
SteReFo: Efficient Image Refocusing with Stereo Vision

Benjamin Busam∗,1,2

b.busam@tum.de
Matthieu Hog∗,1

matthieu.hog@huawei.com
Steven McDonagh1

steven.mcdonagh@huawei.com

∗equal contribution

Gregory Slabaugh1

gregory.slabaugh@huawei.com

1Huawei Noah’s Ark Lab 2Technical University of Munich

Abstract

Whether to attract viewer attention to a particular object,

give the impression of depth or simply reproduce human-

like scene perception, shallow depth of field images are

used extensively by professional and amateur photogra-

phers alike. To this end, high quality optical systems are

used in DSLR cameras to focus on a specific depth plane

while producing visually pleasing bokeh.

We propose a physically motivated pipeline to mimic this

effect from all-in-focus stereo images, typically retrieved by

mobile cameras. It is capable to change the focal plane a

posteriori at 76 FPS on KITTI [13] images to enable real-

time applications. As our portmanteau suggests, SteReFo

interrelates stereo-based depth estimation and refocusing

efficiently. In contrast to other approaches, our pipeline

is simultaneously fully differentiable, physically motivated,

and agnostic to scene content. It also enables computa-

tional video focus tracking for moving objects in addition

to refocusing of static images. We evaluate our approach

on publicly available datasets [13, 33, 9] and quantify the

quality of architectural changes.

1. Introduction

Motivation. Around the turn of the millennium, Japanese

photographers coined the term bokeh for the soft, circu-

lar out-of-focus highlights produced by near circular aper-

tures [41]. To this day, bokeh is a sign of high quality

photographs acquired using professional equipment, closely

linked to the depth of field of the optical system in use [36].

Historically, producing such photos has been exclusively

possible with high-end DSLRs. Synthesizing the effect of

such high-end hardware finds application in particular in

consumer mobile devices where the goal is to mimic the

physical effects of high-quality lenses in silico [19]. Due

to the inherent narrow aperture of cost-efficient optical sys-

tems commonly used in mobile phones, the acquired image

is all-in-focus. This property hampers the natural image

background defocus often desired in many types of scene

Figure 1: SteReFo on video sequence of [13]. A disparity

map is computed from binocular images while a 2D tracker

provides a bounding box (green) to look up the focus depth

on the object of interest (the cyclist). With the retrieved

depth, the proposed differentiable refocusing stage (white

arrow) is utilized to refocus the input frame. The refocused

image is in focus in areas that are equal in depth to the cy-

clist (left) while closer (right) and more distant regions are

blurred.

capture, such as portrait images.

To address this problem a trend has emerged, where shal-

low depth of field images are computationally synthesized

from all-in-focus images [50], usually by leveraging a depth

estimation. In the rest of the paper we refer to this task as

refocusing.

Drawbacks of recent approaches. The portrait mode of

recent smartphones uses depth estimation from monocu-

lar [51] or dual-pixel [50] cameras. To circumvent depth

estimation errors, previous approaches rely heavily on seg-

mentation of a single salient object, making them limited to

scenes with a unique, predominant region of interest. More-

over, this restriction limits the applicability of the underly-

ing refocusing pipeline in other use cases such as object-

agnostic image and video refocusing.

Contributions and Outline. We present a general ap-

proach that utilizes stereo vision to refocus images and

videos (cf. Fig. 1). Our pipeline, entitled SteReFo, lever-

ages the state-of-the-art in efficient stereo depth estimation

to obtain a high-quality disparity map and uses a fast, dif-



Figure 2: Computational refocusing of an image from [9]. On the left, one input image (from the stereo pair) together with

the intermediate disparity map is illustrated while the right part depicts a continuous sequential refocusing on depth planes

from far (1) to close (10). Note the smooth transition of the refocus plane, not feasible with segmentation approaches. Also,

note the physically motivated radial bokeh effect on the right traffic light in (7), (8) similar to the effects produced by high-end

DSLR equipment. Stereo imagery enables in particular high depth precision for sharp boundaries which can be observed e.g.

on the right side of the red car.

ferentiable layered refocusing algorithm to perform the re-

focusing (Fig. 3 shows the overall pipeline). A total run-

time of 0.14 sec (0.11 sec for depth and 0.03 sec for refo-

cusing) makes it computationally tractable for portable de-

vices. Moreover, our method is agnostic to objects present

in the scene and the user retains full control of both blur

intensity and focal plane (cf. Fig. 2). We also conduct a

study to assess the optimal way to combine depth informa-

tion with the proposed layered refocusing algorithm. Unlike

previous work, we quantify the refocus quality of our meth-

ods by means of a perceptual metric. More specifically, our

contributions are:

1. An efficient pipeline for refocusing from stereo im-

ages at interactive frame-rates with a differentiable

formulation of refocusing for modular use in neural

networks.

2. The proposal and study of novel architectures to com-

bine stereo vision and refocusing for physically mo-

tivated bokeh.

3. Both qualitative and quantitative analysis of our ap-

proach on synthetic and real images from Scene-

Flow [33], KITTI [13] and CityScapes [9].

4. A combination of 2D tracking and depth-based re-

focusing to enable computational focus tracking in

videos with tractable computational complexity.

To the best of our knowledge, SteReFo is the first method

that is jointly trainable for stereo depth and refocusing,

made possible by the efficient design of our differentiable

refocusing. Our model makes effective refocusing attain-

able, yet the approach does not require semantic priors and

is not limited in blur intensity. We show that it is possi-

ble to mimic the manual refocusing effects found in video

acquisition systems by autonomous parameter adjustment.

2. Related Literature

Large bodies of work exist in the domains of both vision-

based depth estimation and computational refocusing. We

Figure 3: The refocusing pipeline. A stereo pair of all-in-

focus images is processed by the depth estimation module

which outputs a disparity map. The disparity map together

with one input image and the refocus parameters are the

input for our efficient refocusing pipeline which leverages

the proposed layered depth of field to virtually set a focus

plane to refocus the input image.

briefly review work most relevant to ours, putting our con-

tributions into context.

2.1. Depth Estimation

Depth estimation from imagery is a well studied prob-

lem with a long history to perform estimation from im-

age pairs [43, 30, 47], from temporal image sequences

in classical structure from motion (SfM) [12, 22] and si-

multaneous localization and mapping (SLAM) [18, 35, 11]

and reasoning about overlapping images with varying view-

point [2, 26]. In addition, the task of single image depth

estimation has shown recent progress using contemporary

learning based methods [29, 14, 16, 32].

Monocular vision. Deep learning based monocular depth

estimation employ CNNs to directly infer depth from a

static monocular image. They are either trained fully super-

vised (with a synthetic dataset or ground truth from differ-

ent sensors) [10, 29] or leverage multiple cameras at train-

ing time to use photo-consistency for supervision [14, 40].



However, these approaches are in general tailored for a spe-

cific use case and suffer from domain shift errors.To ad-

dress this drawback, stereo matching [16] or multi-view

stereo [32] can be used as a proxy. While these recent

approaches estimate reliable depth values, the depth often

suffers from over-smoothing [15] which manifests as “fly-

ing pixels” in the free space found across depth disconti-

nuities. Accurately and faithfully reproducing such bound-

aries is, however, critically important for subsequent refo-

cusing quality. Therefore we focus our approach on a binoc-

ular stereo cue.

Multi-view prediction. For high-accuracy depth maps

that preserve precise object boundaries, multiple views are

still necessary [44] and binocular stereo is supported by

large synthetic [33] as well as real datasets (cf. KITTI [13],

CityScapes [9]). Leveraging this data, StereoNet [25] uses

a hierarchical disparity prediction network with a deep vi-

sual feature backbone which is capable of running at 60 FPS

on a consumer GPU. Its successor [56] extends the work

with self-supervision to the domain of active sensing while

maintaining the core efficiency. We build upon their work

to leverage this computational advantage.

More recently, Tonioni et al. [48] have proposed a way to

perform continuous online domain adaptation for disparity

estimation with real-time applicability.

Other modalities and applications. Fusion of different

visual cues can boost accuracy of individual tasks. Leverag-

ing temporal stereo sequences for unsupervised monocular

depth and pose estimation, e.g. by warping deep features,

improves the accuracy of both tasks [55]. With the same

result, Zou et al. [60] jointly train for optical flow, pose and

depth estimation simultaneously while Jiao et al. [23] mu-

tually improve semantics and depth and GeoNet [53] jointly

estimates depth, optical flow and camera pose from video.

Fully unsupervised monocular depth and visual odome-

try can also be entangled [58] and 3D mapping applica-

tions [57] are realized by heavily relying on dense optical

flow in 2D and 3D. Despite the superiority of these ap-

proaches, they suffer from larger computational burden or

come at the cost of additional training data.

2.2. Refocusing

Refocusing algorithms are heavily utilized in video-games

and animated movie production. A plethora of approaches

has been proposed for shallow depth of field rendering in the

computer graphics community. We follow the taxonomy in

[38] and refer the reader to [5] for a complete survey.The

first style of approach uses ray tracing to accurately repro-

duce the ray integration performed in a camera body. While

some approaches focus on physical accuracy [39] and oth-

ers on (relative) speed [52], these methods are very com-

putationally expensive (up to hours per frame ). It is also

(a) Reference Image

(b) Yang [52] (c) Radial

(d) Gaussian (e) Wang [51]

Figure 4: Refocusing results from different blurring tech-

niques. We display the reference image (a) used by Wang

et al. [51], and a crop for the different results from a pseudo

ray-traced approach [52] (b), a simple radial blur (c), a sim-

ple Gaussian blur (d) and the result in [51] (e). We observe

that the blurred regions for the Gaussian blur and [51] lack

the distinctive bokeh aspect of DSLR, while physically mo-

tivated approaches such as the ray-traced approach and the

radial blur, preserve well the bokeh. The latter serves as a

backbone in our pipeline (Alg. 1).

possible to render a set of views, at different viewpoints,

with fast classical rasterization techniques (i.e. creating a

light-field [31]). Views are then accumulated to produce a

refocused image [17]. However, this requires the scene to

be rendered using an amount of time quadratic in the size

of the maximum equivalent blur kernel, which is computa-

tionally intractable.

This point motivated approaches that seek to reproduce the

blur in the image domain directly. Applying depth-adaptive

blur kernels can be formulated as scatter [28] or gather [42]

operations. While the first is hard to parallelize, the latter

suffers from sharply blurred object edges and intensity leak-

age. Moreover, because the blur kernel is different for each

pixel, these approaches are hard to optimize for GPUs [51].

Finally, the last class of algorithms represents the scenes as

depth layers in order to apply blur with fixed kernels sepa-

rately [27]. We give special attention to this type of algo-

rithm in Sec. 3.1.

Refocusing pipelines. In contrast to computer graphics,

where scene depth and occluded parts can be retrieved eas-

ily, in computer vision, the estimated depth is often noisy

and background information is not necessarily available due

to the projective nature of cameras.

This issue can be addressed through a hole filling task for

missing pixel depth [8] or by leveraging an efficient bilat-

eral solver for stereo-based depth [4].Yu et al. [54] directly

reconstruct such a light field from stereo images, similar

to the techniques discussed previously. It leverages depth

estimation, forward warping plus inpainting to reconstruct



a reasonable number of views that can be interpolated and

summed to render the final image. The same idea is pre-

sented in [46], but the approach is fully learned with sin-

gle image input and light field supervision. Zhu et al. [59]

consider a refocus task using smartphone-to-DSLR image

translation. However, authors concede that average perfor-

mance is considerably worse than highlighted results.

More recently, in [50] is presented a complete pipeline that

computes a person segmentation, a depth map from dual

pixel and finally the refocused image. While the results are

visually compelling, the method is limited to focusing on

a person in the image foreground. In [51], the authors de-

compose the problem into three modules: monocular depth

estimation, blurring and upsampling. While the approach

provides visually pleasing images it is unclear how it gener-

alizes, given its fully synthetic training set. Due to the blur

step being completely learned, we observed that the images

lack the distinctive circular bokeh that professional DSLR

cameras produce (see Fig. 4).

Finally, Srinivasan et al. [45] proposes light field synthesis

and supervision with refocused images (i.e. aperture super-

vision) to learn refocusing. Due to the synthesis of a mul-

titude of views in the first approach, it does not scale well

with large kernels. The latter uses the all-in-focus image

with a variety of radial kernels and the network is trained to

select, for each pixel, which blur value is most likely. The

final image is a composition of these blurred images. This

approach has the limitation that both the focal plane and the

aperture are fixed and cannot be manipulated by a user. In

contrast, we want to keep the system parameterizable.

3. Methodology

As illustrated in Fig. 3, our pipeline is split into two mod-

ules: depth estimation and refocusing. The inputs to the

pipeline are a pair of rectified left and right stereo images.

A focus plane and an aperture are two user-controllable pa-

rameters. In the following, we explain our proposal for the

SteReFo module of Fig. 3 in four different variants which

we compare subsequently.

3.1. Disparity Estimation

To produce high quality depth maps, our architecture takes

inspiration from two state-of-the-art pipelines for real-

time disparity prediction, namely StereoNet [25] and Ac-

tiveStereoNet [56] which estimate a subpixel precise low-

resolution disparity map that is consecutively upsampled

and refined with RGB-guidance from the reference image.

Our depth estimation network consists of two Siamese tow-

ers with shared weights that extract deep image features at

1/8 of the stereo pair resolution following the architecture

described in [56]. We construct a cost volume (CV) by con-

catenation of the displaced features along the epipolar lines

of the rectified input images. The discretization is chosen

Algorithm 1: The layered depth of field base algorithm

used in our approach.

Input : All-in-focus Image I with associated

disparity map D, focus plane df , aperture a,

and disparity range [dmin, dmax]
Output: Image Ib refocused on the depth plane df

1 Is = [0]
2 Ms = [0]

3 for d ← dmin to dmax by 1

a
do

4 Md = |D − d| < 1

a

5 Id = Md ◦ I

6 r = a · (d− df )

7 Md
b = Md ∗K(r)

8 Idb = Id ∗K(r)

9 Ms = Ms ◦ (1−Md
b ) +Md

b

10 Is = Is ◦ (1−Md
b ) + Idb

11 end

12 Ib = Is ⊘Ms

to include 18 bins. A shifted version of the differentiable

ArgMin operator [24] recovers disparities from i = 0 to

Dmax = 17 where the disparities are given by

di =

Dmax+1
∑

d=1

d · σ (−Ci (d))− 1 (1)

with the softmax operator σ and the cost Ci. The low reso-

lution disparity map defined in Eq. 1 is then hierarchically

upsampled ( 1
8
→ 1

4
→ 1

2
→ full resolution) using bilin-

ear interpolation. Following the idea of Khamis et al. [25],

we use residual refinement to recover high-frequency de-

tails. Prior to stacking the resized image and low-resolution

disparity map, we pass both individually through a small

network with 1 convolution and 3 ResNet [20] blocks, as

we observed this robustifies our depth prediction quality.

The module is trained using a Barron loss [3] with parame-

ters α = 1, c = 2 and RMSProp [21] optimization with an

exponentially decaying learning rate.

3.2. Efficient Layered Depth of Field

Our refocusing module utilizes layered depth of field ren-

dering to enable efficient refocusing. The core idea of

layered depth of field rendering [27] is to first decompose

the scene into depth layers in order to separately blur each

layer before compositing them back together. In contrast to

[51], which learns kernel weights, this physically motivated

choice directly reflects the effects obtained by DSLR lenses

while providing an appropriate balance between efficiency

and accuracy for our runtime requirements. Using this ap-

proach, the blur operation is applied by combining fixed-

kernel convolutions, that make it very efficient in practice



due to contemporary GPU convolutional implementations.

We describe the algorithm in Alg. 1, where the ◦ and ⊘
notation are used for the entrywise Hadamard product and

division respectively, and ∗ denotes convolution. We start

from an all-in-focus image I with its associated disparity

map D, a user-set focus plane df , an aperture a and a dis-

parity range [dmin, dmax] defined by the stereo setup capa-

bilities. Is and Ms are two accumulation buffers. We sweep

the scene from back to front within a given disparity range

using a step size of (optimally) 1

a
. A mask Md, defining

the zones within a disparity window around the disparity

plane d, is used to extract the corresponding texture of ob-

jects within depth plane Id. The corresponding blur radius

r is computed from the distance of the focal plane df to

the current depth plane d and the given aperture a. The

extracted mask and texture are blurred with a radial kernel

K(r) of diameter r. The blurred mask and texture are accu-

mulated in the buffers Is and Ms, overwriting the previous

values where the mask is not 0, in order to handle clipping

in the blur (i.e. prevent out of focus regions to bleed into

in-focus regions). The final blurred image Ib is rendered by

normalizing the accumulated blur texture with the accumu-

lated masks.

Adaptive downsampling. We alter the base algorithm de-

scribed in Section 3.1 in two ways. To further increase the

efficiency of the pipeline, we set a maximum kernel size

kmax that may be applied. For a given disparity plane d, we

resize the input image by a factor of γ = ⌈2r + 1⌉ /kmax

and apply the convolution with a kernel size K(γ · r). The

blur result is then upsampled to full resolution using bilin-

ear interpolation. While this is an approximation, the visual

difference is marginal due to its application to out of focus

regions. However, the computational efficiency is improved

by several orders of magnitude (cf. Sec. 4.2).

Differentiablility. The second modification we carry out

is making this algorithm differentiable in order to use it in

an end-to-end trainable pipeline. In Alg. 1, it can be ob-

served that all operations carried out are differentiable, ex-

cept for computation of the mask which relies on the non-

smooth less than operator in line 4. By expressing this op-

erator using the Heaviside step function, the mask compu-

tation can be written as:

Md = H

(

1

a
− |D − d|

)

where H(x) =

{

0 x<0

1 x≥0
(2)

While the Heaviside step function itself is non-

differentiable, a smooth approximation is given by

Ĥ(x) = 1

2
+ 1

2
tanh(x). Hence we can replace line 4 in

Alg. 1 with

M̂d =
1

2
+

1

2
tanh

(

α ·

(

1

a
− |D − d|

))

(3)

where α controls the transition sharpness of the Heaviside

step function approximation. We empirically set α = 103.

3.3. Refocusing Architectures

To intertwine stereo depth estimation and refocusing in

SteReFo, we investigate the four architectures illustrated in

Fig. 5. The first (A1), dubbed Sequential depth, takes the

disparity, estimated from the stereo network, at full reso-

lution and uses it in the layered depth of field technique

described in Section 3.1. While the first part is supervised

with the ground truth depth, the second stage is not learned.

Sequential aperture (A2) is a variation of the first architec-

ture where aperture supervision is used to train the network

end-to-end from the blur module. A ground truth blurred

image is used instead of the depth, and the loss is defined in

the final image domain by applying a pixel-wise Euclidean

loss. This is possible thanks to the differentiability of the

refocusing algorithm. We use an image refocused with the

ground truth disparity for supervision.

The third technique, B, leverages the fact that the cost vol-

ume of the stereo network provides a scene representation

very similar to the layer decomposition used in the blur-

ring algorithm. We use each slice of the cost volume (after

the StereoNet ArgMin step) directly as a mask Md. We

note these slices are of low resolution (1/8 of the input) and

therefore bilinearly upsample and refine them using a net-

work with shared weights, up to the resolution required to

apply the blurring convolution with a kernel of maximum

size kmax. To train this network, we again use images

blurred with the ground truth depth map and supervise with

an L2 loss. A pretrained StereoNet is utilized for which the

weights are frozen before the cost volume computation step.

The refinement network uses the same blocks as in a refine-

ment scale of ActiveStereoNet [56]. We call this method

cost volume refinement.

Branch C depicts a blur refinement for which we propose to

start from the 1

2
resolution depth map provided by a Stereo-

Net intermediate step, blur the image at half resolution, and

then upsample the blurred images back to full resolution us-

ing an upsampling akin to [56]. Once again, the network is

trained with an L2 loss on a ground truth blurred image and

the weights of the StereoNet part, up to the second refine-

ment scale are frozen.

4. Experimental Evaluation

In the following section we provide qualitative and quan-

titative analysis of our approach on synthetic and real im-

agery using the public datasets SceneFlow [33], KITTI [13]

and CityScapes [9]. All experiments are conducted on an

Intel(R) Core(TM) i7-8700 CPU machine at 3.20 GHz and

we trained all neural networks until convergence using an

NVidia GeForce GTX 1080 Ti GPU with Tensorflow [1].



Figure 5: SteReFo architectures. A Siamese tower extracts deep features from a stereo pair which form a cost volume. Four

instantiations of our pipeline are depicted. Branch A: the cost volume is then sequentially processed by a depth estimation

and differentiable refocusing module and trained with disparity (A1) or aperture (A2) supervision. Branch B: cost volume

refinement. Cost volume slices are adaptively upsampled and fed into the layered depth of field pipeline. Branch C: a low

resolution depth map is used to predict a downsized refocus image which is consecutively upsampled.

Qualitative Evaluation Metrics. Comparing the quality

of blurred images is a very challenging task. Barron et

al. [4] propose to utilize structural metrics to quantify im-

age quality with a light field ground truth. This modality

is difficult to acquire and is therefore usually not present in

real datasets of trainable size. Classical image quality met-

rics, like PSNR and SSIM, do not fully frame the perceptual

quality of refocused images [6]. Because there is no con-

sensus on what, quantitatively, makes for a good refocused

images (bokeh-wise but also in terms of object boundaries

and physical blur accuracy), subjective assessments are of-

ten used [19] and some papers exclusively focus on quali-

tative assessments [54, 52, 46, 51, 45]. In order to provide

quantitative evaluation of our results, in addition to classi-

cal metrics, we propose to utilize a perceptual metric com-

monly used by the super resolution community [7, 6], the

NIQE score [34].

In a first experiment, we use a synthetic dataset to train and

test the four different approaches described in Section 3.3.

In a second experiment we assess how our pipeline per-

forms on real data.

4.1. Architecture Comparison on Synthetic Data

We train the introduced approaches on the full 35mm driv-

ing set of SceneFlow [33] and exclude 11 frames for testing.

The virtual aperture and focal plane is fixed to a = 0.1 and

df = 100, while the disparity range is set to d ∈ [0, 300].
The maximum blur kernel size is kmax = 11.

In Fig. 6 we display the result of the forward pass on our test

images and display a representative crop example in Fig. 7.

Qualitatively we notice that, overall, the result of the se-

quential approach A1 outperforms the other three in terms

of boundaries, bokeh appearance, and blur accuracy. The

blur upsampling method C produces blurry output, even

in areas that are intended to be sharp, and we observed

a loss in the bokeh circularity. The cost volume refine-

ment approach B, although a conceptually interesting idea,

was found to introduce some high frequency artifacts in the

blurred zones and also has generally lower quality bound-

aries. Finally, aperture supervision (A2) is by far the worst

of the approaches, qualitatively, as we find high sensitivity

to uniform areas in the image in addition to poor perfor-

mance at object boundaries.

We further investigate the source of the quality drop in

Fig. 8, where we compare the output of the depth using

ground truth depth supervision and ground truth blurred

images (i.e. aperture supervision). While the depth su-

pervision retrieves disparity precision in particular along

depth discontinuities, the supervision with aperture fails to

recover small details and depth boundaries, ultimately de-

stroying the depth map gradients.

Quantifying the result. The NIQE score [34] unifies a

collection of statistical measures to judge the visual appear-

ance of an image. We initially evaluate our introduced ap-

proaches for the test images numerically in Tab. 1 and ana-

lyze the absolute difference from the ground truth retrievals



Ground Truth Sequential Depth (A1) Sequential Aperture (A2) CV Refinement (B) Blur Refinement (C)

Figure 6: Comparison of the tested approaches. Each column correspond to one method and each row to one test image. We

display on the very left column a ground truth image refocused using the provided ground truth disparity. While we invite

the reader to zoom-in to see the details, more example images are included in the supplementary material.

(a) G.T. (b) Seq. D. (c) Seq. A. (d) CV Ref. (e) Blur Up.

Figure 7: Crop on a representative artifact for the proposed

methods. (a) is the ground truth, (b) the output of the se-

quential approach with depth supervision, (c) the sequential

approach trained with aperture supervision, (d) refocusing

from the cost volume, (e) the blur upsampling.

Ground Truth Depth Supervis. Aperture Superv.

Figure 8: Depth map comparison. Left to right columns cor-

respond to ground truth disparity, the disparity from depth

supervision and from aperture supervision, respectively.

for a relative measure.

On inspection of this result, we observe that our sequential

supervision with depth provides the best quantitative perfor-

mance on all considered metrics which is in line with recent

findings [15] that show artifact removal for simple depth

estimation models. Approaches B and C are on par while

the blur refinement C was found to have the highest (worst)

relative score of 2.4 distance from the ground truth with a

better structural similarity. While the NIQE score aids dis-

covery of best performing methods for this problem (A1 vs.

others), it is not well correlated with our visual judgment of

Sequential Seq. Apert. CV Ref. Blur Ref.

NIQE ↓ 6.5±1.4 7.3±2.4 8.2±3.4 8.1±1.8
Rel. ↓ 0.1±0.04 1.2±0.8 1.7±1.1 2.4±1.8

SSIM ↑ 0.98±0.01 0.95±0.02 0.95±0.03 0.96±0.01
PSNR ↑ 39.16±1.1 36.25±1.2 36.60±1.8 36.56±1.5

Table 1: Evaluation results for perceptual [34] and struc-

tural metrics. ↓ indicates that lower, ↑ that higher is better.

the aperture supervision result. We believe this is due to the

fact that the aperture supervision image is indeed wrongly

refocused, however, it does not show many high-frequency

artifacts in contrast to the blur refinement which is also re-

flected in the classical metrics SSIM and PSNR.

Discussion. We believe our experimental work gives

valuable insight into how the tasks of depth and refocus-

ing can be entangled and the resulting benefits of doing so.

Firstly, it suggest that depth supervision, and therefore high

quality depth data, is essential for refocusing, even more

so than retrieving images that are numerically close to the

ground truth. This is quantitatively supported by the re-

trieved NIQE scores. Secondly, upsampling and refining the

depth gives better quantitative and qualitative results than

upsampling the blurred image. This suggests that the task

of correcting the depth is superior to adjusting a blurred im-

age with residual refinement, especially in the boundaries

of in-focus objects.

Counter-intuitively, upsampling and filtering the cost vol-

ume reveals to be a difficult task, and while the results are

still visually appealing, the high computational complexity

makes this approach less tractable.



Figure 9: Experiments on real data. The region of interest

is set with 2D tracking onto the number plate (middle) and

the corresponding depth value is recovered. The left illus-

trates refocusing using a depth map generated by [14] while

we show on the right the result of our sequential refocusing

pipeline, together with the underlying disparity map.

4.2. Results on Real Data

The lack of a publicly available dataset for stereo-based

refocusing approaches and the requirements of recent

methods for additional information such as segmentation

masks [51], varying aperture [45] or co-modalities given by

dual-pixel sensing [50] and light fields [4] impede a stan-

dardized evaluation protocol. In order to assess how our

approach performs on real data, we utilize that our pipeline

does not require these additional cues and use the datasets

proposed in [9] and [13]. We pick our best-performing ap-

proach, i.e. the sequential pipeline using depth supervision

(A1) and pretrain on CityScapes [9] to perform static image

refocusing (cf. Fig. 2) and refine with the coarse KITTI [13]

ground truth for temporal evaluation.

To examine the efficiency of our pipeline, we apply SteReFo

individually on consecutive frames of [13]. We utilize

correlation-filter based 2D object tracking [49] to reason

about the spatial location of objects of interest, per frame,

prior to applying image refocusing. The 2D tracker pro-

vides state-of-the-art performance at high frame rates, a

choice that makes a lightweight overall pipeline feasible.

For the sake of comparison, we also retrained the monocu-

lar depth estimation approach in [14], and refocus the video

using the generated depth as input for our layered refocus-

ing pipeline.

For both approaches, we use disparity values of d ∈ [0, 80]
and an aperture of a = 0.25, the focal plane is defined as the

median value of the disparities inside the tracking bounding

box, and kmax = 11 (cf. Fig. 1). We compare the results

directly in Fig. 9 and notice that blurring is significantly less

consistent with respect to the scene geometry in the case of

[14] compared to our approach. Indeed, the background is

defocused as if it was not at infinity, the cars appear to re-

side in the same depth plane and the lower section of the car

in the middle of the image is blurred (where it should not).

The disparity maps for each approach support these obser-

vations. The interested reader is referred to the full video

sequence https://youtu.be/sX8N702uIag.

FPS for a = 0.1 0.2 0.5 0.8

kmax = ∞ 76 17 2 0.4
kmax = 11 76 38 23 18

Table 2: Runtime evaluation of the layered refocusing

pipeline without (kmax = ∞) and with (kmax = 11) adap-

tive downsampling on images of [13]. Frames per second

are evaluated by average of 10 runs.

Timing. We evaluate the timing of our approach on real

data. The average runtime for the entire pipeline is 0.14 sec,

including 0.11 sec to compute the disparity and 0.03 sec for

refocusing. Tab. 2 shows how adaptive downsampling helps

to reduce runtime complexity in particular for wider aper-

ture values in contrast to naive refocusing, where the run-

time grows exponentially with respect to the aperture size.

Limitations. The current approach has some limitations.

The first one is inherent to all approaches relying on pyrami-

dal depth estimation: small details that are lost at the lowest

scale are difficult to recover at the upper scale which is why

thin structures are problematic for our depth estimation (cf.

the mirror of the truck in Fig. 9). The second observation

we make is that StereoNet does not perform as well on real

data as on synthetic data. Apart from the obvious difficulties

(e.g., specularities, rectification errors, noise, optical aber-

rations) real data embeds, we also believe the sparse ground

truth provided by the projected Lidar data used for super-

vision does not encourage the network to refine well at the

object boundaries. Finally, the refocusing part suffers from

the same problems as all image-based shallow DoF render-

ing techniques: it does not handle a defocus foreground very

well. This is due to the fact that we miss occluded informa-

tion when blurring from one view only.

5. Conclusion

The entanglement of stereo-based depth estimation and re-

focusing proves to be a promising solution for the task of ef-

ficient scene-aware image reblurring with appealing bokeh.

Future improvements can address a fusion with segmenta-

tion methods to enhance boundary precision similar to [37]

who entangle the task of semantic segmentation and depth

estimation in real-time. The lightweight differentiable ar-

chitecture with the insight about the value given by a se-

quential approach with depth supervision can be used for a

variety of image and video refocusing applications in other

vision pipelines that utilize our refocusing module. For in-

stance in mobile applications, an image pair is taken at one

point and different refocusing results may be calculated to

help selection by a user afterwards, and the efficiency of

our pipeline paves the way to real-time video editing appli-

cations on the edge.
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