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Abstract

In this paper, we address an issue that the visually im-

paired commonly face while crossing intersections and pro-

pose a solution that takes form as a mobile application. The

application utilizes a deep learning convolutional neural

network model, LytNetV2, to output necessary information

that the visually impaired may lack when without human

companions or guide-dogs. A prototype of the application

runs on iOS devices of versions 11 or above. It is designed

for comprehensiveness, concision, accuracy, and computa-

tional efficiency through delivering the two most important

pieces of information, pedestrian traffic light color and di-

rection, required to cross the road in real-time. Further-

more, it is specifically aimed to support those facing finan-

cial burden as the solution takes the form of a free mobile

application. Through the modification and utilization of

key principles in MobileNetV3 such as depthwise sepera-

ble convolutions and squeeze-excite layers, the deep neural

network model achieves a classification accuracy of 96%
and average angle error of 6.15◦, while running at a frame

rate of 16.34 frames per second. Additionally, the model

is trained as an image classifier, allowing for a faster and

more accurate model. The network is able to outperform

other methods such as object detection and non-deep learn-

ing algorithms in both accuracy and thoroughness. The in-

formation is delivered through both auditory signals and vi-

brations, and it has been tested on seven visually impaired

and has received above satisfactory responses.

1. Introduction

Modern technology has revolutionized countless fields

of study including that of computer vision and artificial in-

telligence. As neural networks start achieving both a higher

accuracy and lower latency, models on mobile devices be-

come more accessible and feasible for real life application.

One such field that has been heavily affected is assistive

technology for the visually impaired.

A predominant concern that the visually impaired face

concerns with information that cannot be attained through

white-canes. The most relevant example deals with cross-

ing intersections. This problem is caused by the technical

limitations of white-canes: the lack of ability to detect traf-

fic lights or, in general, any feature that can not be attained

through physical touch.

Physical products such as glasses and applications have

been developed to target the concern, including those by

companies like eSight, Seeing AI, and the Sound of Vision

System.

eSight is a pair of glass that displays everything on two

near-to-eye displays that a camera captures in real time [11].

Seeing AI has numerous features such as reading texts, rec-

ognizing friends, and describing the surrounding scene [23].

Caraiman et al. [6] proposed the Sound of Vision System,

a wearable device that reconstructs the sensed environment

and segmentation into objects of interest and conveying the

necessary information through auditory and tactile repre-

sentation. The device is able to identify elements such as

signs, texts, doors, and pedestrian crossing.

There are two notable drawbacks in these solutions how-

ever. Firstly, the hardware attempt to take a holistic account

of the surrounding so it is not actively looking for pedestrian

traffic lights. This means that most of the time, it identifies

unnecessary objects around instead of what the visually im-

paired require, thus rendering as unreliable. Secondly, it

poses a financial burden that is especially true for those liv-

ing in less economic developed countries as the glass costs

approximately 10,000 U.S. dollars.

Thus, instead of a hardware solution, this paper discusses

a solution taking the form of software. This paper intro-

duces an iOS application that deploys and runs a deep con-

volutional neural network model locally.

The neural network, LytNetV2, is trained with two spe-

cific goals in mind: providing a comprehensive and feasi-

ble solution. It provides a comprehensive solution by out-

putting the mode of the traffic lights as well as the direction

of the zebra crossing in real time. The application takes the

output values from the model to inform users when it is safe

to cross and whether they are in the correct position and ori-



entation in relation to the zebra-crossing. For the software

to render as a feasible solution, it must also be able to run at

real-time in a phone.

With both goals in mind, the network is trained as an

image classifier as they are both more computationally ef-

ficient and accurate compared to object detectors and se-

mantic segmentation. Moreover, to ensure that the speed of

the model is able to run on a phone at real-time, the net-

work has been trained on a modified version of Mobilenet

V3. In doing so, the network is able to take advantage of

features such as depthwise separable convolutions, inverted

residuals and linear bottlenecks, and squeeze-excite layers.

User-interface has also been carefully considered, and so

the application converts the network’s outputs into simple

audio and tactile information. To further ensure that our ap-

plication is a viable alternative to current products, it has

been tested by the blind for a holistic assessment of reliabil-

ity, comfort, and simplicity.

The rest of the paper is organized in the following man-

ner: Section II reviews previous work and contributions

made to the development of various products designed to

aid the visually impaired; Section III presents the proposed

method to achieve the best results for our task; Section IV

shows experiments used during and after the creation of the

network and compares it against other methods; Section V

provides insight to the application and demonstrates exper-

iment results; Section V concludes the paper and examines

potential future directions.

2. Related Works

The visually impaired face key navigation issues, one of

which includes crossing the road. There have been many

attempts to alleviating such privation. One such attempt has

been the acoustic pedestrian traffic lights [17, 4, 7]. These

specific traffic lights uses audible tones, verbal messages,

and/or vibrating surfaces to communicate essential infor-

mation such as the color of the pedestrian traffic light, and

thus, whether it is safe to cross or not [4]. Though acoustic

pedestrian traffic lights certainly has its advantages in that

the information provided is near-perfectly reliable, its dis-

advantage lays in the fact that it is currently mostly only

implemented in urban areas, and even in urban areas may

not be ubiquitous [17]. As a result, the visually impaired

cannot solely rely on the presence of an acoustic pedestrian

traffic light while traveling, especially those living in poorer

neighborhoods.

The task of detecting traffic light for autonomous driv-

ing has been explored by many and has developed over the

years [1, 19, 12, 25]. Because the task of detecting traffic

light for autonomous driving is closely related to the task

of detecting pedestrian traffic light for navigation support,

as the technology for autonomous cars improves, so does

the technology for crossing streets [16]. Behrendt et al. [5]

created a model that is able to detect traffic lights as small

as 3× 10 pixels and with relatively high accuracy. Though

most models for traffic lights have a high precision and re-

call rate of nearly 100% and show practical usage, the same

cannot be said for pedestrian traffic lights. Pedestrian traffic

lights differ because they are complex shaped and usually

differ based on the region in which the pedestrian traffic

light is placed. Traffic lights, on the other hand, are simple

circles.

Mocanu et al. [18] proposed a solution through the cre-

ation of an automatic cognition system that uses computer

vision with deep convolution neutral networks to recognize

objects. The software aims to mitigate difficulties that the

blind face as a whole, none specifically aiming to help with

crossing the road, and hence, not being able to provide a

feasible solution.

Shioyama et al. [24] were one of the first to develop an

algorithm to detect pedestrian traffic lights and the length

of the zebra-crossing. Others such as Mascetti et al. and

Charette et al. [17, 9] both developed an analytic image pro-

cessing algorithm, which undergoes candidate extraction,

candidate recognition, and candidate classification. Cheng

et al. [7] proposed a more robust real-time pedestrian traf-

fic lights detection algorithm, which gets rid of the analytic

image processing method and uses candidate extraction and

a concise machine learning scheme.

A limitation that many attempts faced was the speed of

hardware. Thus, Ivanchenko et al. [3] created an algo-

rithm specifically for mobile devices with an accelerator

to detect pedestrian traffic lights in real time. Angin et

al. [2] incorporated external servers to remove the limita-

tion of hardware and provide more accurate information.

Though the external servers are able to run deeper models

than phones, it requires fast and stable internet connection

at all times. Moreover, the advancement of efficient neu-

ral networks such as MobileNets enable a deep-learning ap-

proach to be implemented on a mobile device [22, 13].

Diaz et al. [10] proposes an intelligent assistive agent to

aid the visually impaired to stay within the crosswalk when

crossing an intersection. Although, the idea of providing the

user with various instructions with live feed is undoubtedly

beneficial for the users, the current accuracy, 82%, for this

model is not optimal for public usage.

Direction is another factor to consider when helping the

visually impaired cross the street. Though the visually im-

paired can have a good sense of the general direction to

cross the road in familiar environments, relying on one’s

memory has its limitations [14]. Therefore, solutions to pro-

vide specific direction have also been devised. Other than

detecting the color of pedestrian traffic lights, Ivanchenko et

al. [14] also created an algorithm for detecting zebra cross-

ings. The system obtains information of how much of the

zebra-crossing is visible to help the visually impaired know



whether or not they are generally facing in the correct direc-

tion, but it does not provide the specific location of the zebra

crossing. Poggi et al., Lausser et al., and Banich [20, 15, 8]

also use deep learning neural network within computer vi-

sion to detect zebra crossings to help the visually impaired

cross streets.

We previously developed LytNet by modifying Mo-

bileNetV2 as a deep learning method that outputs both traf-

fic light and zebra crossing information [21]. While the net-

work achieved decent results with an accuracy of 94%, the

task of classifying pedestrian traffic lights demands an even

higher accuracy, with the visually-impaired’s safety at risk.

3. Proposed Method

With our network required to run at fast speeds on a

mobile phone, we adapted our network off of the high-

performing baseline of MobileNetV3.

3.1. Depthwise Separable Convolutions

LytNetV2 utilizes depthwise seaprable convolutions, a

key aspect of MobileNetV3. Depthwise separable convolu-

tion are split in two parts: a ”depthwise” convolution and

a pointwise convolution (regular convolution of kernel size

1×1). In a ”depthwise” convolution, the channels of the in-

put image are separated and different filters are used for ev-

ery convolution over each channel. Then, a pointwise con-

volution is used to collapse the channels to a depth of 1. For

an input of dimensions hi · wi · di convolved with stride 1

with a kernel of size k ·k and dj output channels, the cost of

a standard convolution is hi ·wi ·k
2 ·di ·dj while the cost of

a depthwise separable convolution is hi ·wi · di · (k
2 + dj)

[22]. Thus, the total cost of a depthwise separable convolu-

tion is
k2

·dj

k2+dj
times less than a standard convolution while

being able to maintain a similar level of performance [22].

3.2. Squeeze-Excite Layers

To improve our network, squeeze-excite layers have

been used. Squeeze-excite layers improves channel interde-

pendencies at almost no computational cost. With squeeze-

excite layers, content aware mechanism is added. In other

words, the network places emphasis on more important fea-

tures while weighing the less important ones less. This

is done through adding paramaters to each channel of a

convolutional block, allowing for the network to adjust the

weighting of each feature adaptively.

3.3. Training Procedure

Our network was trained using our Pedestrian-Traffic-

Lane (PTL) Dataset [26]. This dataset is made up of 5059

images, with 3456 images used for training, 864 for val-

idation, and 729 for testing. The images in the dataset

have a resolution of 876 × 657, labelled with one of five

Input Operator k e c SE NL s

768× 3 conv2d 3 - 16 - HS 2

384× 16 maxpool 2 - - - - 2

384× 16 bneck 3 16 16 - RE 1

192× 16 bneck 3 64 24 - RE 2

96× 24 bneck 3 72 24 - RE 1

96× 24 bneck 5 72 40 � RE 2

48× 40 bneck 5 120 40 � RE 1

48× 40 bneck 3 240 80 - HS 2

24× 80 bneck 3 200 80 - HS 1

24× 80 bneck 3 480 112 � HS 1

24× 112 bneck 5 672 160 � HS 2

12× 160 bneck 5 960 160 � HS 1

12× 160 bneck 3 960 320 - RE 1

12× 320 conv2d 1 - 960 - HS 1

12× 960 avgpool - - - - - -

12 × 960 conv2d 1 - 1280 - HS 1

1280 FC - - 5, 4 - - -

Table 1. Specification for our neural network. The bneck oper-

ator denotes the bottleneck block as defined in [13]. k denotes

the kernel size. e denotes the expansion size. The FC operator

denotes a fully connected layer. c denotes the number of output

channels. SE denotes whether Squeeze-And-Excite is used in the

block. NL denotes the type of non-linearity. s denotes the stride.

The last fully connected layer has two outputs of dimension 5 and

4, representing the number of class predictions and the predicted

coordinates respectively. Most inputs are written in the form w×c

to save space, but the real input is w × h × c, where the height is
3

4
· w.

Figure 1. Examples of each class. 1 is red, 2 is green, 3 is count-

down green, and 4 is countdown blank. The none class is simply

an image without a pedestrian traffic light in it.

classes: red, green, countdown green, countdown blank,

and none. Each image is also labelled with four coordi-

nates: [xs, ys, xe, ye], where (xs, ys) and (xe, ye) represent

the start and end-point of the mid-line of the zebra crossing

in the image. See Figure 1 for examples of the classes.



3.3.1 Data Transformations

With the original images having a resolution of 876×657, a

768× 576 section was randomly cropped from the original

image for each training iteration. The direction vectors were

also clipped accordingly. Next, a random horizontal flip of

probability 0.5 was applied.

After training our original network, we analyzed our net-

work’s common mistakes. The two most common mistakes

were mistaking a countdown blank light with a red light and

vice versa. This is because in both red and countdown blank

lights, only the top half of the light lights up, so both sym-

bols are in the same position. When the image is of lower

quality, the color of both can be very similar, where both are

on a spectrum between yellow and red. To help our network

differentiate the two classes, we also used a random bright-

ness, saturation, contrast, and hue shift. The idea behind

this transformation is that primarily with red and countdown

blank samples, the color of the light will occasionally be

shifted from red to yellow or vice versa, forcing the network

to put more weight in learning the shape of the red man or

yellow number(s) have less of a reliance on the color.

3.3.2 Loss Function

With our network designed to do two different tasks, one

which is classification and the other which is regression, our

loss function combines classification and regression loss as

done in [26]. Our classification loss is cross-entropy loss,

defined as:

Lcls(t, p) = −

N∑

c=1

y(c, t) log p(c), (1)

where t is the ground truth class, p is the prediction, y(c, t)
is a binary indicator if c = t, and p(c) is the probability

of class c. Our regression loss is mean-squared-error loss,

defined as:

Lreg(t, p) =
1

n

n∑

i=1

(ti − pi)
2, (2)

where t is the ground truth and p is the predicted array of

coordinates. Combining the two losses, we define our loss

function as follows:

L(t, p) = λ · Lcls(t, p) + (1− λ) · Lreg(t, p), (3)

where lambda is a tunable hyper-parameter. We trained our

network with the value λ = 0.4, which we determined was

the value that provided an optimal balance between the two

losses, and provided for the best training results. Our net-

work was trained on a single RTX 2080ti with a batch size

of 32. We used the Adam optimizer with an initial learn-

ing rate of 0.001 and learning rate drops of a factor of 10

at epochs: [400, 700, 1000, 1300], and full convergence at

1600 epochs.

As we have done in [21], some special evaluation met-

rics are used to gain a better understanding of the networks

performance. With regards to the zebra crossing midline

prediction, we use three metrics, angle-error, startpoint-

error, and endpoint-error. Given the predicted coordinates

(xp, yp) and the ground truth (xt, yt), the startpoint and

endpoint error is simply the distance formula.

To calculate the angle between the two midline predic-

tions, we use the dot product of vectors. We convert the

predicted coordinates (x̂s, ŷs) and (x̂e, ŷe), we establish the

predicted direction vector

#»p = (x̂e − x̂s, ŷe − ŷs) . (4)

The same is done with the ground truth coordinates to create

the ground truth direction vector
#»

t . Thus, we can calculate

the angle error θ with:

θ = arccos
#»p ·

#»

t

| #»p | · |
#»

t |
. (5)

4. Experiments

4.1. Ablation Study

Starting from MobileNetV3, we made many changes to

the network to optimize it for our task of pedestrian traffic

light and zebra crossing detection.

4.1.1 MaxPooling After First Conv

With the baseline MobileNetV3 designed to run on inputs

of size 224×224×3, changes must be made to the network

to allow for the network to run at acceptable frame rates on

mobile phones using an input of size 768× 576× 3. In the-

ory, the use of a 2×2 MaxPool reduces the input to the main

body of the network by a factor of 4, greatly reducing the

required computational time, despite not entirely catching

up to the speeds of stock MobileNetV3 on a 224× 224× 3
input.

As seen in Table 2, the use of a MaxPool does result

in a slight decrease in the network’s performance. This is

to be expected, as a MaxPool layer results in less informa-

tion available to be input through the middle of the network.

However, the benefit comes in the 34% decrease in infer-

ence time. This allows our network to approach the neces-

sary speed to be able to run close to real-time.

4.1.2 Pruning Unnecessary Layers

For the simpler task of classifying pedestrian traffic lights,

we hypothesize that it is not necessary to use all the stride=1

layers in MobileNetV3, which was designed for the more



Network Accuracy a-err sp-err ep-err t

Baseline 94.45 7.63 0.094 0.056 10.97

MaxPool 94.05 8.04 0.099 0.063 7.28

∆ -.4 +.41 +.005 +.007 -3.69

Table 2. Comparison between baseline MobileNetV3 network and

the addition of a 2x2 maxpool layer. a-err denotes average angle

error. sp-err denotes average startpoint error. ep-error denotes av-

erage endpoint error. t denotes inference time in seconds required

for 729 testing images on a GTX 1080.

Network Accuracy a-err sp-err ep-err t

MaxPool 94.05 8.04 0.099 0.063 7.28

Pruned 94.68 6.94 0.092 0.059 6.88

∆ +.63 -1.1 -.007 -.004 -.4

Table 3. Comparison between network with MaxPooling and net-

work with less layers.

Network Accuracy a-err sp-err ep-err t

Pruned 94.68 6.94 0.092 0.059 6.88

Deeper 95.94 6.15 0.076 0.048 7.12

∆ +1.26 -.79 -.016 -.011 +.24

Table 4. Comparison between pruned network and network with

an extra layer outputting 320 channels.

challenging classification task on ImageNet. By only re-

moving some stride=1 layers, the basic network structure

is still maintained, while the speed of the network will

increase. We removed 5 layers from the original Mo-

bileNetV3 structure. The layers were removed such the the

network maintained the structure of the number of channels

(or feature maps) throughout the network, while having at

most 2 layers with stride=1 following each stride=2 layer.

This allows for the structural increase in the depth of the

network to stay the same.

Table 3 shows that our hypothesis was correct, with the

network not only decreasing in inference time, but also im-

proving in performance. We believe that the extra stride=1

layers were helping the network over-fit; thus, removing

them made convergence more difficult but improved vali-

dation accuracy.

4.1.3 Adding More Depth to the Network

In MobileNetV3, the 160 channels output from the last bot-

tleneck block is directly expanded to 960 channels using

a 1 × 1 conv2d operation. This was designed as a more

efficient last stage, replacing the original last stage which

output 320 channels after the last bottleneck block [13].

While there was no performance difference in [13], we nev-

ertheless tested using 320 channels after the last bottleneck

block, which was shown to be effective in MobileNetV2 and

Network Accuracy a-err sp-err ep-err t

LytNet 94.18 6.27 0.076 0.051 6.05

LytNetV2 95.94 6.15 0.076 0.048 7.12

∆ +1.76 -.12 -.000 -.003 +1.07

Table 5. Comparison between LytNetV2 and LytNet.

Network Red Green CDG CDB None

Precision Ours 0.98 0.95 0.99 0.93 0.91

LytNet 0.97 0.94 0.99 0.86 0.92

Recall Ours 0.96 0.96 0.97 0.97 0.91

LytNet 0.96 0.94 0.96 0.89 0.89

F1 Score Ours 0.97 0.95 0.98 0.95 0.91

LytNet 0.96 0.94 0.97 0.89 0.89

Table 6. Comparison of precision, accuracy, and F1-score between

our network and LytNet on the PTL dataset over all five classes.

CDG denotes the countdown green class, and CDB denotes the

countdown blank class.

LytNet [22, 21]. With doubling the number of channels, we

saw a marked increase in all aspects of performance, while

coming with a small computational cost (Table 4).

4.2. Comparison With Other Methods

We first compare our network, LytNetV2, to LytNet on

the PTL Dataset. As shown in Table 5, our network outper-

forms LytNet, which was based on MobileNetV2, in every

metric, but it comes at the cost of extra inference time. The

increase in network accuracy is paramount, because the vi-

sually impaired must receive accurate information to safely

cross the road. Thus, we argue that the increase in accuracy

outweighs the increase in inference time, because even with

a 18% increase, the network can still run at a decent speed

(> 15 fps) on mobile devices, making this tradeoff very

worthwhile. Furthermore, LytNet was tested using larger

width multipliers which increases the complexity of the net-

work, and was still unable to achieve higher performance

[21]. Our network breaks through this bottleneck and is

able to come closer to the ultimate goal of this task, which

is to provide accurate information to the visually impaired

while being able to deliver such information in a convenient

manner, and taking an acceptable amount of time.

Further analysis shows that our network is able to outper-

form LytNet in precision and accuracy in almost every sin-

gle class, with only the precision for the None class being

higher on LytNet. Our network is able to greatly increase

in the weak performance of LytNet on the countdown blank

class, thus removing a large weakness of LytNet. (Table 6).

Without even re-training our network, we tested our net-

work on the China portion of the PTLR Dataset, which uses

input images of size 1280 × 720 [7]. The only process-

ing we did was to change all network predictions of class



Ours LytNet Cheng et al.

Red Precision 98.56 96.24 96.67

Recall 94.36 92.23 86.43

F1 Score 96.41 94.19 91.26

Green Precision 97.03 98.83 98.03

Recall 94.97 92.15 91.30

F1 Score 95.99 95.37 94.55

Table 7. Comparison of precision, accuracy, and F1-score between

our network and other methods on the PTLR dataset.

”countdown green” and ”countdown blank” to be a predic-

tion of ”none”, because the images in the China section of

the PTLR Dataset were only from three different classes:

red, green, and none. After testing our network on the

dataset, we compared our results to the results from [21]

and [7].

As shown in Table 7, our network outperforms both

methods in F1 Score. While we concede that Cheng et al.’s

algorithm is still easier adapt to different traffic lights from

different countries, we can see that our method is viable in

detecting traffic lights with varying features. This is without

even adjusting our network by removing the direction pre-

diction and retraining our network on only three classes, as

we did in LytNet [21]. Neither did we retrain our network

on the PTLR Dataset (primarily due to insufficient data).

We argue that the significant increase in performance when

comparing our method to Cheng et al.’s justifies the draw-

back of neural networks, which is the large amount of train-

ing data needed to adapt the network. A method must be

highly accurate before it can be employed, or else there is a

safety risk. Furthermore, our method provides both the traf-

fic light and zebra crossing information at the same time, a

significant advantage over Cheng et al.’s algorithm.

4.3. Sample Incorrect Predictions

To get a better idea of the strengths and weaknesses of

our network, we analyzed some of our network’s predic-

tions, as shown in Figure 2.

In Image 1, the ground truth is red, but the prediction

was of countdown blank. The pedestrian traffic light in this

image is severely underexposed, with a barely discernible

color and no discernible shape. In this case, given the in-

put resolution of 768 × 576, it is almost impossible for

the network to predict the class correctly, with a predic-

tion of countdown blank even being more realistic in this

example because the color of the traffic light is closer to

orange-yellow rather than red. In image 2, the ground truth

is again red, but the prediction was countdown blank. In this

case, the main problem most likely came during the down-

sampling of the image from the original 4032 × 3024 to

768×576. Much of the detail of the red person in the traffic

light was lost, and what remained was a vertical strip similar

Figure 2. Sample incorrect predictions from our network. The blue

dots represent the ground truth endpoints of the zebra crossing’s

midline, and the red dots represent our network’s predictions.

to the number 1. Again, predicting the correct class for this

example is almost impossible, and it could almost be argued

that countdown blank is the more correct class if we don’t

see that there are moving cars blocking the zebra crossing,

signifying a red light. We see that a relatively common mis-

take for our network is with underexposed traffic lights. To

remedy the issues found in the first two images, a higher

input resolution must be used.

Image 3 shows a rather surprising mistake by our net-

work. The ground truth is green, but the network predicted

countdown green instead. In this case, the network pre-

dicted countdown green with a confidence of 0.506, which

is a low confidence given we only have five classes. Image

4 shows a similar mistake, where the network surprisingly

predicted a red pedestrian traffic light when there was noth-

ing in the image. Again, the confidence in this prediction

was only 0.521, while the confidence that there was noth-

ing was 0.479. This brings about another category of mis-

takes, which are low confidence predictions. To deal with

this problem, we add a confidence threshold to our mobile

application, as detailed in the next section, ensuring that all

predictions are of high confidence.

5. Mobile Application

As a proof of concept, we developed a mobile applica-

tion that is able to deploy the neural network and output the

necessary information in simple ways through the utiliza-

tion of auditory and tactile methods.

5.1. Coordinate Conversion

The model predicts the endpoints of the midpoints of the

zebra-crossings. Though this is assumed to be correct, this



Figure 3. Our application continuously iterates through this flowchart at 16.34 frames per second.

is only true within a 2-dimensional representation of the

world. The appearance of the zebra-crossing in the image

plane is an incorrect representation of the position of ob-

jects in the 3-dimensional world. Hence, as performed in

[21], for the application to output the correct coordinates

in the 3-dimensional world, the image is converted using

multiple-view geometry. Since the zebra-crossing is on the

ground, the z-value is assumed to be fixed at z = 1, which

enables for the conversion of the image to a 2-dimensional

bird-eyes perspective image. To do so, a transformation ma-

trix that is assumed to be consistent is applied to the image.

While the height and angle of the image does impact the

accuracy of the converted coordinates, for the purpose of

helping position and orient the visually impaired, the esti-

mate is sufficient.

5.2. Application Logic

To effectively help the visually impaired cross the street,

our information is divided into three different stages. The

first stage is to correctly position the visually impaired at

the midline of the zebra crossing. For positioning, in an

image with width w and midline at (w − 1)/2, if xint >
(w − 1)/2 + w · 0.085, users are told to move left, and if

xint < (w− 1)/2−w · 0.085, users are told to move right.

Since the edges of the zebra crossing are within 8.5% of the

midline in our image, assuming a constant width for the ze-

bra crossing, if xint is outside of the 8.5% range, the user

will be outside of the zebra crossing. Understanding that

there can be an overload of information if the vibrations

happen every second or even faster, our application only re-

notifies the visually impaired on whether they should keep

moving left or right every two seconds. However, if the in-

struction changes from moving left to moving right, or vice-

versa, the application immediately notifies the user. Fur-

thermore, as soon as the start-point is within the range, a

voice message alerts the user.

After correctly positioning the user, our application then

orients the user to cross the street in the correct direction. In

terms of orientation, a range of 10◦ was set for ∆θ. When

∆θ < −10◦, users are directed to rotate left, while when

∆θ > 10◦, users are directed to rotate right. The infor-

mation of the direction for rotations are delivered through

beeps, with a single beeps notifying the user to turn to the

left and two quick beeps notifying the user to turn to the

right. Similarly to the position, we avoid overloading the

visually impaired with information by following the same

procedure; we have a two second delay. As soon as the ori-

entation is within the range, we notify the user through a

voice message.

Though the network is able to attain a pedestrian traffic

light mode recognition of 96%, the application takes further

steps mentioned in [21] to alleviate the risk of detecting the

wrong mode of light. First, the softmax probabilities of each

class is stored and averaged over five consecutive frames,

with countdown blank and countdown green considered to

represent the same mode. Next, a confidence threshold of

0.8 is set, which prevents decisions being made before or

after the light changes color as the probability threshold will

not be met if one or more frames are of different modes.

Finally, after reaching the probability threshold and the user

having the correct position and orientation, the application

informs the user of the traffic light color through an audio

message. If at any time the traffic light mode changes, the

application will immediately notify the user. However, if

the traffic light mode remains the same, the application will

only notify the user once every three seconds.

The structure of the application is shown in Figure 3.

5.3. Usability Study

To evaluate the efficacy of the application, it has been

tested on seven visually impaired. As seen in Figure 4,

the visually impaired is instructed to hold their smartphones



Figure 4. The user holds the phone smartphones horizontally and

perpendicular to the ground.

horizontally and perpendicular to the ground. After the test-

ing, we collected their feedback based on six categories:

traffic light feature, starting point feature, direction feature,

learnability, physical demand, and mental demand, asking

them to score each category from 1 to 10, with 1 being

something that distracts more than it helps, 5 being aver-

age, 7 being something they would use in their day-to-day

lives, and 10 being something that is perfect and needs no

improvements. The radar graph of each category assessing

multiple aspects of the application can be seen in Figure 5.

For the traffic light feature, the testers found it to be ef-

fective and vastly useful, scoring an average of 9.4 out of 10.

When asking for comments, there were immediate positive

comments about this feature. They found the direction and

starting point features to be helpful, but harder to use com-

pared to the traffic light notification, rating the categories

with scores of 5.7 and 6.7 respectively. We noticed that it

was less intuitive for the visually impaired to respond to the

vibrations and beeps compared to outright being told the

color of the traffic light. However, they believe that with

more time to practice using the application, they will be

more accustomed and fluent.

Overall, they rated the learnability highly, with a score

of 8.3, citing that after a few minutes of explanation from

us, they understood how the app worked. After a couple of

guided crossing of the street, the subjects whom travel alone

regularly were able to confidently use our application alone.

They also rated mental demand with a score of 8.3. At first,

the vibrations and beeps may not be completely intuitive,

causing the subjects to need some time to think, but after

they quickly became accustomed to the application, there

was much less mental demand, if any. The physical demand

of the device was rated lower, with a score of 6. There was

slight annoyances in keeping the phone held in the correct

orientation, and also requires both of their hands to be full

Figure 5. Scores given by blind test subjects for various categories.

when walking with a white cane. This small issue can easily

be resolved by making a lanyard to hand the phone from

their necks, or creating a product to attach the phone onto

their body.

6. Conclusion

In this paper, we have developed an improved convolu-

tional neural network version of LytNet based off of Mo-

bileNetV3 that is able to outperform existing methods. We

have shown that our method is robust by testing it on a new

dataset without retraining our model, thus countering one of

the main drawbacks of neural networks, which is the large

amount of data needed to effectively train one.

Furthermore, we have fully developed a working mobile

application that proves our concept is feasible and effective

for the visually impaired to use. With three different out-

puts and instructions required to help the visually impaired

cross the street, effectively conveying such information can

be challenging, but our tests on the visually impaired show

that our method is a good foundation to build upon.

Further improvements can be made to our network in two
different ways. First, images taken of street intersections at
night can be added to the dataset. Otherwise, currently the
network and application can only be used during the day.
Second, additional data from other countries can be used to
allow our network to completely generalize among all coun-
tries’ traffic lights and crosswalks, preventing it from being
region-locked. With regards to our application, a simple de-
tector can be added to inform the visually impaired if their
finger may be accidentally covering the camera, which we
found to be an occasional problem when testing the appli-
cation.
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