
RotInvMTL: Rotation Invariant MultiNet on Fisheye Images for Autonomous

Driving Applications

Bruno Arsenali

Valeo Vision Systems

Ireland

bruno.arsenali@valeo.com

Prashanth Viswanath

Valeo Vision Systems

Ireland

prashanth.viswanath@valeo.com

Jelena Novosel

Valeo Vision Systems

Ireland

jelena.novosel@valeo.com

Abstract

Precise understanding of the scene around the car is of

the utmost importance to achieve autonomous driving. Con-

volutional neural networks (CNNs) have been widely used

for road scene understanding in the last few years with great

success. Surround view (SV) systems with fisheye cameras

have been in production in various cars and trucks for close

to a decade. However, there are very few CNNs that are

employed directly on SV systems due to the fisheye nature

of its cameras. Typically, correction of fisheye distortion

is applied to the data before it is processed by the CNNs,

thereby increasing the system complexity and also reducing

the field of view (FOV). In this paper, we propose RotIn-

vMTL: a multi-task network (MTL) to perform joint seman-

tic segmentation, boundary prediction, and object detection

directly on raw fisheye images. We propose a rotation in-

variant object detection decoder that adapts to fisheye dis-

tortion and show that it outperforms YOLOv2 by 9% mAP.

By combining the MTL outputs, an accurate foot-point in-

formation and a rough instance level segmentation may be

obtained, both of which are critical for automotive applica-

tions. In conclusion, RotInvMTL is an efficient network that

performs well for autonomous driving applications.

1. Introduction

Accurate and real-time understanding of the complex

and dynamic environment around the ego-vehicle is of

the utmost importance for autonomous cars and advanced

driver-assistance systems (ADASs). At the present time, the

state-of-the-art approaches for visual perception are based

on convolutional neural networks (CNNs). For example,

CNNs are used to solve object detection [24] and semantic

segmentation [23] in real-time. They are also used to solve

instance segmentation [14], however inference in real-time

remains challenging due to the complexity of the solution

and the limitations of the hardware.

Most of the state-of-the-art ADASs are vision based.

Generally, an ego-vehicle contains a surround view (SV)

system, which consists of four to six fisheye cameras that

provide a 360 degree view (e.g., [35]). Each camera has

a field of view (FOV) of at least 180 degrees that enables

perception of objects in the close proximity to the vehicle.

Since the state-of-the-art approaches for visual perception

(e.g., [21, 31, 17, 2]) are often evaluated on databases with

rectilinear images such as Cityscapes [7], KITTI [11], and

CamVid [4], it is not known how they perform on fisheye

images, which are affected by radial distortions.

To avoid problems that may arise due to the fisheye lens

distortions, within the context of CNNs, fisheye images are

first corrected and then passed on to the CNN-accelerated

hardware. Once the CNN processing is complete, the result

is back-projected to the original image space and combined

with the results from the other visual perception algorithms

that operate directly on fisheye images. An example of such

process is depicted in Figure 1. This typical algorithmic

pipeline for the SV system contradicts the original intent

of having a wide angle lens, as the correction step reduces

the FOV. More importantly, two additional steps are intro-

duced into the pipeline of CNN processing. These steps

increase the system frame buffer requirements (the system

has to hold two sets of images), memory bandwidth, and

processing latency, all of which are undesirable and can be-

come a bottleneck in achieving real-time inference.

Additional issues, related to fisheye images, arise when

dealing with object detection annotations (i.e., bounding

rectangles) and the corresponding foot-points. Foot-point

is defined as a point of contact between the object and the

ground and is considered to be the bottom center point of

the bounding rectangle. Accurate foot-point is essential for

safety applications (e.g., braking) as it is used to determine

how far an object is from the ego-vehicle. Annotations of

bounding rectangles, on a front view fisheye image, for the

standard object detectors such as YOLO [24] and SSD [21]

are given in Figure 2. These rectangles tend to overestimate

the object size, especially on fisheye images, which leads to



Figure 1: Typical processing block diagram for a surround view (SV) camera system. The convolutional neural network

(CNN) algorithms for visual perception often have two additional steps (i.e., fisheye correction and back-projection to fisheye

space). These steps are undesirable as they may become a bottleneck in achieving real-time performance.

an inaccurate foot-point location, and as such they are not

suitable for object representation in the automotive industry.

Instance segmentation provides high resolution information

needed to improve the foot-point prediction, but it remains

unfeasible for real-time applications.

In this paper, we propose RotInvMTL, a network that

performs semantic segmentation, boundary prediction, and

object detection directly on fisheye images in real-time.

Two rotation-invariant detectors (i.e., YOLO-RotRect and

YOLO-Circ) are explored to improve object representation.

Additionally, boundary prediction is proposed with object

detection to enable accurate foot-point prediction and to

provide rough instance segmentation. The remainder of

this paper is organized as follows. Section 2 provides an

overview of related work. Section 3 describes the proposed

multi-task network. Section 4 provides information related

to experimental evaluation. Finally, concluding remarks are

given in Section 5.

2. Related Work

An overview of semantic segmentation and boundary

prediction is given in subsections 2.1 and 2.2, respectively.

Details of existing approaches for object detection follow in

subsection 2.3. A summary of multi-task learning is given

in subsection 2.4. Finally, work related to CNN-based per-

ception on fisheye images is presented in subsection 2.5.

2.1. Semantic Segmentation

Long et al. are the first to propose a fully CNN (F-CNN)

for semantic segmentation [22], in which fully connected

layers are transformed into convolutional layers. Due to the

large receptive field of the network, precise localization of

boundary remains a challenge. To overcome this, in [5],

conditional random fields are applied to the output of the

CNN. Unfortunately, this solution, compared to the F-CNN,

requires more memory and additional computation time. In

SegNet [2], new shortcut connections are introduced. The

Figure 2: Ground truth annotations (bounding rectangles) in

magenta (persons) and blue (vehicles) for standard object

detectors (e.g., YOLO and SSD) on a fisheye image. The

corresponding polygon annotations in cyan (persons) and

yellow (vehicles) suggest that bounding rectangles tend to

overestimate the object size and with that provide inaccurate

foot-point information.

network requires less memory and has faster inference time

than the F-CNN. Furthermore, Yu and Kotlun [34] propose

dilated convolutions, which become the basis for DeepLab

[5], whose newest version [6] is one of the best performing

solutions for semantic segmentation. Unfortunately, many

of the best performing solutions are far too complex to en-

able semantic segmentation in real-time for automotive in-

dustry. Due to this, less complex networks are proposed.

Examples of these networks are ENet [23], MobileNet [30],

ICNet [39], and ShuffleNet [38].

2.2. Semantic Boundary Prediction

In the recent years, boundary prediction has gained a lot

of interest (e.g., [32], [36], and [1]). Xie et al. propose



Figure 3: RotInvMTL architecture. The network operates on fisheye images and consists of a shared encored and two task

specific decoders (one for object detection and the other for boundary-aware semantic segmentation). Each task outputs a

prediction, and the predictions are fused to provide the final result.

CNN based class-agnostic edge detector for prediction of

semantic boundary [32]. CASENet improves initial results

by combining low and high-level features with a multi-label

loss function [36]. Finally, in STEAL, a new thinning layer

and a new loss are proposed [1], which further improves the

results of boundary prediction.

2.3. Object Detection

Object detectors such as R-CNN [13] follow a two step

approach: region proposal and scoring. Due to this, they are

not suitable for real-time applications. Faster versions of the

detectors are developed first by feeding an image directly

to the region proposal CNN [12] and later by eliminating

the need for the selective search [27]. Despite the proposed

improvements, larger speed-related gains were not observed

until the appearance of single stage detectors such as YOLO

[24] (improved versions are described in [25] and [26]) and

SSD [21]. These detectors are specially designed to process

rectilinear images and as such may not be suitable to operate

on fisheye images. Rotation-invariant detectors such as [20]

seem more appropriate. To the best of our knowledge, they

are not yet applied on fisheye images.

2.4. Multi-task Learning (MTL)

Multi-task learning (MTL) is a sub-field of machine

learning in which shared domain information is used to

improve generalization of complementary tasks that are

learned in parallel. In other words, knowledge gained while

training one task can be leveraged when training other tasks.

As such, MTL can be viewed as a type of transfer learning.

In the context of CNNs, many existing methods use MTL

to solve visual perception tasks. For example, Eigen et al.

[10] propose a framework to predict semantic labels, depth,

and surface normals. Teichmann et al., in MultiNet [31],

present an approach for real-time joint semantic reasoning.

UberNet [19] is a unified network that tackles a broad set

of visual perception tasks. Kendall et al. [17] propose an

architecture that combines semantic segmentation, instance

segmentation, and depth prediction. The aforementioned

methods process only rectilinear images. Hence, it is not yet

known if they are suitable for use with other image types.

2.5. CNN-Based Perception on Fisheye Images

Visual perception is rarely explored on fisheye images

due to the lack of a large-scale annotated dataset. The main

focus of prior work is on semantic segmentation. Deng et

al. propose an architecture for processing of fisheye images

and train it on Cityscapes dataset warped by rectilinear-

to-fisheye transformation [9, 8]. Blott et al. improve this

transformation to achieve better performance [3]. Sàez et

al. propose a network for real-time semantic segmentation



[29, 28]. Other examples of visual perception on fisheye

images include parking slot detection [37] and autonomous

driving model that integrates SV camera information with a

route planner [16]. To the best of our knowledge, there are

no approaches that perform joint object detection, semantic

segmentation, and boundary prediction on fisheye images.

3. RotInvMTL

We propose a RotInvMTL architecture, which is de-

picted in Figure 3, to perform semantic segmentation,

boundary prediction, and object detection in parallel on

fisheye images. The first two tasks are merged to produce

boundary-aware semantic segmentation. The network is

trained in an end-to-end fashion and inference is done on

fisheye images, without the need for distortion correction

and back-projection, which are depicted in Figure 1. This

results in reduced computation time and memory usage.

The network architecture consists of a shared encoder

and two task specific decoders (one for semantic segmen-

tation and the other for object detection). We formulate

boundary prediction as semantic segmentation. For object

detection, we explore two rotation-invariant detectors (i.e.,

YOLO-RotRect and YOLO-Circ). Subsection 3.1 provides

details on the shared encoder. This is followed by subsec-

tions 3.2 and 3.3, which provide details on the semantic seg-

mentation and object detection decoders, respectively.

3.1. Shared Encoder

The task of a shared encoder is to extract features from

fisheye images that contain information required to perform

segmentation, boundary prediction, and object detection. In

RotInvMTL, we use ResNet18 [15]. This encoder provides

a good balance between capacity and complexity which

makes it suitable for real-time applications. The output fea-

ture maps of the final convolutional layer and the interme-

diate hidden layers are passed on to the segmentation and

detection decoders as depicted in Figure 3.

3.2. Segmentation Decoder

A single decoder based on the architecture in [22] is used

for boundary-aware semantic segmentation. Given that the

features produced by the encoder are 32 times smaller than

the image resolution, we use five transpose convolution lay-

ers in the decoder. Skip connections are used to extract

high resolution features from the lower layers of the en-

coder. 5 × 5 convolutions are used instead of 1 × 1 con-

volutions, since they result in better contextual information.

The following classes are used for semantic segmentation:

road, lane markings, and curb. Two additional classes are

added in the segmentation task (i.e., boundaries of persons

and vehicles) to provide rough instance-level segmentation.

An example of a segmentation mask is shown in Figure 4.

Figure 4: Ground truth segmentation for the image in Figure

2. Person boundaries, vehicle boundaries, curb stones, lane

markings, and road surface are depicted in cyan, yellow,

blue, magenta, and green, respectively.

3.3. Object Detection Decoders

To improve object representation on fisheye images, two

new object detectors are proposed: YOLO-RotRect and

YOLO-Circ. They are derived from YOLO-Rect, which is

derived from the second version of YOLO (i.e., YOLOv2)

[25]. To reduce the computational time of YOLO-Rect, a

decoder with only a single 1×1 convolutional layer is used.

It transforms the output of the final encoder layer into a tile-

based representation for object detection. Each tile has di-

mensions of 32×32 pixels, which results in 40×24 tiles for

an input image size of 1280× 768. Details on the decoders

are provided in the following subsections: 3.3.1 (YOLO-

Rect ), 3.3.2 (YOLO-RotRect), and 3.3.3 (YOLO-Circ).

3.3.1 YOLO-Rect

YOLO-Rect is a standard object detector [25]. It predicts

class probabilities and rectangle parameters for each anchor.

The softmax function is used to predict the former for per-

sons, riders and vehicles. For the latter, we predict:

cb = σ(cu) (1)

xb = σ(xu) + xt (2)

yb = σ(yu) + yt (3)

wb = wae
wu (4)

hb = hae
hu (5)

where c denotes the confidence, σ(·) denotes the sigmoid

function, x and y denote the coordinates of the rectangle

center, xt and yt denote the coordinates of the top left tile

corner, w and h denote the rectangle width and height,

wa and ha denote the anchor width and height. Finally,



Figure 5: Ground truth annotations (rotated rectangles) in

magenta (persons) and blue (vehicles) for YOLO-RotRect

on a fisheye image. The corresponding polygon annotations

in cyan (persons) and yellow (vehicles) suggest that rotated

rectangles provide more accurate estimation of the object

size and foot-point than standard rectangles in Figure 2.

bounded and unbounded predictions are denoted by b and

u, respectively. In this study, we predict five anchors per

tile, which results in 40 parameters per tile. Anchor param-

eters are predicted as in [25]. For a detailed description of

the equations 1-5, we refer the reader to [25].

3.3.2 YOLO-RotRect

We propose a new object detector (i.e., YOLO-RotRect)

that predicts a rotation angle for each bounding rectangle

in addition to the standard parameters. Hence, YOLO-

RotRect is rotation-invariant. Figure 5 shows an example

of annotations for this detector.

YOLO-RotRect predicts class probabilities in the same

way as YOLO-Rect. Furthermore, the same equations as in

YOLO-Rect are used to predict the width, height, and both

coordinates (i.e., x and y) of the rotated rectangle. Addi-

tionally, the rotation angle is predicted as:

ab = (σ(au)− 0.5)π (6)

where a denotes the angle. We define the angle with respect

to the width of the rotated rectangle and the width is defined

as its larger side. All angles are in the range from −
π

2
to π

2
.

The YOLO procedure for anchor estimation described in

[25] was modified to account for the rotation. First, we bin

rectangles according to the angle into the following bins:

[−π

2
,−π

6
], [−π

6
, π

6
], and [π

6
, π

2
]. Then, to estimate the width

and the height of a total of five anchors per bin, we apply

the clustering procedure described in [25] while ignoring

the angles. Finally, to each anchor we assign an angle equal

Figure 6: Ground truth annotations (bounding circles) in

magenta (persons) and blue (vehicles) for YOLO-Circ on a

fisheye image. The corresponding polygon annotations are

depicted in cyan (persons) and yellow (vehicles). YOLO-

Circ is explored in this study as a simple rotation-invariant

alternative to YOLO.

to the mean of the corresponding bin limits (i.e., −π

3
, 0, and

π

3
). As we use a total of 15 anchors (three bins and five

anchors per bin) in our experiments, the output of YOLO-

RotRect has 135 parameters per tile.

YOLO-RotRect provides a good object representation on

fisheye images (e.g., Figure 5) and with that accurate foot-

point information. However, the complexity is larger due to

the rotation and additional anchors. Hence, we also propose

a simpler rotation-invariant detector (i.e., YOLO-Circ).

3.3.3 YOLO-Circ

As a simple alternative to YOLO-RotRect, we propose an

object detector that predicts bounding circles (i.e., YOLO-

Circ). This detector is also rotation-invariant, but estimates

a smaller number of parameters. The annotations for this

type of detector are presented in Figure 6.

YOLO-Circ predicts class probabilities in the same way

as YOLO-Rect. Furthermore, the confidence and the circle

center are also predicted in the same way (i.e., equations 1-

3). YOLO-Circ does not predict the width and the height.

Instead, it predicts the radius:

rb = rae
ru (7)

where r and ra denote the radius of circle and anchor, re-

spectively. Hence, YOLO-Circ has less parameters per pre-

diction than YOLO-Rect and YOLO-RotRect. To estimate

the anchor radius, we used the procedure described in [25],

where instead of estimating the width and the height we es-

timated the radius. In our experiments, we use five anchors



per tile, which results in 35 parameters per tile.

YOLO-Circ is specially designed to operate on fisheye

images. Despite this, accurate estimation of foot-point is a

challenge since YOLO-Circ overestimates the object size,

similar to YOLO-Rect.

4. Experimental Evaluation

This section is structured as follows. First, we provide

details regarding the dataset in subsection 4.1. Then, train-

ing details and metrics details are provided in subsections

4.2 and 4.3, respectively. Finally, results and discussion are

given in subsection 4.4.

4.1. Dataset

To the best of our knowledge, there is no suitable pub-

lic dataset to evaluate the proposed method. Consequently,

RotInvMTL is evaluated on a proprietary dataset with fish-

eye images. A subset of this dataset is described in [33].

In this study, we use a larger subset of 47543 images with a

resolution of 1280×768 from front, rear, left, and right cam-

eras. Each image comes with instance level semantic anno-

tations of 40 classes. In the present study, we use a subset

of six classes: road, lane marking, curb, person, two/four

wheeled vehicle, and rider. An 80-10-10 split is used to

divide the images into training, validation and test datasets.

4.2. Training Details

The RotInvMTL network is trained from scratch (i.e., we

do not use any pre-training). As the SV systems use the

YUV format more often than the RGB format, we use the

former format to train the network. To reduce system com-

plexity and improve the generalization of the network, we

train it with the images from different cameras (i.e., front,

rear, left, and right). The network is trained jointly for ob-

ject detection and boundary-aware semantic segmentation

in an end-to-end fashion. As the dataset is annotated at in-

stance level, we use the same images to train the two tasks.

Detection and segmentation tasks have weights of 1 and

250, respectively. Brightness augmentation and horizontal

flipping are used randomly to increase the complexity and

size of the training data.

The cross-entropy loss is used to train the segmentation

task. For the object detection task, we use the YOLOv2 loss

[25]. Non-maximum suppression (NMS) is used for each

class of the detection output to remove redundant rectan-

gles and circles. Adam optimizer [18] with a learning rate

of 5e−4 is used in combination with a linear learning rate

decay strategy. The network is trained for 60 epochs.

4.3. Evaluation Metrics

To evaluate the performance of object detection, we use

per-class and mean (m) average precision (AP), per-class

precision, and per-class recall. The standard approach to

compute all of them is to use intersection over union (IoU)

between the ground truth and the prediction. If this IoU is

above a predefined threshold, the prediction is considered to

be true, otherwise it is false. In the standard approach, the

ground truth has the same shape as the prediction (e.g., rect-

angle and circle). The problem with this is that such ground

truth overestimates the size of an object, especially on raw

fisheye images. To account for this, we use the instance of

an object (i.e., polygon annotation) as ground truth for the

IoU calculation. We report the results for both standard and

non-standard metrics. Finally, to evaluate the performance

of boundary-aware semantic segmentation we use only the

standard metrics: average and per-class accuracy, precision,

recall, F1-score, and mIoU.

4.4. Results and Discussion

Various experiments are done to evaluate the perfor-

mance of the proposed method and the results for both

boundary-aware semantic segmentation and object detec-

tion are reported and discussed. The evaluation is per-

formed on the test dataset. Although the network is trained

for 60 epochs, the evaluation results are provided for the

epoch with the minimum loss on the validation dataset.

Examples of RotInvMTL results are shown in Figure 7.

The results are reported for all three object detectors (i.e.,

YOLO-Rect, YOLO-RotRect, and YOLO-Circ).

Table 1 shows results for boundary-aware semantic seg-

mentation. The performance is similar for all three ap-

proaches (e.g., a difference of 0.14% is observed between

the model with the best and the worst mIoU). We hypoth-

esize the results are comparable since the segmentation de-

coder architecture remains the same. The results also show

a higher per-class accuracy for the vehicle boundary when

compared to the person boundary in all three cases (e.g.,

82.87% vs. 73.24% for YOLO-Rect). This is probably

caused by the vehicle size, which is often larger than the

pedestrian size.

Object detection results for the standard and non-

standard metrics are reported in Table 2 and Table 3, re-

spectively. For all object detection metrics calculations, an

IoU threshold of 0.5 is used. To calculate per-class precision

and recall, a confidence threshold of 0.5 is used. Standard

metrics report YOLO-Circ as the best performing decoder

for most of the reported metrics. In contrast, according to

the non-standard metrics, YOLO-Circ is the worst perform-

ing decoder. This indicates that the standard metrics may

not be optimal to measure performance on fisheye images.

Interestingly, results for YOLO-RotRect remain similar for

both standard and non-standard metrics (absolute difference

of up to 2% between the corresponding metrics) which sug-

gests rotated rectangles provide a good representation for

objects on fisheye images and do not overestimate their size.



(a) YOLO-Rect predictions for the rear (left) and mirror (right) camera image.

(b) YOLO-RotRect predictions for the rear (left) and mirror (right) camera image.

(c) YOLO-Circ predictions for the rear (left) and mirror (right) camera image.

Figure 7: Examples of RotInvMTL results for three different object detection decoders. Object detection outputs are de-

noted in blue (vehicles) and magenta (persons), whereas boundary-aware semantic segmentation outputs are denoted in cyan

(person boundaries), yellow (vehicle boundaries), blue (curb stones), magenta (lane markings), and green (road surface).

Foot-point information of an object can be obtained

by combining object detection, semantic segmentation and

boundary prediction results. Semantic segmentation of the

road provides ground information, object detection provides

information about the individual objects, whereas boundary

prediction gives information about the position of objects

within the bounding shape (e.g., rectangle or circle). Gen-

erally, predicted boundary intersects the bounding shape.

In the case of YOLO-Circ, the boundary intersect the cir-

cle at points located on its opposite sides (e.g., for person,

the boundary intersects the circle at the head and the foot

or for vehicle, the boundary intersects the circle at the op-

posite sides of a vehicle). This can be observed in Figure

7c. The intersection can further be combined with the seg-

mentation of road to obtain the foot-point information of

an object. Similary to YOLO-Circ, in the case of YOLO-



Table 1: Semantic segmentation results on the test dataset. Average accuracy, precision, recall, F1-score, mean intersection

over union (mIOU), and per-class accuracy are reported.

Avg. Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)

mIoU

(%)

Per-Class Accuracy (%)

Road Lanes Curb
Person

boundary

Vehicle

boundary

YOLO-Rect

(baseline)
97.17 76.09 67.60 68.17 65.66 97.33 70.38 58.36 73.24 82.87

YOLO-RotRect 97.15 76.20 67.36 68.07 65.54 97.25 70.57 59.11 74.41 82.19

YOLO-Circ 97.16 76.17 67.28 68.07 65.52 97.29 71.16 58.34 74.15 82.49

Table 2: Object detection results on the test dataset, computed using rectangle or circle ground truth. Mean average precision

(mAP), per-class average precision (AP) computed with IoU threshold of 50%, and per-class precision and recall computed

with IoU and confidence threshold of 50% are reported.

mAP

(%)

Per-Class AP (%) Per-Class Precision (%) Per-Class Recall (%)

Person Rider Vehicle Person Rider Vehicle Person Rider Vehicle

YOLO-Rect

(baseline)
46.97 42.23 34.49 64.20 47.84 50.74 67.39 56.14 36.99 65.59

YOLO-RotRect 40.74 33.82 26.47 61.91 44.62 52.72 70.36 49.06 23.37 60.85

YOLO-Circ 51.00 50.57 37.32 65.10 54.63 54.44 69.61 60.12 39.16 64.47

Table 3: Object detection results on the test dataset, computed using polygon object ground truth. Mean average precision

(mAP), per-class average precision (AP) computed with IoU threshold of 50%, and per-class precision and recall computed

with IoU and confidence threshold of 50% are reported.

mAP

(%)

Per-Class AP (%) Per-Class Precision (%) Per-Class Recall (%)

Person Rider Vehicle Person Rider Vehicle Person Rider Vehicle

YOLO-Rect

(baseline)
31.55 19.36 28.38 46.91 32.35 46.78 56.64 37.96 34.10 55.12

YOLO-RotRect 40.84 32.62 28.44 61.45 43.74 53.26 69.80 48.10 23.61 60.36

YOLO-Circ 10.81 2.11 16.75 13.58 11.14 36.18 30.41 12.26 26.02 28.17

RotRect, the intersection of the rotated rectangle and the

predicted boundary occurs on the opposite sides of the rect-

angle, as shown in Figure 7b. Thus, similar deductions, as

in the case of YOLO-Circ, can be used to obtain foot-point

information. Unfortunately, these deductions are not ap-

plicable to YOLO-Rect as the intersection of the boundary

does not occur on the opposite sides of the rectangle which

can be seen in Figure 7a.

Our approach provides a rough instance segmentation

for vehicles and persons. Similarly to foot-point infor-

mation, each bounding shape marks an individual object,

whereas the predicted boundary denotes the position of that

object. In other words, within the bounding shape, the

boundary of an object can be traced. This becomes invalid

in case of an occlusion, where a single object becomes sepa-

rated. Hence, additional work is required to further improve

the proposed version of rough instance segmentation.

5. Conclusion

In this paper, we propose RotInvMTL, an efficient CNN

architecture, which jointly performs semantic segmenta-

tion, object detection and boundary prediction on fisheye

images. Two approaches, YOLO-RotRect and YOLO-Circ,

are proposed to improve object detection. Further, by in-

tegrating the outputs of the network, a reliable foot-point

information and a rough instance segmentation can be ob-

tained. The proposed approach provides a simple solution

that is trained in an end-to-end fashion. Overall, RotIn-

vMTL is a very efficient network with reduced system com-

plexity that performs well for autonomous driving and park-

ing applications.

Acknowledgement

We would like to thank our colleagues from the Valeo

Deep Learning team for their support.



References

[1] D. Acuna, A. Kar, and S. Fidler. Devil is in the edges:

Learning semantic boundaries from noisy annotations. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 11075–11083, 2019.

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A

deep convolutional encoder-decoder architecture for image

segmentation. arXiv preprint arXiv:1511.00561, 2015.

[3] G. Blott, M. Takami, and C. Heipke. Semantic segmentation

of fisheye images. In The European Conference on Computer

Vision (ECCV), 2018.

[4] G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object

classes in video: A high-definition ground truth database.

Pattern Recognition Letters, 30(2):88–97, 2009.

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. DeepLab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. arXiv preprint arXiv:1606.00915, 2016.

[6] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-

thinking atrous convolution for semantic image segmenta-

tion. arXiv preprint arXiv:1706.05587, 2017.

[7] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

Cityscapes dataset for semantic urban scene understanding.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2016.

[8] L. Deng, M. Yang, H. Li, T. Li, B. Hu, and C. Wang. Re-

stricted deformable convolution based road scene semantic

segmentation using surround view cameras. arXiv preprint

arXiv:1801.00708, 2018.

[9] L. Deng, M. Yang, Y. Qian, C. Wang, and B. Wang. CNN

based semantic segmentation for urban traffic scenes using

fisheye camera. In IEEE Intelligent Vehicles Symposium (IV),

pages 231–236, 2017.

[10] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In IEEE International Conference on

Computer Vision (ICCV), pages 2650–2658, 2015.

[11] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The Kitti dataset. International Journal of Robotics

Research (IJRR), 2013.

[12] R. Girshick. Fast R-CNN. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1440–1448,

2015.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 580–587, 2014.

[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-

CNN. In IEEE International Conference on Computer Vision

(ICCV), pages 2961–2969, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 770–778, 2016.

[16] S. Hecker, D. Dai, and L. Van Gool. Learning driving mod-

els with a surround-view camera system and a route planner.

arXiv preprint arXiv:1803.10158, 2018.

[17] A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using

uncertainty to weigh losses for scene geometry and seman-

tics. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 7482–7491, 2018.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[19] I. Kokkinos. UberNet: Training a universal convolutional

neural network for low-, mid-, and high-level vision using

diverse datasets and limited memory. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

6129–6138, 2017.

[20] L. Liu, Z. Pan, and B. Lei. Learning a rotation invari-

ant detector with rotatable bounding box. arXiv preprint

arXiv:1711.09405, 2017.

[21] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. SSD: Single shot multibox detector.

In The European Conference on Computer Vision (ECCV),

pages 21–37. Springer, 2016.

[22] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

3431–3440, 2015.

[23] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet:

A deep neural network architecture for real-time semantic

segmentation. arXiv preprint arXiv:1606.02147, 2016.

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

Only Look Once: Unified, real-time object detection. In

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 779–788, 2016.

[25] J. Redmon and A. Farhadi. YOLO9000: Better, faster,

stronger. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 7263–7271, 2017.

[26] J. Redmon and A. Farhadi. YOLOv3: An incremental im-

provement. arXiv preprint arXiv:1804.02767, 2018.

[27] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Advances in Neural Information Processing Sys-

tems (NIPS), pages 91–99, 2015.

[28] Á. Sáez, L. M. Bergasa, E. López-Guillén, E. Romera,

M. Tradacete, C. Gómez-Huélamo, and J. del Egido. Real-

time semantic segmentation for fisheye urban driving images

based on ERFNet. Sensors, 19(3):503, 2019.

[29] Á. Sáez, L. M. Bergasa, E. Romeral, E. López, R. Barea,

and R. Sanz. CNN-based fisheye image real-time semantic

segmentation. In IEEE Intelligent Vehicles Symposium (IV),

pages 1039–1044, 2018.

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. MobileNetV2: Inverted residuals and linear bottle-

necks. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 4510–4520, 2018.

[31] M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and

R. Urtasun. MultiNet: Real-time joint semantic reasoning

for autonomous driving. In IEEE Intelligent Vehicles Sym-

posium (IV), pages 1013–1020. IEEE, 2018.

[32] S. Xie and Z. Tu. Holistically-nested edge detection. In IEEE

International Conference on Computer Vision (ICCV), pages

1395–1403, 2015.



[33] S. Yogamani, C. Hughes, J. Horgan, G. Sistu, P. Varley,

D. O’Dea, M. Uricár, S. Milz, M. Simon, K. Amende, et al.

WoodScape: A multi-task, multi-camera fisheye dataset

for autonomous driving. arXiv preprint arXiv:1905.01489,

2019.

[34] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. arXiv preprint arXiv:1511.07122, 2015.

[35] M. Yu and G. Ma. 360 surround view system with parking

guidance. SAE International Journal of Commercial Vehi-

cles, 7(2014-01-0157):19–24, 2014.

[36] Z. Yu, C. Feng, M.-Y. Liu, and S. Ramalingam. CASENet:

Deep category-aware semantic edge detection. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5964–5973, 2017.

[37] L. Zhang, J. Huang, X. Li, and L. Xiong. Vision-based

parking-slot detection: A DCNN-based approach and a

large-scale benchmark dataset. IEEE Transactions on Image

Processing, 27(11):5350–5364, 2018.

[38] X. Zhang, X. Zhou, M. Lin, and J. Sun. ShuffleNet: An

extremely efficient convolutional neural network for mobile

devices. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 6848–6856, 2018.

[39] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. ICNet for

real-time semantic segmentation on high-resolution images.

In The European Conference on Computer Vision (ECCV),

pages 405–420, 2018.


