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Abstract

Autonomous agents that need to effectively move and in-

teract in a realistic environment have to be endowed with

robust perception skills. Among many, accurate object clas-

sification is an essential supporting element for assistive

robotics. However, realistic scenarios often present scenes

with severe clutter, that dramatically degrades the perfor-

mance of current object classification methods. This paper

presents an active vision approach that improves the accu-

racy of 3D object classification through a next-best-view

(NBV) paradigm to perform this complex task with ease.

The next camera motion is chosen with the criteria that aim

to avoid object self-occlusions while exploring as much as

possible the surrounding area. An online 3D reconstruction

module is exploited in our system in order to obtain a bet-

ter canonical 3D representation of the scene while moving

the sensor. By reducing the impact of occlusions, we show

with both synthetic and real-world data that in a few moves

the approach can surpass a state-of-the-art method, Point-

Net with single view object classification from depth data.

In addition, we demonstrate our system in a practical sce-

nario where depth sensor moves to search and classify a set

of objects in cluttered scenes.

1. Introduction

Assistive robots have attracted increasing attention from

both academics and industries [5] with the objective of sup-

porting daily life, in particular, of people with disability.

Robots are desired to substitute human to interact or manip-

ulate with entities in the physical world. More frequently

than ever, such robots need to interact with and manipu-

late several objects in an unknown scene to perform specific

tasks such as grasping and placing [10, 19, 31, 35].

One essential capability to achieve such task is to be able

to perceive the environment with both geometric (“where
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are the objects?”) and semantic understanding (“what are

the objects?”). However, object recognition in unstructured

and cluttered 3D environment can be very challenging with

only single-shot-based method [26]. Moreover, perceiving

objects’ positions and their pose is not a trivial task even

with a single object in an uncluttered environment. Mul-

tiple objects in arbitrary positions exacerbate the problem,

possibly leading to catastrophic failures if the object detec-

tor/pose estimator makes wrong decisions about the scene

structure. Occlusions can contribute greatly to the loss of

accuracy of vision systems which are fundamental to cor-

rectly recognise and estimate the 6D pose of objects. As

a consolidated experimental fact, even the best single ob-

ject classifiers decrease their performance when consistent

occlusions appear [15].

In this context, active vision plays a fundamental role

in best analysing the objects in the scene given the cur-

rent observation and deciding which next best view (NBV)

might have the chance to achieve a better recognition

score [1, 21, 24, 25, 29] . In particular, when scenes are clut-

tered, objects are often incorrectly classified since they are

possibly occluded by itself or other elements in the environ-

ment. Active object recognition (AOR) becomes a promis-

ing strategy for actively covering more viewpoints which

eases the classification task [2, 7, 17, 25].

Following this idea, our paper proposes an active strat-

egy to 3D object classification (see Figure 1), which

can iteratively select viewpoints where clutter is reduced

(i.e. more visible object surfaces) and thus improving the

probability of best classifying the objects. Moreover, our

approach also advocates the use of online 3D reconstruction

of the scene to better solve for the 3D classification prob-

lem: As soon as a new depth frame of the scene is available,

the method integrates the frame into a 3D representation of

the scene. The classification of objects runs over the re-

constructed point cloud instead of single depth frames. To

select the NBV, our active strategy initially builds a scene

representation by aligning the canonical volumes with the

classes and poses estimated from the reconstructed point

clouds, and then approximates the visibility of objects on



image plane by projecting the bounding cuboid of each

canonical volume through a z-buffer indicating for occlu-

sions. Each candidate viewpoint is further weighted based

on its vicinity to already visited viewpoints to avoid revisit.

We validate the proposed active recognition framework us-

ing a Kinect-equipped UR5 robotic arm. This setup is func-

tional for the repeatability and assessment of the real exper-

iments but our NBV proposed method can be generalised to

other robotic scenarios. With both synthetic and real-world

dataset, we demonstrate that the proposed method outper-

forms the baseline methods as well as multiple variants of

our proposed NBV criteria.

The rest of the paper is organised as follows: Section 2

presents a review on related literature; Section 3 details our

proposed framework, Section 4 contains the experimental

results and discussion. Finally, Section 5 draws conclu-

sions.

2. Related Work

In this section, we will review the state-of-the-art in

active object classification considering two main aspects:

multiview/3D object classification and motion policies for

active classification.

Multiview/3D object classification. Several approaches

have been proposed for 3D object classification, and can

be categorised as view-based, voxel-based and point-cloud-

based techniques. In view-based methods each 3D shape

is represented by a set of frames generated from multi-

ple viewpoints. Traditional approaches train one classi-

fier for each viewpoint, assuming that the object lies in a

known pose; these methods mostly use hand-engineered

features like Fourier descriptors [6], local Gabor filters [8]

and Fisher vectors [32]. In [36], a CNN model is trained

to extract features from each available view, while a pool-

ing layer fuses these features together and passes them to

a subsequent NN architecture for classification. Rotation-

Net [16] is a CNN-based model that takes as input a partial

set of multiview RGB images and jointly estimates object’s

pose and category. All these methods are low-dimensional

in the input space, computationally efficient and fairly ro-

bust to 3D shape representation artefacts such as holes and

noise; despite that, they miss the ability to generalise over

the complex 3D shape of an object.

In voxel-based methods, depth data are represented in

a fixed-size 3D space in form of occupancy maps. In

VoxNet [22] each voxel is assumed to have a binary state,

occupied or unoccupied, while in ShapeNets [41] the 3D

shape is represented as a probability distribution of binary

variables; both of them use a 3D CNN architecture to per-

form object recognition. These methods suffer from the

rigid space representation that limits the expressiveness of

the input data; this limitation is overcome by point-based

methods.

PointNet [26] learns a set of spatial features of each

point independently and then accumulates the features by

a symmetric function (i.e. max-pooling layer). This model

has a relatively simple architecture that takes as input the

complete point cloud of an object and performs single ob-

ject recognition and part segmentation. Subsequent models

have shown that the classification performance can be fur-

ther improved by considering the neighbourhoods of points

rather than treating points independently due to a better

leverage on the local structure features [27, 34]. Despite

working very well on single objects where the whole point

cloud is available, these methods suffer when part of the

point cloud is missing, i.e. in case of occlusions. In this

paper we leverage the power of point cloud representation

by proposing a strategy to intelligently explore the environ-

ment and acquire data to fill the gaps in the 3D representa-

tion of objects.

Motion policies for active classification. Several recent

works on AOR model the problem with Reinforcement

Learning techniques, such as Partially Observable Markov

Decision Processes (POMDP) solved by means of point-

based algorithms [1, 29], Monte Carlo tree search [24],

Self-Organising Maps [3] or Belief Tree Search [21]. De-

spite presenting very advanced planning strategies, all these

methods are very expensive to compute online.

A complementary strand of works focus on selecting

the NBV within a finite set of candidates by maximising

a cost function in the form of the unknown volume ex-

plored [2], the information gain [25], the conditional en-

tropy [17], or exploiting unsupervised features learned from

depth-invariant patches using sparse autoencoders [7]. All

these methods require the 3D model of the object to search.

To relax this hypothesis, Wu et al. [41] propose a feature-

based model to compute the NBV in 2D space by predicting

both visibility and likelihood of feature matching in a mo-

bile robot setup; unfortunately this approach can only han-

dle very simple object geometries. Many AOR approaches

assume that there is a single object in the scene and its lo-

cation is known [11, 18, 28, 29, 37, 38]. In this paper we

address the case of multiple objects in the scene in unknown

locations, handling occlusions and providing an iterative so-

lution to the NBV selection problem by accounting for all

the objects as a whole.

3. Active 3D Object Classification Framework

Let us consider a scenario where N objects belonging to

the set of classes C are distributed in an area and a depth sen-

sor with known camera pose acquires a set of depth frames



Figure 1. Overall view of the proposed active 3D classification system with a typical scenario with a set of objects occluding each other.

The system reconstructs the scene and performs classification and pose estimation with refinement using geometric alignment. Given the

3D scene, the system chooses a next best view that maximises the visible object surfaces while avoiding already visited areas in order to

achieve a better 3D classification (best viewed in colour).

at each camera move1. Our goal is to assign the correct

label to each of the N objects using a finite set of camera

moves. The overall view of the proposed active 3D object

classification pipeline is depicted in Figure 1. We assume

to have a CAD model for each object class. The number of

objects in the scene is also assumed to be known to simplify

the process of point cloud segmentation.

At each time step the sensor acquires a depth map of the

scene and we isolate the foreground by first truncating the

depth within a predefined distance and then removing the

plane where the objects are lying on, i.e. z = h where

h is the height of table surface w.r.t to the world coordi-

nate. The foreground is then segmented in object candi-

dates (see Section 3.1) and each segment is processed by

a PointNet [26] model to generate class candidates. For

each segment, we take into account the top class candidates

for further refinement in the pipeline. Given the segmented

point cloud (for each segment) and the class candidates, we

use DenseFusion [39] to provide an initial pose estimation

(see Section 3.2). Then we use the Iterative Closest Points

(ICP) algorithm [30] (see Section 3.2) to perform geometric

refinement among the top candidate labels and updates the

segment label as well as its pose.

Lastly, we select the NBV that maximises the visibil-

ity of all objects (accounting for occlusions) while avoid-

ing already visited areas. We approximate the visibility by

projecting the corners of the bounding cuboid of each seg-

ment onto the image plane. To account for occlusions, we

project the segments sequentially with a z-buffer, from the

closest to the farther from the sensor. The number of pixels

within the convex hull bounded by the projected corners of

the object is used to approximate the visibility of each seg-

1Computing a reliable camera pose while the sensor is moving is not

the focus of this paper. The sensor’s pose can be given by direct kinematics

if the camera is equipped on a robot, by a SLAM approach if hand-held, or

by integrating both information.

ment. We keep moving the sensor until the camera positions

reaches a fixed number of steps.

3.1. 3D Reconstruction and Segmentation

Let the observation input be O(t) = {D(t), vW (t)}
at a time instance t, where D refers to a depth map and

vW (t) = {RW (t), tW (t)} refers to a viewpoint pose char-

acterised by rotation matrix R(t) and 3D translation tW (t)
in the world coordinate. We acknowledge that there are a

few popular real-time SLAM methods with RGB-D stream,

such as KinectFusion [23] or ElasticFusion [40], that per-

form dense reconstruction without the prior knowledge of

camera poses. While in our setting, since the camera

poses are available thanks to the known robotic kinemat-

ics and hand-eye calibration, we opt to a volume integra-

tion method using the Truncated Signed Distance Function

(TSDF) [43, 20].

At each time t, the depth image D(t) is registered to

the previously reconstructed point cloud (if t �= 0, oth-

erwise we use the first depth image as a reference) using

the camera viewpoint pose vW (t) to produce a canonical

volumetric representation of the scene. The reconstructed

scene is firstly truncated within a cubic space of interest

then segmented by means of DBSCAN algorithm for un-

supervised clustering [9]. However, due to object’s self-

occlusion and inter-object occlusions, there is a tendency

to oversegment. We further apply K-means clustering [13]

on the center points to force the generation of N clusters.

In such way, we produce a set of point cloud segments

S(t) = {S1(t), . . . , SN (t)}, where each segment corre-

sponds to an unknown object.

3.2. 3D Object Detection and Pose Estimation

Classification with partial reconstruction. We build our

classifier based on PointNet architecture, which directly



takes unstructured point clouds as input [26]. The classi-

fication network firstly applies input and feature transfor-

mations in order to manage unordered point clouds, where

transformation functions are trained as multi-layer percep-

tron (MLP) networks. Secondly, it aggregates points fea-

tures by max pooling. Final global features, that are the

shape features of the input point cloud, have been fed to a

MLP to extract the classification scores for the number of

classes M = |C|.
At run time, we provide each point cloud segment

Sj(t) after zero-mean and normalisation into our fine-tuned

PointNet classifier (check Section 4 for details) at each time

step t. The classifier returns a score vector zj(t) over all

the classes in C such that z
j(t) = {zj1(t), . . . , z

j
M (t)},

ΣM
1 zjm = 1. With a max pooling strategy, each segment

Sj(t) has a prior class prediction Cj−(t) given by:

Cj−(t) = argmax
m∈C

z
j(t). (1)

In addition to the most likely class prediction, we also cache

the top most likely classes, Cj−(t) for further refinement.

We use the superscript “−” to indicate all the classes/poses

estimation prior to the refinement stage.

In order to obtain the initial pose guess at t = 0 for

each segment, we make use of a CNN-based pose esti-

mator, DenseFusion [39] that takes as inputs the cropped

depth images corresponding to an object class. More in

details, for each segment Sj(t), we input to DenseFusion

the class prediction Cj−(t) and the segmented observa-

tion Oj(t) obtained via camera projection using the pre-

calibrated camera intrinsics and the viewpoint pose vW (t),
and obtain the prior pose estimate p

j−
C (t) for each segment

in the camera coordinate. By applying coordinate transfor-

mation, p
j−
W (t) = p

j−
C (t)vW (t), we obtain the prior pose

estimate for each segment in the canonical 3D representa-

tion (i.e. the world coordinates).

Note that at the initial steps of the algorithm, the pose

obtained can be inaccurate, in particular for the translation,

due to wrong classification predictions. We further refine

p
j−
W (t) by anchoring the estimated translation vector to the

centroid of each segment. Although the centroid of each

segment does not necessarily coincide with the centroid of

its corresponding object’s canonical volume, such rough

translation fixation can facilitate a reasonable pose initial-

isation for the geometric refinement as described in the next

section.

Geometric class and pose refinement. Since the 3D

classifier can provide unreliable class prediction, especially

at early stages, we propose a new refinement strategy us-

ing a geometrical approach as sketched in Figure 2. First,

each point cloud segment Sj(t) will be aligned with each

top-ranking classified object using the associated 3D CAD

Figure 2. An example for the geometric class and pose refinement

procedure. A reconstructed segment Sj is classified with top three

candidate classes (highest classification confidence on top). By

aligning the segment with the CAD models of the three candidate

classes using ICP, the class and object pose can be refined by se-

lecting the best aligned model (best viewed in colour).

model. Let Om ∈ Cj−(t) be the 3D model of a candidate

object in the point cloud. The estimated pose at the previous

step p
j−
W (t) is used as an initialisation for the Iterative Clos-

est Point (ICP) method [44]. After registration, we have

a set of registered points, Sj,R
m (t) and Oj,R

m (t), belonging

to the segment point cloud Sj(t) and the object model Om

respectively. Together with the registered points, ICP also

provides the pose transform ∆pj
m(t) that is applied to align

the object model to the point cloud segment.

We quantify how well two point clouds are registered,

given possibly mis-classified classes, by the ratio of the reg-

istered points over the total number of points of the two

point clouds. Let ρjm(t) be the registration ratio of the seg-

ment and a candidate object model, and we can compute

ρjm(t) as:

ρjm(t) =
|Sj,R

m (t)|

|Sj(t)|

|Oj,R
m (t)|

|Om|
, (2)

where the operation |·| gives the number of points of a point

cloud. The value ρjm(t) is larger when the 3D reconstruc-

tion of the object is complete and when the candidate class

prediction is the correct one. As a result, we can obtain the

refined object class at time step t as:

Cj(t) = argmax
Om∈Cj−(t)

ρjm(t). (3)

The refined object pose at time step t will be updated as:

p
j
W (t) = ∆pj

m(t)pj−
C (t). (4)

3.3. Next Best View Selection (NBV)

The NBV is selected among a set of candidate view-

points VW (t) = {v1
W (t), . . . , vI

W (t)} at time step t. The

candidate viewpoints VW (t) are defined as those viewpoints

that lie within the circular range of the current viewpoint



vW (t) with radius r. The movement aims to achieve more

complete object reconstruction, while avoiding to revisit the

areas that the camera has already visited.

We devise a utility Ui(t) for each candidate viewpoint

vi
W (t) ∈ VW (t) that encourages high object surface visi-

bility and punishes revisiting same areas. Let O
j
i (t) be the

function that quantifies the visibility of a segment Sj(t) at

viewpoint vi
W (t). We approximate the visibility for seg-

ments by replacing each segment with its 3D model of the

predicted class aligned by the estimated pose as given in

the previous section. The corners of the bounding cuboid

of each aligned object model are projected onto the image

plane. The projection is then performed sequentially using

a z-buffer, i.e. an ordered vector of the distance between the

segments to the camera, in order to account for occlusions.

In this way, O
j
i (t) is defined as the number of visible pixels

within the convex hull bounded by the projected corners for

each segment. The visibility utility at viewpoint viW (t) that

accounts for all segments is defined as the sum of visibility

of each segment:

Oi(t) =
∑

Sj(t)∈S(t)

O
j
i (t). (5)

In order to penalise the system to visit already seen areas,

we further introduce a weight Wi(t) ∈ [0, 1) for each can-

didate viewpoint. The value of Wi(t) is designed to be

smaller if the candidate viewpoint is closer to the viewpoint

that has been visited, otherwise the value will be larger.

Let the set of previously visited viewpoints be V
′

W (t) =
{vW (τ)|∀τ ∈ [1, t)}, and let D(τ, t) be the distance be-

tween the candidate viewpoint and a visited viewpoint at

a previous time step τ . We make use of the normalised

Gaussian distribution over the distance D(τ, t) in order to

compute Wi(t), such that:

Wi(t) = max
v(τ)∈V

′ (t)
1−G (D(τ, t), µ, σ) , (6)

where G(·) defines the normalised Gaussian distribution

function with the mean µ = 0 and the standard deviation

σ = r
2 , where r is the radius that defines the set of candi-

date view points.

The final utility Ui(t) combines the visibility utility

Oi(t) and the weight Wi(t). Because the value of Wi(t) is

constrained within [0, 1) while Oi(t) is not constrained, for

fair combination, we normalise Oi(t) by its maximum value

within O(t) = {Oi(t)|∀vi(t) ∈ V(t)}, i.e. N(Oi(t)) =
Oi(t)

max(O(t)) . The utility Ui(t) is therefore computed as:

Ui(t) = Wi(t)N (Oi(t)) . (7)

The NBV vW (t) is selected as the one providing the highest

utility:

v∗W (t) = argmax
vi
W

(t)∈VW (t)

Ui(t). (8)

Figure 3. Examples of the synthetic and real scenes of our dataset,

where severe inter-object occlusion can be observed.

Once the NBV is selected, we can move the depth sensor

in the desired position if no stop condition is satisfied and

acquire a new measurement O(t+1) = {D(t+1), vW (t+
1)} and iterate the procedure until the method converges.

4. Experiments

We first describe how we create a dataset with ground

truth information followed by the experimental protocol.

Results over several trials with both synthetic and real data

will prove the effectiveness of the proposed active classifi-

cation method.

Dataset creation. We selected 7 objects from the

LINEMOD dataset [14] and generated a set of different sce-

narios with 5 objects in each one. In every scene, all objects

lie on a planar surface defined at z = 0 and are placed in

their canonical pose, i.e. with the z axis of the model’s ref-

erence frames facing up. The dataset is generated with both

synthetic and real-world setup.

We generated 7 synthetic scenes where depth maps are

rendered using Blender by projecting the models on 100
viewpoints uniformly distributed on a hemispherical surface

(i.e. z ≥ 0) with the sphere’s centroid coinciding with the

centroid of all the objects in the scene and the radius of 1m.

The rendering engine is set up to emulate a real acquisition

device: the pinhole camera matrix is the same as a Kinect

V1 device with resolution 640×480 pixels and focal length

of 26mm.

In addition, we acquired two scenes in a real-world setup

with a Kinect-equipped Universal Robots UR5 using 3D-

printed instances of the selected object classes. This specific

robotic configuration is chosen for the experiments since it

allows accurate camera poses and repeatability during the

testing procedure. The arm and sensor have been hand-eye

calibrated in order to obtain the correct camera viewpoint

poses from the robot’s encoder poses. We used ArUco fidu-

cial markers and its off-the-shelf libraries to annotate the

pose of each object and to perform hand-eye calibration of

the system [12]. Each scene contains 5 objects where 3 of



them are to be classified and the other 2 are used to simulate

generic clutter. For each scene, we acquired RGB-D obser-

vations from a pre-defined set of 138 viewpoints sampled

on a hemispherical surface of radius 0.9m centered in the

centroid of the objects. The viewpoints are approximately

uniform on the hemisphere due to the constrained reacha-

bility of the robotic arm.

PointNet fine-tuning. The original PointNet is trained on

the ShapeNet and ModelNet dataset which do not include

most of the object classes that are supported by the Dense-

Fusion pose estimator which is trained on YCB Video [42]

and LINEMOD dataset [14]. In order to have compatible

classifiers and pose estimators, we train the PointNet net-

work by generating a new dataset covering the classes of the

LINEMOD objects. The classes are identified based on the

availability of the 3D models of object instances from exist-

ing dataset (e.g. VANDAL dataset [4]) and web resources

(e.g. 3D Warehouse2). For each class, we have 3D models

of eight instances in the format of dense point clouds.

At training time, each point cloud contains 2500 points

uniformly sampled from the object surface. Each cloud is

zero-mean and normalised into a unit sphere as in the stan-

dard PointNet training. In order to be more robust to rota-

tion, we follow the data augmentation strategy proposed by

the original PointNet work [26] by randomly rotating each

point cloud by an angle in the range [0, 2π] along Y axis.

At training phase, PointNet converges in 250 epochs on a

total of 7 classes. We used Adam optimizer with learning

rate of 0.001, decreasing it by a factor of 2 every 20 epochs,

as suggested in the original paper [26].

Evaluation analysis. We first test the PointNet model by

feeding it with point clouds extracted directly from depth

maps at each time step, named as PointNetSingle, as well

as with point clouds covering all the 3D shape, named as

PointNetFull. Please note that PointNetFull uses all the

available information from the scene (i.e. complete point

clouds for each object) and thus this can be considered as

the upper bound that can be reached with every classifier

tested.

As for the evaluation of active classification, we compare

our motion strategy, VisOcclHist, for improving the classi-

fication performance against three baseline motion strate-

gies: Random, VisNoOccl and VisOccl. All baseline strate-

gies follow the same pipeline for active classification with

the only difference in NBV selection. In Random strat-

egy, the system randomly selects the next viewpoint to visit

within the candidates that have not been visited yet. The

VisNoOccl strategy selects the next viewpoint using the

visibility score that maximizes the area of visible object

2https://3dwarehouse.sketchup.com

surfaces without accounting for occlusions and already ob-

served portions of the objects. The VisOccl strategy selects

the next viewpoint using the visibility score that maximizes

the area of visible object surfaces accounting for the occlu-

sions but not for the previously observed points.

In all the cases, the next viewpoint is selected within a

restricted set of points that are at a maximum distance of

0.5m from the current position. In addition, we also validate

for all the baselines the classification improvement brought

by the refinement module using Geometric Refinement (see

Figure. 2) after the PointNet classifier (named with the suf-

fix GR).

As for the evaluation metrics, we use standard classifi-

cation measures: accuracy, precision, recall and F1 score.

We compute all these metrics for each class and then we

average over all the classes, this strategy is usually dubbed

as macro-averaged. Please note that this leads to accuracy

scores higher than precision and recall since in a one-vs-

all setup true negatives are usually higher than true posi-

tives [33].

Results discussion. Classification results are reported in

Table 1. For fair comparison, all active classification meth-

ods stop when the maximum number of moves is reached,

that is T = 10 in our experiments; results are computed at

the final step of each run. All results are averaged over 10
runs with a random starting position at each run.

The introduction of GR improves results of about 10%
on F1 score on synthetic scenes, and increases to about

20% in real scenarios. This indicates that the GR can effec-

tively correct the classification in terms of more true pos-

itives. The improvement by GR is higher in real scenes

compared to the synthetic scenes because the depth images

from the real acquisition is noisier compared to the syn-

thetic dataset, which makes the naı̈ve PointNet classifica-

tion worse. For real scenes, we also observe marginal clas-

sification improvement, in terms of the F1 score brought

by the NBV criterion when considering the occlusion on

visibility and the weight for avoiding visited areas. All ex-

periments are performed on a Alienware Aurora Desktop

with i7 core. The averaged processing time between con-

secutive moves for reconstruction, segmentation, geometric

refinement and NBV are 0.12 s, 0.06 s, 0.88 s and 0.19 s,

respectively.

Figure 4 shows the averaged classification performance

in terms of F1 score over time in both synthetic and real

scenes. Without GR, the proposed active strategy can

mostly outperform the random strategy in both synthetic

and real scenes. With GR, the performance of all active

strategies are boosted at each time step. To conclude, the

proposed NBV strategy stands out with respect to all the

baseline approaches, especially at increasing time steps as

the method more efficiently covers the scene while avoid-



Table 1. Object classification results after the system has reached the stop condition (T = 10). Values are averaged over 10 runs for each

scenario with random starting points. (Best results are in bold, upper bounds are in italic.)

Synthetic Real

Approach Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

PointNetSingle 0.80 0.32 0.40 0.34 0.71 0.37 0.41 0.38

PointNetSingleGR 0.81 0.39 0.50 0.42 0.71 0.40 0.48 0.43

PointNetFull 0.90 0.64 0.71 0.67 0.78 0.50 0.67 0.56

PointNetFullGR 0.91 0.70 0.77 0.72 0.89 0.75 0.83 0.78

Random 0.87 0.55 0.62 0.57 0.73 0.41 0.55 0.46

RandomGR 0.89 0.63 0.72 0.66 0.82 0.63 0.73 0.66

VisNoOccl 0.87 0.54 0.62 0.56 0.72 0.41 0.53 0.45

VisNoOcclGR 0.89 0.62 0.71 0.65 0.85 0.66 0.75 0.69

VisOccl 0.87 0.53 0.61 0.56 0.76 0.46 0.61 0.51

VisOcclGR 0.89 0.63 0.72 0.66 0.83 0.64 0.73 0.67

VisOcclHist 0.87 0.54 0.62 0.57 0.78 0.50 0.62 0.54

VisOcclHistGR 0.90 0.64 0.73 0.67 0.87 0.70 0.80 0.73

Figure 4. Comparison of active classification methods using both the synthetic (left) and real (right) datasets. Our method shows steady

improvement with increasing number views, outperforming all the baselines.

ing to revisit previous viewpoints. The supplementary ma-

terial shows a video of the robotic movement with various

NBV criteria along with the classification performance at

each step.

5. Conclusions

In this paper we have proposed a novel active vision ap-

proach to improve 3D object classification through shape re-

construction using depth data. Experimental results in both

synthetic and real scenarios with severe occlusions show

that both geometric refinement and NBV improve the ob-

ject classification performance compared to the method us-

ing only a single depth frame, while approaching the perfor-

mance achieved by the naı̈ve PointNet with complete object

point cloud. We performed a detailed study to demonstrate

the effectiveness of each NBV criterion with/without the

geometric refinement. Both the consideration of occlusion

and view-point history in NBV brings marginal improve-

ment while the geometric refinement improves up to about

20% in terms of F1 score. As future work, we plan relax the

proposed method to address 3D object recognition with ar-

bitrary number of objects arranged in more complex scenes.

It is also of our interests to improve the method with a learnt

metric for NBV by encoding the status of object reconstruc-

tion.
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[35] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani. Manip-

ulation planning with probabilistic roadmaps. International

Journal of Robotics Research, 23(7-8):729–746, 2004.

[36] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-

view convolutional neural networks for 3d shape recognition.

In Proc. of IEEE International Conference on Computer Vi-

sion (ICCV), pages 945–953, Dec. 2015.

[37] L. Torabi and K. Gupta. Integrated view and path planning

for an autonomous six-dof eye-in-hand object modeling sys-

tem. In Proc. of IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), pages 4516–4521, Oct.

2010.

[38] G. Walck and M. Drouin. Automatic observation for 3d re-

construction of unknown objects using visual servoing. In

Proc. of IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 2727–2732, Oct. 2010.

[39] C. Wang, D. Xu, Y. Zhu, R. Martı́n-Martı́n, C. Lu, L. Fei-

Fei, and S. Savarese. Densefusion: 6d object pose estimation

by iterative dense fusion. In Proc. of Computer Vision and

Pattern Recognition (CVPR), Jun. 2019.

[40] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison,

and S. Leutenegger. Elasticfusion: Real-time dense slam and

light source estimation. The Int’l J. of Robotics Research,

35(14):1697–1716, 2016.

[41] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In Proc. of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Jun. 2015.

[42] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn:

A convolutional neural network for 6d object pose estimation

in cluttered scenes. arXiv preprint arXiv:1711.00199, 2017.

[43] Q.-Y. Zhou and V. Koltun. Dense scene reconstruction

with points of interest. ACM Transactions on Graphics,

32(4):112:1–112:8, July 2013.

[44] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern li-

brary for 3D data processing. arXiv:1801.09847, 2018.


