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Figure 1: Trailer Assist End User Functions. From left to right: Trailer Maneuver Assist, Trailer See Through [26] and

Trailer Hitch Guidance Overlays [25].

Abstract

Trailers are commonly used for transport of goods and

recreational materials. Even for experienced drivers, ma-

noeuvres with trailers, especially reversing can be complex

and stressful. Thus driver assistance systems are very useful

in these scenarios. They are typically achieved by a single

rear-view fisheye camera perception algorithms. There is

no public dataset for this problem and hence there is very

little academic literature on this topic. This motivated us

to present all the trailer assist use cases in detail and pro-

pose a deep learning based solution for trailer perception

problems. Using our proprietary dataset comprising of 11

different trailer types, we achieve a reasonable detection ac-

curacy using a lightweight real-time network running at 30

fps on a low power embedded system. The dataset will be

released as a companion to our recently published dataset

[24] to encourage further research in this area.

1. Introduction

Advanced Driver Assistance Systems (ADAS) have be-

come a common feature in most of the modern vehicles.

Commonly available ADAS features include lane keep as-

sist, cross-traffic alert, front collision warning and traffic

sign recognition [8]. Recent textbook by Rezaei and Klette

[15] provide an excellent overview of computer vision al-

gorithms used in ADAS systems. The progress in this area

is accelerated by the pursuit of fully Autonomous Driving

(AD) which has significantly impacted the automotive in-

dustry [16]. Complexity of the system and computational

power has drastically increased over the last few years as

well and the current generation embedded systems can de-

ploy computationally intensive deep learning algorithms us-

ing efficient design techniques [18, 2]. Deep learning algo-

rithms are also becoming successful beyond object detec-

tion [17] for applications like visual SLAM [13], depth es-

timation [10], soiling detection [22] and motion estimation

[19].

Relatively, trailer assist algorithms are less explored in

academic literature due to lack of datasets. A trailer is a

wheeled vehicle which is unpowered and towed by a regular

vehicle. It is commonly used in rural areas for transporta-

tion of animals (e.g: horse trailer) and agricultural produce.

It is also used in urban areas for recreational purpose for

towing caravans or boats. Complex manoeuvring with trail-

ers can be quite challenging even for experienced drivers

and trailer sway accidents are quite common. In this paper,

we focus on trailer assist use cases and its associated visual

perception algorithms.

Saxe and Cebon [5] use a template matching algorithm to

estimate articulation angle of trailer and unscented Kalman



filter for tracking. Caup et al. [3] convert the image to po-

lar co-ordinates to better estimate the articulation angle and

use edge-based operators to detect the trailer. Xu et al.

[23] propose hitch angle estimation using a novel vehicle

model and Kalman tracker for trailer backup assist algo-

rithm. Ljungqvist et al. [12] present a detailed and rigorous

path planning control framework for vehicles with a trailer.

Atoum et al. [1] used a CNN model to detect trailer cou-

pler. In comparison, our system additionally detects trailer

and articulated angle as well. Classical computer vision

approaches using edge detection and shape detection were

commonly used in previous generation systems, however

they do not generalize well to different types of trailers.

The rest of the paper is structured as follows. Section 2.1

provides an overview of the trailer assist system including

use cases and high level vision modules. Section 3 discusses

the proposed trailer perception algorithms using CNN and

LSTM. Section 4 discusses the results and technical chal-

lenges. Finally, Section 5 summarizes the paper and pro-

vides potential future directions.

2. Trailer Assist System

This section describes the various trailer assist use cases,

high level vision algorithms needed and an overview of the

platform.

2.1. Trailer end user functions

Trailer Maneuver Assist helps the driver when reversing

and maneuvering with a trailer. It guides the trailer while

reversing in the direction the driver presets or wishes to

maneuver. It is hard for an experienced driver to maneuver

a trailer as its response to steering input varies drastically

as shown in Figure 1. This system helps the driver by

automatically driving to reach the desired reversing angle

of trailer.

Trailer Hitch Guidance Overlays: In many systems,

instead of automated maneuvering, guidance overlays are

provided on the dashboard display as shown in Figure

1. Capture from the rear view camera can help align a

car/truck with a trailer hitch. It helps line up center of

car/truck with center of trailer. The overlays take steering

wheel angle of the vehicle as an input and creates an

optimal trajectory of tow ball position. These overlays thus

can help a driver to maneuver accordingly to get as close as

possible to the trailer hitch.

Jackknifing prevention: Jackknifing is a situation where

trailer and vehicle fold together at hitch like a jackknife.

This happens during backing up of trailers when the

articulation/hitch angle increases beyond a safe angle.

Continuing a backward motion beyond it can worsen the

situation and can possibly led to contact of trailer with

Figure 2: (top) Trailer Angle Calculation based on predicted

trailer bounding box. (bottom) Trailer Angle Estimation -

Predicted bounding box will mark the front portion of the

trailer we are tracking with the following information com-

puted from the bounding box: 1) Bounding Box Width 2)

Bounding Box Height 3) Bounding Box Center X coordi-

nate 4) Bounding Box Center Y coordinate and 5) Bounding

Box Angle.

vehicle. This can also happen when the vehicle and the

trailer are going at high speeds. In order to prevent this

behaviour, the articulation/hitch angle has to be monitored

actively.

Trailer See Through is constructed using frames captured

from cameras located at the rear of both the vehicle and the

trailer. These frames are stitched into a single homogeneous

image shown in Figure 1. This extends the rear view range

behind the vehicle by making the trailer totally invisible.

This helps a driver to maneuver with ease in parking lots,

drive into merging traffic, make turns and etc. It requires an

algorithm to find the relative position of the vehicle camera

and the trailer camera.



Figure 3: Tow Ball Localization. Top two images illustrate

tow ball detection with two bounding boxes and a circle.

Red box is used for the tow ball and yellow circle within

the box provides better localization of the tow ball. Green

box is used for detecting the tow ball bar. Bottom left im-

age illustrates the locking mechanism of tow ball with the

trailer’s part shown in bottom right image.

2.2. High Level Vision Components

In Section 2.1, we discussed the important trailer

assistance systems. These systems require the knowledge

of trailer angle w.r.t vehicle, tow ball location and trailer

hitch location. In this section, we discuss how we obtain

this information using computer vision algorithms.

Trailer Angle Estimation: Figure 2 illustrates the trailer

angle definition geometrically in top view and in image

view. The trailer angle is defined as the yaw angle w.r.t

to the central axis of the vehicle. The center point of

bottom side/edge of bounding box (Cx, Cy) is projected

Figure 4: Hitch Couple Localization. Green bounding box

is used for detecting the trailer and red bounding box is used

for detecting the hitch couple.

from image plane into vehicle coordinates, a.k.a. world

coordinates (Cx,Cy ,Cz). In vehicle coordinates, the known

tow ball position (derived from vehicle mechanical data)

will be used, along with the bounding box center, to

calculate the trailer angle. This trailer angle can then be

used to prevent trailer swing leading to jackknife. This can

also help the trailer backup assist system as well as view

switching based on the trailer system.

Tow Ball Localization: Figure 3 illustrates Tow Ball Lo-

calization (TBL) in the image. The goal is to identify and

locate the two ball position using the rear facing camera,

so that they can be connected. Commonly used tow balls

are couplers with Pintle hitches as shown in bottom right

sub-figure of Figure 3. There is no standardized appearance

for these tow balls and it becomes challenging to detect

various types. This module will be useful for hitching a

trailer to a vehicle and also for trailer manoeuvres and

overlays.

Hitch Couple Localization: Figure 4 illustrates hitch cou-



Figure 5: Functional diagram of Trailer Assist

ple localization (HCL) in the image. The goal is to detect

the hitch couple and calculate the position of the coupler

center without a known reference target on the trailer. The

appearance of the hitch will vary significantly depending

on its distance to the camera. Thus two different models for

near-field and far-field are typically employed. It is chal-

lenging to detect it in far-field because of its small size.

2.3. Platform Overview

Camera Sensor: Our car setup comprises of a commer-

cially deployed automotive grade fisheye camera sensor.

It can either be a standard rear-view camera or part of a

surround-view camera suite comprising of four fisheye

cameras around the car. The cameras are 1 megapixel

resolution having a wide horizontal field of view (FOV)

of 190◦. These cameras are designed to provide optimal

near-field sensing upto 10 metres and slightly reduced

perception upto 25 metres. The images are captured at a

frame rate of 30 fps. The camera has a HDR sensor with

a rolling shutter and a dynamic range of 120 dB. It has

features including black level correction, auto-exposure

control, auto-gain control, lens shading (optical vignetting)

compensation, gamma correction and automatic white

balance for color correction.

SOCs: The trailer vision algorithms may either run on

a standalone microprocessor dedicated for the trailer assist

system or be part of a larger SOC which is shared for other

systems like parking assist or highway driving. The typical

automotive SOC vendors include Texas Instruments TDAx,

Renesas V3H and Nvidia Xavier platforms. All of the SOC

vendors provide accelerators specialized for deep learning

which will be useful for deployment of our proposed algo-

rithm. As our work is targeted for industrial deployment,

there are computational bounds available for the design of

the algorithms due to cost, power consumption and heat

dissipation.

Software Architecture: Images captured from cameras

are usually pre-processed before sending them to computer

vision algorithms. These pre-processing includes distortion

correction, contrast enhancement and de-noising etc. Com-

puter vision algorithms generally perception algorithms de-

tect objects, understand scene and feed the information to

high level application layer to plan maneuvering of the ve-

hicle.

Trailer assist system shown in Figure 5 takes rear cam-

era feed, vehicle odometry and user desired trailer orien-

tation as input and outputs steering angle (for jackknifing

prevention, overlays etc.) and emergency braking command

(for collision avoidance). Trailer assist system comprises

of two major functional blocks perception unit and control

unit. Perception unit contains CNN-LSTM model that de-

tects a trailer and helps estimate trailer. It also contains tow

ball localization and hitch couple localization algorithms.

This data is fed to control unit. Control unit estimates trailer

length and facilitates kink angle control, jackknife preven-

tion, collision avoidance etc. Finally, brake and steering

angle commands are sent to vehicle control and planning

unit.

In this work, we are focused on developing a standalone

trailer assist system. However in many cases, there are

other visual perception algorithms like semantic segmenta-

tion, depth estimation and motion estimation already avail-

able for automated driving as shown in Figure 7. In this

case, the proposed CNN model can be integrated in a multi-

task framework by leveraging the larger encoder available

in the system [20, 4]. Depth and Motion estimation will

also greatly help in achieving better accuracy of trailer as-

sist algorithms.

3. Proposed CNN+LSTM model

A standard approach to trailer detection would be to

use a handcrafted features followed by a binary classifier.

To smoothen the predictions over the time a Kalman filter

can be used. Analogous to this approach we used CNN

followed by an LSTM network shown in Figure 6 to

perform detection and tracking simultaneously.

Spatio-temporal Model: The proposed architecture

consists of two sub-models: A CNN model for deep feature

extraction and detection of trailers at multi-scale over a

single image and LSTM model for interpreting the features

across time steps. The CNN model is only capable of

handling a single image, transforming image pixels into an

deep representation. These features across multiple images

allow the LSTM to build up an internal state and update

its weights. As the trailer will have a consistent temporal

structure in the sequence of input images, the LSTM can

help to fill gaps if accurate detection is not possible over a

single image due to occlusions, motion blur, shadows and



Figure 6: Proposed CNN architecture consisting of a single encoder and multi-scale detection decoder with LSTM. The final

predicted bonding box is used to limit the image region for processing for the next frame. The final output of the network is

the Trailer Angle and Bounding Box to localize the detected trailer.

Table 1: Details of proposed Deep Learning Architecture

Layer Input Output Details

ROI Select 1280 x 800 H,W based on Equation 1

Encoder H X W x 3 H/8 X W/8 x 128 ResNet-10

Convolution 1 H/8 X W/8 x 128 H/8 X W/8 x 256 Conv, PReLU and BatchNorm

Convolution 2 H/8 X W/8 x 128 H/16 X W/16 x 512 MaxPool, Conv, PReLU and BatchNorm

Convolution 3 H/16 X W/16 x 512 H/32 X W/32 x 1024 MaxPool, Conv, PReLU and BatchNorm

Detection 1 H/8 X W/8 x 256 Gh X Gw X 5 YOLO V2 style decoder

Detection 2 H/16 X W/16 x 512 Gh X Gw X 5 YOLO V2 style decoder

Detection 3 H/32 X W/32 x 1024 Gh X Gw X 5 YOLO V2 style decoder

Feature Map H/32 X W/32 x 1024 H/64 X W/64 x 64 Reduce depth prior to LSTM

LSTM H/64 X W/64 x 64 1X5 Temporally Smoothen detection

severe lighting conditions.

Multi-scale detection algorithms [11] have proven to be

more efficient than single scale detection counterparts.

Trailer physical dimensions and shapes varies based on the

manufacturer and purpose of use, hence our CNN model

performs trailer detection at three scales. At each bottle-

neck layer we perform bounding box detection similar to

YOLO [14].

Prior Knowledge based Region of Interest (ROI):

Trailers are always behind the vehicle and have restricted

movement in the image. Once we detect the trailer in the

first few frames after turning on the system, it is safe to

assume that the variations in trailer positions are quite

minimal. Taking this prior knowledge into consideration,

we define a region of interest to narrow down the search

window during the inference over the time. A complete

image is passed through the network only during the first

few initial frames when the ego vehicle start moving from

ideal state. Once the trailer got localized we process over

the specified ROI only. By various trails and observations

we have found the following ROI criteria yields optimal

performance and meets run-time constraints of our system.



(1)ROI = max(0.5× InH , 1.5×BBH)

×max(0.5× InW , 2.0×BBW )

where InH , InW (Input height and width) are number of

pixels in X and Y directions in image plane. BBH , BBW

are BBox height and width of the detected trailer.

CNN Module: Convolutional Module consists of an

encoder module followed by 3 convolution layers and a

detection module connected to these layers. The encoder

module is a Resnet-10 [7] architecture with each bottle neck

layer consisting of a Convolution, Padding, Convolution

with stride, Skip Connection, Linear Activation, PReLU

[6], Batch Normalization [9], Concatenation and Addition

layers. A detection module is similar to YOLO [14].

We regress for bounding box width, height and bottom

center co-ordinates in the image. A class agnostic object

confidence score is inferred at each grid and at each scale.

The grid size varies across each scale to keep total grid

count same across the different scales even though the input

to the detection module changes in resolution. This brings

us two advantages, one it keeps the run-time constant

across the scales and two it reduces the false positives as

the sampling frequency at initial layers is less than further

layers.

CNN Architecture Details: Table 1 shows architecture

Figure 7: Typical perception algorithms on rear-view cam-

era. From top to bottom: Semantic Segmentation, Motion

Estimation and Depth Estimation

details of the proposed CNN module. Initial frames are

processed at full resolution, once consecutive frames show

high confidence on bounding box predictions, ROISelect

is enabled and cropped ROI region is resized to have a

resolution as multiples of 32 for computational ease. All the

detection outputs are passed through a non maximum sup-

pression algorithm to choose one final detection bounding

box. Unlike a traditional NMS algorithm in YOLO, which

produces per grid optimal detections, our implementation

takes multiple inputs from different scales and produces a

unique bounding box proposal per image, as probability of

having multiple trailers with maximum area of occupancy

is almost zero. Feature Map layer is used to reduce the

feature dimension prior to LSTM module.

LSTM Module: The LSTM module consists of a zero

padding layer to convert the output to a fixed length vector

as input ROI dimensions changes during the run time. A

feature vector length is fixed to 16640. This is followed by

an LSTM layer with 5 output units. These 5 units regress

for bouning box dimensions and co-ordinates similar to

detection decoder modules. Now the final predictions from

detection module and LSTM are passed through a NMS

algorithm to produce a single robustly detected bounding

box over the trailer.

Integration of Hitch Couple and Tow Ball Localization:

The first step in trailer usage is to attach the trailer to the

vehicle. To enable this, hitch couple and tow ball localiza-

tion algorithms are required. To accomplish this, we use

the same trailer detection algorithm to locate the trailer.

Once a minimum distance criteria is met while backing

to the parked trailer we switch the operating to model to

localize the hitch couple and tow ball. This is achieved

by replacing detection decoder in our CNN-LSTM model

with another one which detects hitch couple and tow ball.

For practical reasons, we reuse the same encoder block of

the CNN-LSTM model and tune the detector for the new

object size.

4. Results and Discussion

There are three independent datasets for the three tasks

namely Trailer Angle estimation, HCL and TBL. Trailer an-

gle estimation is the main task as it runs all the time when-

ever the trailer is connected and thus it has a larger dataset.

It comprises of 1400 images extracted using 11 different

types of trailers using sampling strategy discussed in [21].

The scenes contain different environmental conditions in-

cluding daylight, shadows & rain. The driving surface had

both asphalt roads and grass. Training/Validation/Test split

is of the ratio 60/15/25. HCL and TBL have their own

datasets of 500 images respectively having the same ratio of



Figure 8: Qualitative results of Trailer detection and articulation angle estimation. Red box is ground truth and green box is

estimated. Red line denotes vehicle axis and blue line denotes trailer articulation.

dataset split. Ground truth for detection of trailer, hitch cou-

pler and tow ball were done manually. Trailer angle ground

truth was generated using a rotary encoder.

For trailer detection, True positive rate obtained is 0.86

for an IoU threshold of 0.7 and True Negative rate is 0.98.

For trailer angle estimation, 87% of the time the estimation

was accurate within a tolerance of 1°. Figure 8 illustrates

accurate detection for various trailers and environmental

conditions. For HCL, True positive rate obtained is 0.72 for

an IoU threshold of 0.7 and True Negative rate is 0.98. For

TBL, True positive rate obtained is 0.82 for an IoU thresh-

old of 0.7 and True Negative rate is 0.98. For HCL, True

positive rate obtained is 0.72 for an IoU threshold of 0.7

and True Negative rate is 0.98. HCL is more challenging

especially in far field because of the small size of the object.

Technical Challenges: We briefly list the practical chal-

lenges involved in deploying this system based on our

experience.

• Trailer appearance is not standardized and it is difficult

to include all possible types to get a robust system.

• The achievable angle accuracy output is limited by the

camera resolution because fisheye camera has high an-

gular deviation per pixel.

• Small size of hitch coupler causes mis-detections and

false positives.

• Reflection of brake light from trailer body can cause

misclassification.

5. Conclusion

In this paper, we provided a high level overview of a

trailer assist system and the main visual perception mod-

ules. We created a dataset for deep learning trailer detection

and articulation angle estimation tasks. We proposed an ef-

ficient CNN and LSTM model to detect and track the trailer

and its angle and obtained a high accuracy. Finally, we dis-

cussed the results and current challenges. We also plan to

release the dataset to encourage more research in this area.
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