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Abstract

Autonomous agents that need to effectively move and in-
teract in a realistic environment have to be endowed with
robust perception skills. Among many, accurate object clas-
stfication is an essential supporting element for assistive
robotics. However, realistic scenarios often present scenes
with severe clutter, that dramatically degrades the perfor-
mance of current object classification methods. This paper
presents an active vision approach that improves the accu-
racy of 3D object classification through a next-best-view
(NBV) paradigm to perform this complex task with ease.
The next camera motion is chosen with the criteria that aim
to avoid object self-occlusions while exploring as much as
possible the surrounding area. An online 3D reconstruction
module is exploited in our system in order to obtain a bet-
ter canonical 3D representation of the scene while moving
the sensor. By reducing the impact of occlusions, we show
with both synthetic and real-world data that in a few moves
the approach can surpass a state-of-the-art method, Point-
Net with single view object classification from depth data.
In addition, we demonstrate our system in a practical sce-
nario where depth sensor moves to search and classify a set
of objects in cluttered scenes.

1. Introduction

Assistive robots have attracted increasing attention from
both academics and industries [5] with the objective of sup-
porting daily life, in particular, of people with disability.
Robots are desired to substitute human to interact or manip-
ulate with entities in the physical world. More frequently
than ever, such robots need to interact with and manipu-
late several objects in an unknown scene to perform specific
tasks such as grasping and placing [10, 19, 31, 35].

One essential capability to achieve such task is to be able
to perceive the environment with both geometric (“where
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are the objects?””) and semantic understanding (“what are
the objects?”). However, object recognition in unstructured
and cluttered 3D environment can be very challenging with
only single-shot-based method [26]. Moreover, perceiving
objects’ positions and their pose is not a trivial task even
with a single object in an uncluttered environment. Mul-
tiple objects in arbitrary positions exacerbate the problem,
possibly leading to catastrophic failures if the object detec-
tor/pose estimator makes wrong decisions about the scene
structure. Occlusions can contribute greatly to the loss of
accuracy of vision systems which are fundamental to cor-
rectly recognise and estimate the 6D pose of objects. As
a consolidated experimental fact, even the best single ob-
ject classifiers decrease their performance when consistent
occlusions appear [15].

In this context, active vision plays a fundamental role
in best analysing the objects in the scene given the cur-
rent observation and deciding which next best view (NBV)
might have the chance to achieve a better recognition
score [1, 21, 24, 25, 29] . In particular, when scenes are clut-
tered, objects are often incorrectly classified since they are
possibly occluded by itself or other elements in the environ-
ment. Active object recognition (AOR) becomes a promis-
ing strategy for actively covering more viewpoints which
eases the classification task [2, 7, 17, 25].

Following this idea, our paper proposes an active strat-
egy to 3D object classification (see Figure 1), which
can iteratively select viewpoints where clutter is reduced
(i.e. more visible object surfaces) and thus improving the
probability of best classifying the objects. Moreover, our
approach also advocates the use of online 3D reconstruction
of the scene to better solve for the 3D classification prob-
lem: As soon as a new depth frame of the scene is available,
the method integrates the frame into a 3D representation of
the scene. The classification of objects runs over the re-
constructed point cloud instead of single depth frames. To
select the NBYV, our active strategy initially builds a scene
representation by aligning the canonical volumes with the
classes and poses estimated from the reconstructed point
clouds, and then approximates the visibility of objects on



image plane by projecting the bounding cuboid of each
canonical volume through a z-buffer indicating for occlu-
sions. Each candidate viewpoint is further weighted based
on its vicinity to already visited viewpoints to avoid revisit.
We validate the proposed active recognition framework us-
ing a Kinect-equipped URS robotic arm. This setup is func-
tional for the repeatability and assessment of the real exper-
iments but our NBV proposed method can be generalised to
other robotic scenarios. With both synthetic and real-world
dataset, we demonstrate that the proposed method outper-
forms the baseline methods as well as multiple variants of
our proposed NBV criteria.

The rest of the paper is organised as follows: Section 2
presents a review on related literature; Section 3 details our
proposed framework, Section 4 contains the experimental
results and discussion. Finally, Section 5 draws conclu-
sions.

2. Related Work

In this section, we will review the state-of-the-art in
active object classification considering two main aspects:
multiview/3D object classification and motion policies for
active classification.

Multiview/3D object classification. Several approaches
have been proposed for 3D object classification, and can
be categorised as view-based, voxel-based and point-cloud-
based techniques. In view-based methods each 3D shape
is represented by a set of frames generated from multi-
ple viewpoints. Traditional approaches train one classi-
fier for each viewpoint, assuming that the object lies in a
known pose; these methods mostly use hand-engineered
features like Fourier descriptors [6], local Gabor filters [8]
and Fisher vectors [32]. In [36], a CNN model is trained
to extract features from each available view, while a pool-
ing layer fuses these features together and passes them to
a subsequent NN architecture for classification. Rotation-
Net [16] is a CNN-based model that takes as input a partial
set of multiview RGB images and jointly estimates object’s
pose and category. All these methods are low-dimensional
in the input space, computationally efficient and fairly ro-
bust to 3D shape representation artefacts such as holes and
noise; despite that, they miss the ability to generalise over
the complex 3D shape of an object.

In voxel-based methods, depth data are represented in
a fixed-size 3D space in form of occupancy maps. In
VoxNet [22] each voxel is assumed to have a binary state,
occupied or unoccupied, while in ShapeNets [41] the 3D
shape is represented as a probability distribution of binary
variables; both of them use a 3D CNN architecture to per-
form object recognition. These methods suffer from the
rigid space representation that limits the expressiveness of

the input data; this limitation is overcome by point-based
methods.

PointNet [26] learns a set of spatial features of each
point independently and then accumulates the features by
a symmetric function (i.e. max-pooling layer). This model
has a relatively simple architecture that takes as input the
complete point cloud of an object and performs single ob-
ject recognition and part segmentation. Subsequent models
have shown that the classification performance can be fur-
ther improved by considering the neighbourhoods of points
rather than treating points independently due to a better
leverage on the local structure features [27, 34]. Despite
working very well on single objects where the whole point
cloud is available, these methods suffer when part of the
point cloud is missing, i.e. in case of occlusions. In this
paper we leverage the power of point cloud representation
by proposing a strategy to intelligently explore the environ-
ment and acquire data to fill the gaps in the 3D representa-
tion of objects.

Motion policies for active classification. Several recent
works on AOR model the problem with Reinforcement
Learning techniques, such as Partially Observable Markov
Decision Processes (POMDP) solved by means of point-
based algorithms [1, 29], Monte Carlo tree search [24],
Self-Organising Maps [3] or Belief Tree Search [21]. De-
spite presenting very advanced planning strategies, all these
methods are very expensive to compute online.

A complementary strand of works focus on selecting
the NBV within a finite set of candidates by maximising
a cost function in the form of the unknown volume ex-
plored [2], the information gain [25], the conditional en-
tropy [17], or exploiting unsupervised features learned from
depth-invariant patches using sparse autoencoders [7]. All
these methods require the 3D model of the object to search.
To relax this hypothesis, Wu et al. [41] propose a feature-
based model to compute the NBV in 2D space by predicting
both visibility and likelihood of feature matching in a mo-
bile robot setup; unfortunately this approach can only han-
dle very simple object geometries. Many AOR approaches
assume that there is a single object in the scene and its lo-
cation is known [11, 18, 28, 29, 37, 38]. In this paper we
address the case of multiple objects in the scene in unknown
locations, handling occlusions and providing an iterative so-
lution to the NBV selection problem by accounting for all
the objects as a whole.

3. Active 3D Object Classification Framework

Let us consider a scenario where N objects belonging to
the set of classes C are distributed in an area and a depth sen-
sor with known camera pose acquires a set of depth frames
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Figure 1. Overall view of the proposed active 3D classification system with a typical scenario with a set of objects occluding each other.
The system reconstructs the scene and performs classification and pose estimation with refinement using geometric alignment. Given the
3D scene, the system chooses a next best view that maximises the visible object surfaces while avoiding already visited areas in order to

achieve a better 3D classification (best viewed in colour).

at each camera move!. Our goal is to assign the correct
label to each of the IV objects using a finite set of camera
moves. The overall view of the proposed active 3D object
classification pipeline is depicted in Figure 1. We assume
to have a CAD model for each object class. The number of
objects in the scene is also assumed to be known to simplify
the process of point cloud segmentation.

At each time step the sensor acquires a depth map of the
scene and we isolate the foreground by first truncating the
depth within a predefined distance and then removing the
plane where the objects are lying on, i.e. z = h where
h is the height of table surface w.r.t to the world coordi-
nate. The foreground is then segmented in object candi-
dates (see Section 3.1) and each segment is processed by
a PointNet [26] model to generate class candidates. For
each segment, we take into account the top class candidates
for further refinement in the pipeline. Given the segmented
point cloud (for each segment) and the class candidates, we
use DenseFusion [39] to provide an initial pose estimation
(see Section 3.2). Then we use the Iterative Closest Points
(ICP) algorithm [30] (see Section 3.2) to perform geometric
refinement among the top candidate labels and updates the
segment label as well as its pose.

Lastly, we select the NBV that maximises the visibil-
ity of all objects (accounting for occlusions) while avoid-
ing already visited areas. We approximate the visibility by
projecting the corners of the bounding cuboid of each seg-
ment onto the image plane. To account for occlusions, we
project the segments sequentially with a z-buffer, from the
closest to the farther from the sensor. The number of pixels
within the convex hull bounded by the projected corners of
the object is used to approximate the visibility of each seg-

IComputing a reliable camera pose while the sensor is moving is not
the focus of this paper. The sensor’s pose can be given by direct kinematics
if the camera is equipped on a robot, by a SLAM approach if hand-held, or
by integrating both information.

ment. We keep moving the sensor until the camera positions
reaches a fixed number of steps.

3.1. 3D Reconstruction and Segmentation

Let the observation input be O(t) = {D(t), v (t)}
at a time instance ¢, where D refers to a depth map and
viv (t) = {Rw (), tw (t)} refers to a viewpoint pose char-
acterised by rotation matrix R(¢) and 3D translation tyy (¢)
in the world coordinate. We acknowledge that there are a
few popular real-time SLAM methods with RGB-D stream,
such as KinectFusion [23] or ElasticFusion [40], that per-
form dense reconstruction without the prior knowledge of
camera poses. While in our setting, since the camera
poses are available thanks to the known robotic kinemat-
ics and hand-eye calibration, we opt to a volume integra-
tion method using the Truncated Signed Distance Function
(TSDF) [43, 20].

At each time ¢, the depth image D(t) is registered to
the previously reconstructed point cloud (if ¢ # 0, oth-
erwise we use the first depth image as a reference) using
the camera viewpoint pose vy (¢) to produce a canonical
volumetric representation of the scene. The reconstructed
scene is firstly truncated within a cubic space of interest
then segmented by means of DBSCAN algorithm for un-
supervised clustering [9]. However, due to object’s self-
occlusion and inter-object occlusions, there is a tendency
to oversegment. We further apply K-means clustering [13]
on the center points to force the generation of N clusters.
In such way, we produce a set of point cloud segments
S(t) = {S'(t),..., SN(t)}, where each segment corre-
sponds to an unknown object.

3.2. 3D Object Detection and Pose Estimation

Classification with partial reconstruction. We build our
classifier based on PointNet architecture, which directly



takes unstructured point clouds as input [26]. The classi-
fication network firstly applies input and feature transfor-
mations in order to manage unordered point clouds, where
transformation functions are trained as multi-layer percep-
tron (MLP) networks. Secondly, it aggregates points fea-
tures by max pooling. Final global features, that are the
shape features of the input point cloud, have been fed to a
MLP to extract the classification scores for the number of
classes M = |C|.

At run time, we provide each point cloud segment
S7(t) after zero-mean and normalisation into our fine-tuned
PointNet classifier (check Section 4 for details) at each time
step t. The classifier returns a score vector z/(t) over all
the classes in C such that z/(t) = {z](¢),...,23,()},
»MzJ = 1. With a max pooling strategy, each segment
S7(t) has a prior class prediction C7~(t) given by:

CI~(t) = arg max 2/ (t). (1)
meC

In addition to the most likely class prediction, we also cache
the top most likely classes, C?~(¢) for further refinement.

We use the superscript “—” to indicate all the classes/poses
estimation prior to the refinement stage.
In order to obtain the initial pose guess at ¢ = 0 for

each segment, we make use of a CNN-based pose esti-
mator, DenseFusion [39] that takes as inputs the cropped
depth images corresponding to an object class. More in
details, for each segment S7(t), we input to DenseFusion
the class prediction C7~(¢) and the segmented observa-
tion O7(t) obtained via camera projection using the pre-
calibrated camera intrinsics and the viewpoint pose vy (t),
and obtain the prior pose estimate p7, (¢) for each segment
in the camera coordinate. By applying coordinate transfor-
mation, p{;, (t) = p (t)vw (t), we obtain the prior pose
estimate for each segment in the canonical 3D representa-
tion (i.e. the world coordinates).

Note that at the initial steps of the algorithm, the pose
obtained can be inaccurate, in particular for the translation,
due to wrong classification predictions. We further refine
piy (t) by anchoring the estimated translation vector to the
centroid of each segment. Although the centroid of each
segment does not necessarily coincide with the centroid of
its corresponding object’s canonical volume, such rough
translation fixation can facilitate a reasonable pose initial-
isation for the geometric refinement as described in the next
section.

Geometric class and pose refinement. Since the 3D
classifier can provide unreliable class prediction, especially
at early stages, we propose a new refinement strategy us-
ing a geometrical approach as sketched in Figure 2. First,
each point cloud segment S7(¢) will be aligned with each
top-ranking classified object using the associated 3D CAD
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Figure 2. An example for the geometric class and pose refinement
procedure. A reconstructed segment S7 is classified with top three
candidate classes (highest classification confidence on top). By
aligning the segment with the CAD models of the three candidate
classes using ICP, the class and object pose can be refined by se-
lecting the best aligned model (best viewed in colour).

model. Let O™ € C7~(t) be the 3D model of a candidate
object in the point cloud. The estimated pose at the previous
step pi;- (t) is used as an initialisation for the Iterative Clos-
est Point (ICP) method [44]. After registration, we have
a set of registered points, S%:7(¢) and OJ;%(t), belonging
to the segment point cloud S (t) and the object model O™
respectively. Together with the registered points, ICP also
provides the pose transform Ap/, (¢) that is applied to align
the object model to the point cloud segment.

We quantify how well two point clouds are registered,
given possibly mis-classified classes, by the ratio of the reg-
istered points over the total number of points of the two
point clouds. Let p? (t) be the registration ratio of the seg-
ment and a candidate object model, and we can compute
P (1) as:

(1 — SEEO1 1042 (0)
T s ol

where the operation |- | gives the number of points of a point
cloud. The value p?, (t) is larger when the 3D reconstruc-
tion of the object is complete and when the candidate class
prediction is the correct one. As a result, we can obtain the
refined object class at time step ¢ as:

)

Ci(t) = argmax p’ (t). 3)
OmeCi—(t)

The refined object pose at time step ¢ will be updated as:
Pl (1) = A, ()% (1). @)
3.3. Next Best View Selection (NBV)

The NBYV is selected among a set of candidate view-
points Vi (t) = {vi;(t),..., vi,(t)} at time step t. The
candidate viewpoints Vyy (t) are defined as those viewpoints
that lie within the circular range of the current viewpoint



vy (t) with radius . The movement aims to achieve more
complete object reconstruction, while avoiding to revisit the
areas that the camera has already visited.

We devise a utility U;(t) for each candidate viewpoint
v (t) € Vi (t) that encourages high object surface visi-
bility and punishes revisiting same areas. Let O (¢) be the
function that quantifies the visibility of a segment S7(t) at
viewpoint vi;,(£). We approximate the visibility for seg-
ments by replacing each segment with its 3D model of the
predicted class aligned by the estimated pose as given in
the previous section. The corners of the bounding cuboid
of each aligned object model are projected onto the image
plane. The projection is then performed sequentially using
a z-buffer, i.e. an ordered vector of the distance between the
segments to the camera, in order to account for occlusions.
In this way, O (t) is defined as the number of visible pixels
within the convex hull bounded by the projected corners for
each segment. The visibility utility at viewpoint v, (¢) that
accounts for all segments is defined as the sum of visibility
of each segment:

Oit)= Y Ol 5)

Si(t)eS(t)

In order to penalise the system to visit already seen areas,
we further introduce a weight W;(t) € [0, 1) for each can-
didate viewpoint. The value of W;(t) is designed to be
smaller if the candidate viewpoint is closer to the viewpoint
that has been visited, otherwise the value will be larger.
Let the set of previously visited viewpoints be V{,V(t) =
{vw (7)|V7 € [1,t)}, and let D(7,t) be the distance be-
tween the candidate viewpoint and a visited viewpoint at
a previous time step 7. We make use of the normalised
Gaussian distribution over the distance D(7,t) in order to
compute W;(t), such that:

Wi(t) = max

1_G(D(Tvt)7lu/70—)v (6)
v(T)eV'(t)

where G(-) defines the normalised Gaussian distribution
function with the mean 4 = 0 and the standard deviation
o = g where r is the radius that defines the set of candi-
date view points.

The final utility U;(t) combines the visibility utility
O;(t) and the weight W;(t). Because the value of W;(t) is
constrained within [0, 1) while O;(t) is not constrained, for
fair combination, we normalise O; (t) by its maximum value
within O(t) = {O;(t)|vvi(t) € V(t)}, i.e. N(O;(t)) =

%&t))' The utility U;(¢) is therefore computed as:

Ui(t) = Wi(t)N (Oi(t)) - (7N

The NBV vy (¢) is selected as the one providing the highest
utility:
argmax  U;(t). (8)

Viv )€V (t)

viv(t) =

(a) Synthetic scene (b) Real scene

Figure 3. Examples of the synthetic and real scenes of our dataset,
where severe inter-object occlusion can be observed.

Once the NBV is selected, we can move the depth sensor
in the desired position if no stop condition is satisfied and
acquire a new measurement O(t+1) = {D(t+1), v (t+
1)} and iterate the procedure until the method converges.

4. Experiments

We first describe how we create a dataset with ground
truth information followed by the experimental protocol.
Results over several trials with both synthetic and real data
will prove the effectiveness of the proposed active classifi-
cation method.

Dataset creation. We selected 7 objects from the
LINEMOD dataset [14] and generated a set of different sce-
narios with 5 objects in each one. In every scene, all objects
lie on a planar surface defined at z = 0 and are placed in
their canonical pose, i.e. with the z axis of the model’s ref-
erence frames facing up. The dataset is generated with both
synthetic and real-world setup.

We generated 7 synthetic scenes where depth maps are
rendered using Blender by projecting the models on 100
viewpoints uniformly distributed on a hemispherical surface
(i.e. z > 0) with the sphere’s centroid coinciding with the
centroid of all the objects in the scene and the radius of 1m.
The rendering engine is set up to emulate a real acquisition
device: the pinhole camera matrix is the same as a Kinect
V1 device with resolution 640 x 480 pixels and focal length
of 26mm.

In addition, we acquired two scenes in a real-world setup
with a Kinect-equipped Universal Robots URS using 3D-
printed instances of the selected object classes. This specific
robotic configuration is chosen for the experiments since it
allows accurate camera poses and repeatability during the
testing procedure. The arm and sensor have been hand-eye
calibrated in order to obtain the correct camera viewpoint
poses from the robot’s encoder poses. We used ArUco fidu-
cial markers and its off-the-shelf libraries to annotate the
pose of each object and to perform hand-eye calibration of
the system [12]. Each scene contains 5 objects where 3 of



them are to be classified and the other 2 are used to simulate
generic clutter. For each scene, we acquired RGB-D obser-
vations from a pre-defined set of 138 viewpoints sampled
on a hemispherical surface of radius 0.9m centered in the
centroid of the objects. The viewpoints are approximately
uniform on the hemisphere due to the constrained reacha-
bility of the robotic arm.

PointNet fine-tuning. The original PointNet is trained on
the ShapeNet and ModelNet dataset which do not include
most of the object classes that are supported by the Dense-
Fusion pose estimator which is trained on YCB_Video [42]
and LINEMOD dataset [14]. In order to have compatible
classifiers and pose estimators, we train the PointNet net-
work by generating a new dataset covering the classes of the
LINEMOD objects. The classes are identified based on the
availability of the 3D models of object instances from exist-
ing dataset (e.g. VANDAL dataset [4]) and web resources
(e.g. 3D Warehouse?). For each class, we have 3D models
of eight instances in the format of dense point clouds.

At training time, each point cloud contains 2500 points
uniformly sampled from the object surface. Each cloud is
zero-mean and normalised into a unit sphere as in the stan-
dard PointNet training. In order to be more robust to rota-
tion, we follow the data augmentation strategy proposed by
the original PointNet work [26] by randomly rotating each
point cloud by an angle in the range [0, 2] along Y axis.
At training phase, PointNet converges in 250 epochs on a
total of 7 classes. We used Adam optimizer with learning
rate of 0.001, decreasing it by a factor of 2 every 20 epochs,
as suggested in the original paper [26].

Evaluation analysis. We first test the PointNet model by
feeding it with point clouds extracted directly from depth
maps at each time step, named as PointNetSingle, as well
as with point clouds covering all the 3D shape, named as
PointNetFull. Please note that PointNetFull uses all the
available information from the scene (i.e. complete point
clouds for each object) and thus this can be considered as
the upper bound that can be reached with every classifier
tested.

As for the evaluation of active classification, we compare
our motion strategy, VisOcclHist, for improving the classi-
fication performance against three baseline motion strate-
gies: Random, VisNoOccl and VisOccl. All baseline strate-
gies follow the same pipeline for active classification with
the only difference in NBV selection. In Random strat-
egy, the system randomly selects the next viewpoint to visit
within the candidates that have not been visited yet. The
VisNoOccl strategy selects the next viewpoint using the
visibility score that maximizes the area of visible object

Zhttps://3dwarehouse.sketchup.com

surfaces without accounting for occlusions and already ob-
served portions of the objects. The VisOcel strategy selects
the next viewpoint using the visibility score that maximizes
the area of visible object surfaces accounting for the occlu-
sions but not for the previously observed points.

In all the cases, the next viewpoint is selected within a
restricted set of points that are at a maximum distance of
0.5m from the current position. In addition, we also validate
for all the baselines the classification improvement brought
by the refinement module using Geometric Refinement (see
Figure. 2) after the PointNet classifier (named with the suf-
fix GR).

As for the evaluation metrics, we use standard classifi-
cation measures: accuracy, precision, recall and F} score.
We compute all these metrics for each class and then we
average over all the classes, this strategy is usually dubbed
as macro-averaged. Please note that this leads to accuracy
scores higher than precision and recall since in a one-vs-
all setup true negatives are usually higher than true posi-
tives [33].

Results discussion. Classification results are reported in
Table 1. For fair comparison, all active classification meth-
ods stop when the maximum number of moves is reached,
that is 7' = 10 in our experiments; results are computed at
the final step of each run. All results are averaged over 10
runs with a random starting position at each run.

The introduction of GR improves results of about 10%
on Fp score on synthetic scenes, and increases to about
20% in real scenarios. This indicates that the GR can effec-
tively correct the classification in terms of more true pos-
itives. The improvement by GR is higher in real scenes
compared to the synthetic scenes because the depth images
from the real acquisition is noisier compared to the syn-
thetic dataset, which makes the naive PointNet classifica-
tion worse. For real scenes, we also observe marginal clas-
sification improvement, in terms of the Fj score brought
by the NBV criterion when considering the occlusion on
visibility and the weight for avoiding visited areas. All ex-
periments are performed on a Alienware Aurora Desktop
with i7 core. The averaged processing time between con-
secutive moves for reconstruction, segmentation, geometric
refinement and NBV are 0.12 s, 0.06 s, 0.88 s and 0.19 s,
respectively.

Figure 4 shows the averaged classification performance
in terms of Fj score over time in both synthetic and real
scenes. Without GR, the proposed active strategy can
mostly outperform the random strategy in both synthetic
and real scenes. With GR, the performance of all active
strategies are boosted at each time step. To conclude, the
proposed NBV strategy stands out with respect to all the
baseline approaches, especially at increasing time steps as
the method more efficiently covers the scene while avoid-



Table 1. Object classification results after the system has reached the stop condition (I" = 10). Values are averaged over 10 runs for each
scenario with random starting points. (Best results are in bold, upper bounds are in italic.)

Synthetic Real
Approach Accuracy \ Precision \ Recall \ F1 score || Accuracy \ Precision \ Recall \ F score
PointNetSingle 0.80 0.32 0.40 0.34 0.71 0.37 0.41 0.38
PointNetSingleGR 0.81 0.39 0.50 0.42 0.71 0.40 0.48 0.43
PointNetFull 0.90 0.64 0.71 0.67 0.78 0.50 0.67 0.56
PointNetFullGR 0.91 0.70 0.77 0.72 0.89 0.75 0.83 0.78
Random 0.87 0.55 0.62 0.57 0.73 0.41 0.55 0.46
RandomGR 0.89 0.63 0.72 0.66 0.82 0.63 0.73 0.66
VisNoOccl 0.87 0.54 0.62 0.56 0.72 0.41 0.53 0.45
VisNoOcclGR 0.89 0.62 0.71 0.65 0.85 0.66 0.75 0.69
VisOccl 0.87 0.53 0.61 0.56 0.76 0.46 0.61 0.51
VisOcclGR 0.89 0.63 0.72 0.66 0.83 0.64 0.73 0.67
VisOcclHist 0.87 0.54 0.62 0.57 0.78 0.50 0.62 0.54
VisOcclHistGR 0.90 0.64 0.73 0.67 0.87 0.70 0.80 0.73
1.0 Synthetic Scenes (T=10) 1.0 Real Scenes (T=10)
—@— Random —%— VisOccl —@— Random —%— VisOccl
0.9f --®-- RandomGR -%-- VisOcclGR 0.9 -® RandomGR -%-- VisOcclGR
o VisNoOccl —— VisOcclHist o VisNoOccl —— VisOcclHist
g0.8 VisNoOcclIGR -4-- VisOcclHistGR 50.8 VisNoOcclIGR --- VisOcclHistGR
§0.7 - _§0.7 -7
@ e B o 7
% 0.6 . /’.f:’:’t"i_ 4 % 0.6
-8.0 5 K' -5-0 5
c c
0.4 0.4
0.3 0.3

0 1 2 3 4 5 6 7 8 9
#steps

0 1 2 3 4 5 6 7 8 9
#steps

Figure 4. Comparison of active classification methods using both the synthetic (left) and real (right) datasets. Our method shows steady
improvement with increasing number views, outperforming all the baselines.

ing to revisit previous viewpoints. The supplementary ma-
terial shows a video of the robotic movement with various
NBV criteria along with the classification performance at
each step.

5. Conclusions

In this paper we have proposed a novel active vision ap-
proach to improve 3D object classification through shape re-
construction using depth data. Experimental results in both
synthetic and real scenarios with severe occlusions show
that both geometric refinement and NBV improve the ob-
ject classification performance compared to the method us-

ing only a single depth frame, while approaching the perfor-
mance achieved by the naive PointNet with complete object
point cloud. We performed a detailed study to demonstrate
the effectiveness of each NBV criterion with/without the
geometric refinement. Both the consideration of occlusion
and view-point history in NBV brings marginal improve-
ment while the geometric refinement improves up to about
20% in terms of F} score. As future work, we plan relax the
proposed method to address 3D object recognition with ar-
bitrary number of objects arranged in more complex scenes.
It is also of our interests to improve the method with a learnt
metric for NBV by encoding the status of object reconstruc-
tion.
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