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Abstract

Moving object detection is a critical task for autonomous

vehicles. As dynamic objects represent higher collision

risk than static ones, our own ego-trajectories have to be

planned attending to the future states of the moving ele-

ments of the scene. Motion can be perceived using temporal

information such as optical flow. Conventional optical flow

computation is based on camera sensors only, which makes

it prone to failure in conditions with low illumination. On

the other hand, LiDAR sensors are independent of illumi-

nation, as they measure the time-of-flight of their own emit-

ted lasers. In this work we propose a robust and real-time

CNN architecture for Moving Object Detection (MOD) un-

der low-light conditions by capturing motion information

from both camera and LiDAR sensors. We demonstrate

the impact of our algorithm on KITTI dataset where we

simulate a low-light environment creating a novel dataset

“Dark-KITTI”. We obtain a 10.1% relative improvement on

Dark-KITTI, and a 4.25% improvement on standard KITTI

relative to our baselines. The proposed algorithm runs at 18

fps on a standard desktop GPU using 256×1224 resolution

images.

1. Introduction

Autonomous Driving (AD) scenarios are considered

very complex environments as they are highly dynamic con-

taining multiple object classes that move at different speeds

in diverse directions [12, 11]. For an autonomous vehi-

cle, it is critical to fully understand the motion model of

each of the surrounding elements as well as to be able to

plan the ego-trajectories based on the future states of these

objects, therefore avoiding collision risks. There are two

types of motion in a typical autonomous driving scene, i.e.

the one of the surrounding obstacles and the motion of the

ego-vehicle. Due to the movement of the camera reference

itself, it is challenging to successfully classify the surround-

Figure 1: Proposed Network Architecture

ing objects as moving or static, because even static objects

will be perceived as moving. Motion segmentation implies

two tasks that are performed jointly. The first one focuses

on object selection, in which objects of specific interesting

classes are highlighted such as pedestrians or vehicles. The

second one focuses on motion classification, in which a bi-

nary classifier predicts whether the observed object is dy-

namic or static.

Modern vehicles are equipped with various sensors to

be able to fully perceive the surrounding environment, each

one having its advantages and disadvantages. For instance,

ultrasonic sensors provide good performance of depth mea-

surement for close obstacles but they lack semantic infor-

mation and perform poorly for far objects. Camera sen-

sors instead, provide rich color information from which

scene semantics can be extracted however, they lack of

depth information and rely on scene illumination, being the

performance of any camera-based perception tasks highly

degraded in bad illumination conditions such as at night

scenes. On the other hand, LiDAR sensors provide accu-

rate depth and geometric information of the environment,



although they generate big and sparse point clouds that may

suppose a computational bottleneck. Nevertheless, unlike

camera sensors, LiDARs rely on the Time of Flight (ToF)

concept and therefore they can perform much better under

low illumination or light changing conditions.

Data fusion has been proven to provide improved perfor-

mance in various tasks such as [27, 32, 14]. In this work,

we focus on fusing Camera and LiDAR information for the

purpose of moving objects detection. Our proposed archi-

tecture attempts to capture rich motion information from

both camera and LiDAR sensors which is combined with

scene semantics from the camera images. To summarize,

the contributions of this work include:

• We extend the publicly available KittiMoSeg [32]

dataset almost x10 times, expanding from 1300 frames

only to a new amount of 12919 images. The dataset

is available at https://sites.google.com/

view/fusemodnet

• We create the new Dark-KITTI dataset to simulate low

illumination autonomous driving environments.

• We propose a novel CNN architecture for MOD fusing

both RGB and LiDAR information. Our implementa-

tion performs on real-time, and therefore is suitable for

time-critical applications such as autonomous driving.

• We analyze different fusion methodologies for

maximum performance as well as study motion

representations for both RGB frames and LiDAR

points clouds.

The rest of the paper is organized as follows: a review of

the related work is presented in Section 2. Our methodol-

ogy including the dataset preparation and the used network

architectures is detailed in Section 3. Experimental setup

and final results are illustrated in Section 4. Finally, Section

5 concludes the paper.

2. Related Work

Motion Segmentation using Camera sensor: Classical

approaches have been proposed for moving objects detec-

tion based on geometrical understanding of the scene such

as [25] which was used to estimate objects motion masks.

Wehrwein et al. [38] introduced assumptions about the

camera motion model to model the background motion in

terms of homography. This approach cannot be used in

autonomous driving application due to the errors arising

from the limited assumptions such as camera translations.

Classical methods provide poor performance compared to

deep learning methods in addition to high complexity due

to complicated pipelines used. For instance, Menze et al.

[25] running time is 50 minutes per frame which makes it

impossible for usage in a real-time application such as the

autonomous driving. Deep learning algorithms are becom-

ing successful beyond object detection [30] for applications

like visual SLAM [26], depth estimation [17], soiling de-

tection [33] but it is still relatively less explored for MOD

task.

Jain et. al.[14] proposed a method to exploit optical flow

for generic foreground segmentation. This work is designed

for generic object segmentation and does not focus on clas-

sifications of objects as Moving or Static. Drayer et. al.[6]

proposed a video segmentation algorithm that is based on

R-CNN detection. The approach is not practical as well

for autonomous driving application due to its complexity

where it runs on image in 8 seconds. Siam et al. [32, 29]

explored motion segmentation using deep network architec-

tures, however these networks rely only on camera RGB

images which is prone to failure in low illumination condi-

tions. FisheyeMODNet [39] extends MODNet for fisheye

camera images using WoodScape dataset [40].

Motion Segmentation using LiDAR sensor: Most of

LiDAR-based methods that have been used for motion seg-

mentation problem were based on clustering methods such

as [4] which predicts the points motion by methods such as

RANSAC, and then clustering takes place for object-level

perception. Vaquero et al. [34] initially clustered vehicles

points and then performed motion segmentation on the ob-

jects after matching the objects through sequential frames.

Deep Learning has been utilized in various methods for ob-

ject detection on point clouds. In [18] 3D convolution is

used over the point cloud to obtain the vehicles bounding

boxes. Other methods project the 3D points on 2D images

to make use of 2D convolutions on the image 2D space [19].

None of these methods are able to segment moving objects

from static ones. Recent work [5] learns movable and non-

movable objects from two input lidar scans. This method

uses implicit learning for motion information through two

sequential lidar scans and does not utilize the color informa-

tion from camera sensor, which motivates our work towards

fusion of both camera and LiDAR sensors.

Fusion: Fusion has been explored through classical and

deep learning methods, and it has proven to be very im-

portant for many tasks. The most common way for mul-

timodal fusion using classical approaches is Kalman filter

[15] and its variants. CNNs have been exploited as well for

multimodal fusion where they generally provide improved

performance over Kalman filters at the cost of complexity.

Deep fusion has been explored for the task of semantic seg-

mentation [27, 28, 9] using fusion between RGB images and

optical flow and depth. Several methods have been visited

to fuse camera and LiDAR sensors for various tasks such

as [24] which implemented an algorithm for 3D semantic

segmentation. Pedestrian detection has been improved sig-

nificantly using fusion between RGB images and infrared

maps [16, 20, 37]. Modern vehicles are usually equipped

with various sensors to perceive the environment which we

propose to leverage using a deep fusion network.



3. Methodology

In this section we discuss dataset preparation, and the

proposed architecture for our experiments.

3.1. Dataset Preparation

Our proposed method fuses color images with motion

signals obtained from different sensors to generate motion

masks as output. In this section we describe the inputs

preparation and outputs of our architecture.

Annotations Generation: In order to train our deep model

for maximum generalization on the motion segmentation

task, we need motion masks annotations from a large

driving dataset. There is huge limitation in publicly

available datasets regarding moving objects detection.

Siam et al. [32] provides 1300 images only with weak

annotation for MOD task. Valada et al. [36] provides

255 annotated frames only on KITTI dataset, and 3475

annotated frames on Cityscapes [3] dataset. Cityscapes

does not have LiDAR point clouds, and therefore will not

be helpful for our low-light purposes. Behley et al. [1]

provides MOD annotations for 3D point clouds only, but

not for dense pixels. We therefore build our own Motion

Object Detection dataset. For that, we adopt the method

in [32] to generate motion masks from KITTI in order

to extend the KittiMoSeg dataset. Initially, we project

the existing 3D bounding boxes from 3D LiDAR frame

to 2D pixel coordinate system, as use the given tracking

information to compute velocity vectors for each of the

surrounding objects in 3D space. In addition, we use GPS

readings to compute the ego-vehicle velocity vector for the

camera sensor where the difference between both velocities

is calculated and compared to a threshold for classifying

the objects as moving or static. Finally, MaskRCNN [10]

segmentation masks are used for refining the obtained

output masks. We applied this approach on KITTI-raw

frames which have corresponding LiDAR points clouds

and tracklets information, obtaining a dataset with a total

number of 12919 frames which we split into 80% for

training and 20% for testing.

Color Signal: Our objective is to develop a complete

system for moving object detection to work robustly under

any illumination condition. For that purpose we require

to evaluate our algorithm, in addition to conventional AD

scenes, into other more challenging low illumination envi-

ronments where camera-only based systems would fail due

to the lack of textured information. As far as we know, there

exists no dataset providing low-illumination or night scenes

in addition to the information needed to generate our MOD

annotation. For that reason, we make use of the Image-to-

Image translation technique of [22] to generate dark images

from the KITTI dataset that mimic night AD scenes. To

Figure 2: An example of our different night generation

methods, Top to Bottom: Input KITTI Image, Neural Style

Transfer [21], CycleGAN[43], UNIT[22]

be able to generate dark realistic frames, we trained UNIT

[22] network using 2000 KITTI[8] images and 2000 night

images from [41]. Figure 2 shows a sample of our newly

generated dataset which we call Dark-KITTI. It comprises

of 12919 night images corresponding to KITTI-raw frames.

Other approaches such as [44, 21] have been attempted

to simulate Dark-KITTI images, however we found [22]

to be more realistic as illustrated in the final row of Figure 2.

Motion Signal: The key input for moving object detection

that we give to our system is the motion information ob-

tained from the scene. In order to build an illumination-

independent system, we intend to perceive motion from

both camera and LiDAR sensors. Motion can be either im-

plicitly learned from temporally sequential frames, or pro-

vided explicitly to the system through an input motion map,

as for example optical flow maps. For obtaining motion

from LiDAR information, we leverage a recent approach

[35] that learns to model optical flow maps from LiDAR

point clouds. Using this approach, we have the advantage

of understanding motion of the surrounding scene even in

darkness because LiDAR is illumination independent. In

addition to these optical flow maps from LiDAR which

we term as “lidarFlow”, we generate image-based optical

flow using the FlowNet [13] algorithm over RGB images

which we term as “rgbFlow”. There is a significant degrada-

tion on rgbFlow when it is generated from the Dark-KITTI

dataset compared to standard KITTI frames, which is ex-

pected given that rgbFlow is illumination-dependent.

In our experiments, we prove that both lidarFlow and rg-

bFlow are complementary to each other and that the inclu-



sion of LiDAR-based motion signals significantly improve

MOD results. In order to align our images with the output

from [35], we crop the upper part of the dataset frames to

be 256x1224 which has no impact on MOD because the

moving objects are in the lower part of the image. Fig-

ure 3 shows a sample of our generated Dark-KITTI dataset

along with the corresponding optical flow maps generated

from [13, 35]. It can be observed that RgbFlow using high-

illumination images during day provide high intensity mo-

tion vectors. However, there exists some distortions such as

the ones due to shadow on the ground as illustrated on the

3rd row in Figure 3, where shadow pixels are perceived as

moving pixels and also combined with the moving pixels

from the cars. For low-illumination rgbFlow in the fourth

row, it can be appreciated that it is hard for image-based

optical flow algorithms to compute motion vectors in bad

lighting conditions, obtaining more distortions in the output

flow map. On the other hand, lidarFlow in the final row pro-

vides improved optical flow in such challenging conditions

where there are less distortions than rgbFlow at night, and

no shadow-based distortion because LiDAR does not cap-

ture color textures. Yet, due to the sparsity of the LiDAR

point clouds which increases with further objects, motion

of far objects is modelled with difficulty compared to flow

maps from dense RGB images.

3.2. Network Architecture

In this section, we detail our baseline architectures, and

the different implemented fusion approaches.

Baseline Architecture: We set our baseline based on

[7], which presents an encoder-decoder schema. Our en-

coder is responsible of extracting features before the upsam-

pling phase done by the decoder and is based on [42], which

uses point-wise group convolutions and channel shuffling.

This in turn reduces computation cost at a high accuracy

level which is perfect for a real-time application such as

needed on autonomous driving systems. Our decoder is

based on [23] which is composed of three deconvolution

layers that provide the final output image size. This ap-

proach has the advantage of low complexity as well as pro-

vides a lightweight network architecture able to fit on au-

tonomous driving embedded platforms. Detailed analysis of

efficient design techniques for segmentation is discussed in

[31, 2]. Two classes are used to train the network, i.e, Mov-

ing and Non-Moving. In addition to the static objects, back-

ground pixels are considered as Non-Moving, therefore the

number of static pixels exceeds the number of moving pix-

els. Weighted cross-entropy is used to overcome this class

imbalance problem. We make use of this architecture to

evaluate a baseline performance using RGB images only.

Early Fusion: Early-Fusion is referred to as data-fusion

where fusion is done on the data level before any feature

Figure 3: Sample from our Dark-KITTI dataset and the cor-

responding optical flow images. Top to Bottom: KITTI

image; Dark-KITTI image; rgbFlow from KITTI image us-

ing FlowNet[13]; degraded rgbFlow on Dark-KITTI image;

lidarFlow[35] obtained just using LiDAR information.

extraction. The same baseline network architecture is uti-

lized in this case, however the input data is concatenated at

the very beginning. This architecture has the advantage of

low-complexity compared to Mid-Fusion approach, as the

number of weights is kept similar to the baseline architec-

ture being the main difference on the input layer only.

Mid Fusion: Mid-Fusion refers to feature-level-fusion

where features are extracted from each input separately us-

ing an encoder that is exclusive to each input. Fusion is

done by concatenating feature maps that are generated from

each stream before upsampling in the decoder. This archi-

tecture provides the best fusion performance, however it has

higher cost than early-fusion as the number of weights in the

encoder part is doubled.

Hybrid Fusion: This architecture makes use of both

early and mid-Fusion. We use it in various experiments as

illustrated in Table 1, in an attempt to maximize the benefit

of the input modalities while avoiding too much complex-

ity for the model at hand. For instance, we fuse 4 inputs,

i.e, RGB, rgbFlow, lidarFlow, LiDAR depth through early-

fusion in one branch between RGB and rgbFlow, and early-

fusion in another branch for LiDAR depth and lidarFlow.

The output of both branches is fused through Mid-Fusion.

Proposed Architecture: We aim at finding the best

schema to combine RGB images, rgbFlow and lidarFlow.

For that purpose, we construct a three-stream mid-Fusion



Figure 4: Top: Baseline architecture based on [7]. Bottom: Proposed fusion architecture.

network which has three encoders for RGB, rgbFlow and

lidarFlow separately. We evaluate this approach on KITTI

and Dark-KITTI datasets, where results demonstrate the im-

proved performance on both datasets as detailed in section

4.2.

4. Experiments

4.1. Experimental Setup

In all our experiments, ShuffleSeg [7] model was used

with pretrained ShuffleNet encoder on Cityscapes dataset

for Semantic Segmentation. For the decoder part, FCN8s

decoder has been utilized with randomly initialized weights.

L2 regularization with weight decay rate of 5e−4 and Batch

Normalization are incorporated. We trained all our mod-

els End-To-End with weighted binary cross-entropy loss for

200 epochs and batch size 6. Adam optimizer is used with

learning rate of 1e−4. For inputs with number n of channels

lower than 3, we discarded the difference of depth from the

filters of the first convolutional layer. For the rest of inputs,

we increased the depth of the filters by the first n channels

of the single filter to match the first layer with the new input

shape, initializing the corresponding weights randomly.

4.2. Experimental Results

We provide a table of quantitative results for both day

and night images evaluated on KITTI and Dark-KITTI

datasets. Qualitative evaluation on both datasets is illus-

trated in Figure 5.

Table 1 demonstrates our results using mean IoU met-

ric for both moving and background class and IoU for the

moving objects, in addition to class-wise IoU for “Moving”

class. We refer to early-fusion by “x” while “+” denotes

mid-fusion where both of them together imply hybrid fu-



sion. RGB-only experiments serve as a baseline for compar-

ative purpose where we evaluate our network architecture to

segment moving objects using color information only with-

out either explicit or implicit motion signal for the network.

Significant improvement for 13% in moving class IoU has

been observed after fusion with optical flow, which is con-

sistent with previous conclusions in [32, 29]. We attempt

to minimize complexity through early-fusion architecture

as we focus on real-time architecture for autonomous driv-

ing. However it is found that early-fusion architecture only

(RGB x rgbFlow) is not capable of extracting the required

features compared to Mid-Fusion which is consistent with

other literature such as [27, 4]. Thus we continue our ex-

periments using Mid or Hybrid fusion. Mid-Fusion exper-

iment with rgbFlow (RGB + rgbFlow) serves as a compar-

ison baseline as well because our motivation is to evaluate

the augmentation of motion information from LiDAR sen-

sor. (RGB + lidarFlow) shows improved performance over

RGB-only, however overall accuracy is still below (RGB +

rgbFlow).

Nevertheless, we argue that both lidarFlow and rgbFlow

are complementary to each other where rgbFlow benefits

from dense color information which is helpful to understand

motion for far objects, however illumination plays a great

role in the quality of optical flow from RGB images. On

the other hand, lidarFlow might not provide the best mo-

tion estimate of far objects due to increased sparsity when

the objects are far away, however, it is illumination inde-

pendent due to relying on TOF concept which is perfect for

low illumination scenes motion estimation. Our approach

is proven experimentally through the (RGB + rgbFlow +

lidarFlow) experiment where we obtain absolute improve-

ment of 4% and relative improvement of 10% in IoU over

(RGB + rgbFlow). We attempt to fuse optical flow informa-

tion before feature extraction through hybrid-fusion (RGB

+ (rgbFlow x lidarFlow)), in addition to experimentation

of leveraging depth points through a two stream approach

(RGB x rgbFlow) + (LiDAR x lidarFlow). LidarFlow aug-

mentation shows improvement in results over the baseline

(RGB + rgbFlow) which proves our approach. However,

our three-stream approach gives the network more flexibil-

ity to combine features from each input for maximum accu-

racy.

Implicit motion learning has been explored in (RGB time

t x RGB time t+1) + (LiDAR depth t x LiDAR depth t+1)

where the network is expected to learn motion implicitly

without optical flow computation. An improvement is ob-

served compared to RGB-only baseline however we obtain

degradation in performance compared to explicit motion

learning, and this is expected because the network learns

to model motion vectors implicitly in addition to its origi-

nal task which is MOD. We evaluate our approach on KITTI

dataset, and we show that lidarFlow augmentation improves

Table 1: Quantitative results on KITTI and Dark-KITTI.

“+” refers to Mid-Fusion. “x” refers to Early-Fusion. Both

together refer to Hybrid-Fusion.

Type mIoU Moving IoU

Dark-KITTI

RGB-only 62.6 26.5

RGB + rgbFlow 69.2 39.5

RGB x rgbFlow 61.68 24.86

RGB + lidarFlow 68.7 38.5

(RGB time t x RGB time t+1) +

(LiDAR depth t x LiDAR depth t+1)
66.26 33.83

(RGB x rgbFlow) + (LiDAR depth x

lidarFlow)
69.92 40.93

RGB + (rgbFlow x lidarFlow) 69.8 40.75

RGB + rgbFlow + lidarFlow 71.2 43.5

KITTI

RGB-only 65.6 32.7

RGB + rgbFlow 74.24 49.36

RGB + lidarFlow 70.27 41.64

(RGB time t x RGB time t+1) +

(LiDAR depth t x LiDAR depth t+1)
66.68 34.67

RGB + (rgbFlow x lidarFlow) 72.21 45.45

RGB + rgbFlow + lidarFlow 75.3 51.46

Table 2: Comparison between the tested architectures for

MOD task. Frame per second (fps) is used as a metric to

evaluate real-time performance. Evaluation is performed on

256x1224 resolution images on Titan X Pascal GPU.

Type fps

Baseline architecture 40

Two-Stream Mid-Fusion architecture 25

Three-Stream proposed Mid-Fusion architecture 18

accuracy of moving objects even in high-illumination im-

ages where 2% improvement in IoU is observed compared

to camera-only solution. These results demonstrate that our

approach is beneficial for motion segmentation task regard-

less of illumination parameter which was a drawback in the

previous literature.

Figure 5 demonstrates our results obtained in Table 1.

The first column shows results of our algorithm on KITTI

dataset and the second one reports Dark-KITTI results. The

input RGB images are shown in the first row. The second

row shows the input optical flow maps of KITTI and Dark-

KITTI. The third row shows lidarFlow map and ground

truth. Fourth row reports results of MOD using only color

information as an input. It is shown that the network only

learned to segment the cars and not the moving cars as

shown in both KITTI and Dark-KITTI results. Some of

the parked cars are not segmented because it might be im-

plicitly learned that cars in that position are not interesting.

However, this is not based on motion information, and this



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure 5: Qualitative comparison of our algorithm on KITTI and Dark-KITTI datasets. First column shows inputs and results

on KITTI while second shows results on Dark-KITTI. (a),(b) show the input RGB images. (c),(d) show rgbFlow. (e) shows

lidarFlow. (f) shows Ground Truth. (g),(h) show output using RGB-only. (i),(j) show output of (RGB + rgbFlow). (k),(l)

show output of (RGB + lidarFlow). (m),(n) show output of (RGB + rgbFlow + lidarFlow).

is expected because there is no motion information given to

the algorithm either explicitly or implicitly.

In Dark-KITTI, only two vehicles are segmented be-

cause of low illumination where it is even hard to segment

them using human eyes. Fusion with optical flow in the

fifth row has improved results significantly on both datasets

however, there are too many false positives in Dark-KITTI

dataset as in (h) due to inaccurate optical flow because of

low illumination of the scene. The sixth row shows re-

sults of fusion of color information from camera and mo-

tion information from LiDAR. Results show improved per-

formance over (RGB + rgbFlow) especially on Dark-KITTI

dataset. This is due to illumination independent optical flow

from lidarFlow [35]. However, far objects are still not cap-

tured correctly due to increased sparsity with far objects.

The seventh row demonstrate the results of our proposed ar-

chitecture which combines color information, motion infor-

mation from both camera and LiDAR sensors. Results show

the benefit of fusion where the network was able to max-

imize accuracy from both sensors and segment the scene

moving objects.

Figure 6 shows an example of failure of our algorithm

where it is shown that output without augmentation of li-

darFlow in a high-illumination image is slightly better than

using lidarFlow. In this sample, the ego-vehicle is static,

and there is only one car that is moving in the scene as il-

lustrated in ground truth. The rgbFlow obtained during day

which is shown in (c) provides maximum accuracy when

it is fused with RGB as illustrated in (i). Due to inaccu-

rate motion map obtained from LiDAR which is shown in

(e), some distortions took place when this input was fused

with rgbFlow. This is illustrated in (m) compared to (i).

However, the distortion is minimal where the network is

still able to learn motion mask correctly even with noisy li-



(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure 6: Qualitative comparison of our algorithm on KITTI and Dark-KITTI datasets. First column shows inputs and results

on KITTI while second shows results on Dark-KITTI. (a),(b) show the input RGB images. (c),(d) show rgbFlow. (e) shows

lidarFlow. (f) shows Ground Truth. (g),(h) show output using RGB-only. (i),(j) show output of (RGB + rgbFlow). (k),(l)

show output of (RGB + lidarFlow). (m),(n) show output of (RGB + rgbFlow + lidarFlow).

darFlow. Moreover, overall moving IoU has improved with

2% after augmentation of lidarFlow with rgbFlow for high-

illumination images as illustrated in Table 1. On the other

hand, for Dark-KITTI dataset, the fusion with the noisy li-

darFlow improves performance of low-illumination images

as illustrated in (n) compared to (j) which provides that our

algorithm is illumination independent and works perfectly

in all lighting conditions. Table 2 shows real-time evalu-

ation performance of our algorithm. Our proposed model

runs 18 fps which is suitable for real-time application such

as the autonomous driving. The results are reported using

images of resolution 256x1224 on Titan X Pascal GPU.

5. Conclusions

We explored the impact of leveraging LiDAR sensor for

understanding scene motion for MOD especially for low-

illumination autonomous driving conditions. We created

our own dataset Dark-KITTI to evaluate our algorithm in

low-light conditions by extending the public MOD dataset

[32]. We constructed different fusion algorithms to empiri-

cally study best fusion methodology. We proposed a novel

architecture that fuses color signal with motion information

that is captured from both camera and LiDAR sensors. Our

model is evaluated on both night and day images and we ob-

tain improved performance in both of them. The proposed

architecture is designed for real-time performance for au-

tonomous driving application where our most complex al-

gorithm runs at 18 fps. We hope that this study encourages

further research in construction of better fusion networks.
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