posture analysis.

From the analysis it turned out that the results of the

trajectory analysis in relation with the different wheelchair

models were less relevant than expected. By changing the

wheelchair model from the most responsive to the less re-

sponsive one (Fig. 11), a progressive increase in the em-

ployed force was expected, associated to a decrease in

speed. However, this trend was not evident in every test,

as can be seen in Fig. 13. This might be due to the fact that

users have not been pushed to maximum strain, and only

a limited number of trials has been performed. However,

despite the small number of samples used to perform the

analysis, both the quantitative results and the user question-

naires show how the wheelchair weight is not the main fac-

tor linked to speed variations along the path. In fact, from

such a preliminary analysis, it appears from the trajectory

data, that the inclination of the wheelchair along the path

has a far more relevant influence than the weight variation

of the wheelchair itself.

(a) User 6 that stops on the ascent and continue the path clings to the

parapet

(b) Temporal and spatial breakpoints on the map caused by the difficul-

ties encountered

Figure 12: Example of difficulty caused by obstacles (user

6).

4.2. Arm movement and posture analysis

We conducted a similar analysis also for the shoulder

movement and user posture, relating them with the presence

of obstacles along the path and the wheelchair type. As re-

gards the comparison with the different types of wheelchair,

we calculate the mean value µp : p ∈ P of each users mus-

cular activity, as extracted by the EMG sensor, and compare



Figure 13: Average growth ratio of the mean muscular acti-

vation for the 6 users on the three wheelchair models. No-

tice how the muscular fatigue changes based on user expe-

rience and how in our tests it is not strictly linked just to the

wheelchair weight.

with the rest of the user population P . Then, by calculating

the ratio of the mean value in passing from one wheelchair

model to the other, it was possible to quantify the change

in the force applied ∆f , as performed by the user. The

data obtained from this analysis are shown in Table 2. Also

in this case the idea is that when the wheelchair changes,

the users force increases proportionally to the difficulty of

the path. During the evaluation of these parameters, while

speed seems to be more related to the wheelchair inclina-

tion, the required force is more related to weight. In fact, an

increase in muscle activity occurred for five out of six users,

when switching from a super-light to a light wheelchair, but

both tilted. Instead, only half of the users in the panel has

increased the muscular force by varying the inclination of

the seat.

4.3. Results correlation

By visualizing and integrating all the data together

through the developed graphical interface (Fig. 10a), it is

possible to have a complete and detailed view of the entire

trial. Through the video and the projection of the trajec-

tory on the gym map, it is possible to observe when and

where the user’s difficulties occur, and understand how spe-

cific obstacles in the path can lead to an increasing fatigue.

At the same time, in addition to visualizing spatial and tem-

poral breakpoints in the path thanks to the trajectory anal-

ysis, it is possible to also visually correlate the EMG sig-

nals of each muscle at every precise moment. Observing

the signal during the various phases of the route, it is possi-

ble to notice how, in presence of situations considered crit-

ical by the users (ascent, as well as different surfaces like

grass and stone), muscle activity increases with numerous

L+/SL L-/L+ L-/SL

User 1 90% 94% 86%

User 2 127% 84% 105%

User 3 107% 101% 98%

User 4 142% 93% 130%

User 5 104% 104% 108%

User 6 135% 101% 125%

Table 2: Average growth ratio of the mean muscular acti-

vation between pairs of wheelchairs: super light, respon-

sive (SL), light, responsive (L+), light (L-). A 100% ra-

tio indicates that with the second wheelchair the user em-

ployed 100% of the average force used with the previous

wheelchair, therefore a constant muscle activity (ratio equal

to 1). While a 90% ratio indicates that with the second

wheelchair only 90% of the previous force was used, i.e.

there was a 10% decrease. A value greater than 100% there-

fore indicates an increase in muscle activity.

peaks. This allows the medical personnel to improve their

knowledge about the user’s fatigue, which would be other-

wise difficult to gather, clearly showing the benefits of hav-

ing a distributed sensing framework like the one available

in AUSILIA.

5. Conclusions

In this paper, we propose an approach for joint trajectory

and fatigue analysis in wheelchair users. We combine the

state-of-the-art skeleton-based pose estimation techniques,

classic computer vision algorithms and data from wearable

sensors to provide the medical personnel with a complete

solution that enables them to evaluate an ensemble of pa-

rameters jointly, while performing a pre-defined task. Our

study shows that a relationship exists between the trajec-

tory data and the EMG signals, both in terms of velocity,

and temporal and spatial breakpoints. Furthermore, our

method takes into account different wheelchairs, showing

how many different factors, including the user experience

and the terrain slope and type of surface, all contribute to

the user’s fatigue at different levels.

This confirms that the setup we have envisaged and the

multi-sensory environment we have defined can indeed be

of help in correlating the muscular activity to the trajectory.

We believe that the main limitation we have been facing so

far is mostly due to the small number of users involved and

trials performed. This issue is currently being addressed via

the definition of an ad-hoc clinical study.
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