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Abstract

Despite recent advances in Generative Adversarial Mod-

els(GAN) for image generation, significant gaps remain

concerning the generation of boundary and spatial struc-

ture. In this paper, we propose a new approach to gen-

erate edge and depth information combined with an RGB

image to solve this problem. More specifically, we propose

two new regularization models. Our first model enforces

image-depth-edge alignments by controlling the second-

order derivative of depth and the first-order derivative of

RGB maps, enforcing smoothness and consistency. The sec-

ond model leverages multiview synthesis to regularize RGB

and depth by computing the difference between an expected

rotated object compared to a conditionally generated view

of the object; enforcing projection consistency enables the

model to directly learn spatial structures and depths. To

evaluate our approach, we generated an RGB-D dataset

with edge contours from ShapeNet models. Furthermore,

we utilized an existing RGB-D dataset, NYU Depth V2 with

edges learned by the Holistically-nested Edge Detection

model.

1. Introduction

Deep learning leverages hierarchical models to analyze

high-dimensional inputs, such as images, speech audio, or

natural languages. One of the popular streams in this line

of research is the design of generative models that approxi-

mate real data distribution and synthesize unseen data. With

the emergence of adversarial generative nets(GAN) [12],

researchers can now develop models generating novel data

that directly computes and minimizes the distance between

the generated data distribution and the real data distribu-

tion without explicitly approximating the density functions.

GAN models have produced impressive results in a wide

variety of fields from image generation, image style trans-

fer, image inpainting, super-resolution to even text genera-

tion [6, 7, 13, 17].

One of the weaknesses of GAN models when generat-

ing images is that they often do not produce a clear bound-

ary, lack reasonable shape, and spatial structure informa-

tion. For instance, when generating faces, parts of the

face such as eyes are frequently mispositioned, warped and

blurry [24]. Even state of the art models such as BigGAN

and StyleGAN suffers from such artifacts [3,15]. The cause

of this problem is due to convolution neural networks’ in-

herent properties; its receptive fields are often limited to

local structure and patterns. GANs tends to generate well

locally but fails when holistically considering an image.

For instance, StyleGAN can generate a baby with wrinkles!

Learning a global spatial structure with limited data is a

challenging endeavor. Furthermore, the lack of 3D geomet-

ric information increases the difficulty of inferring object

shapes and distances from various view angles. In many

cases, GAN seemingly fuses different objects into one im-

age. Figure 1 showcases samples generated for airplanes of

orthogonal projection of CAD models from ShapeNet [4]

3D dataset with different architectures. As shown in fig-

ure 1, the baseline Improved Wasserstein GAN (WGAN)

[2] [10] generates blurry geometry of airplanes. Depth map

information has been proved to contain spatial information

from various fields, such as 3D reconstruction [26] and spa-

tial relations learning [14]. Furthermore, it has been showed

that there exists a clear correspondence between RGB im-

ages and depth maps from depth estimation research [30]

[1]. Besides, using a depth map is a memory-efficient ap-

proach to represent 3D information compared with other ap-

proaches such as voxels [5] and point clouds. The number

of computations for voxels increases in a cubic order of the

image size, leading to expensive representation at high res-

olutions. In contrast, point clouds are memory-efficient but

require the use of graph neural networks to represent local

structure which suffers from difficulty spreading informa-

tion. Other approaches consist of training specific models

to model the point system, compounding errors when used

with other models [22, 23].

In this paper, we propose two novel regularizations GAN

models that embed 3D information into the generator net-

works based on depth maps and also edge maps. The for-

mer enforces image-depth-edge alignments by controlling

the second-order derivative of depth maps and the first-order



Figure 1. Comparison of results for our airplane ShapeNet dataset

derivative of RGB maps. This enforces that objects are

made of locally planar surfaces and colors of objects do not

change rapidly; thus it ensures smoothness and consistency

within an edged area [30]. Our latter model leverages condi-

tional GAN [21] to produce multiple views [28] at different

angles. It regularizes the generator by including projection

consistency loss with the assistance of depth information.

Generated multiview images should be equivalent to rotated

images gained by projection from 2D images to 3D objects.

The purpose of our approach is not for 3D reconstruction

or generating a new view. Our goal is to regularize GAN

learning to create more consistent images.

The major contribution of this paper can be summarized as

follows:

1. We incorporate 3D information into GAN models

through regularization as a way of reducing inconsis-

tent artifacts GAN generates.

2. Improves the learning of object shapes and spatial

structures.

3. Generates depth maps, edges maps along with RGB

images which can help visualize GAN’s understanding

of the object structure.

The remainder of the paper is organized as follows.

1. In Section II, we overview related works in the field of

GAN, multiview synthesis and depth reconstruction.

2. In Section III, we discuss in detail our two proposed

models and the associated loss functions.

3. In section IV, we discuss the model performance from

our experiments with ShapeNet dataset [4] and NYU

Depth Dataset V2 [25] with Frechet Inception Dis-

tance [11] provided.

4. In section V, we conclude this work and discuss future

works.

2. Related Work

A major problem of GAN models is training instabil-

ity and sample diversity. GAN models such as DCGAN or

LSGAN [20, 24] suffer from mode collapse, affecting both

variety and quality of images generated. Thus, multiple

restarts are often required to obtain good results. However,

the Wasserstein GAN(WGAN) and its extension, the im-

proved Wasserstein GAN bypass such a problem by lever-

aging the earthmover loss [2, 10]. The advantages of the

WGAN are its stable training and its high sample diversity

at the expense of slower training speeds needed to clip the

weights and to train the discriminator to near-optimal. The

improved WGAN removed the need for weight clipping to

enforce the Lipschitz constraint, improving training speeds.

However, it still requires more time to train compared to the

softmax loss of DCGAN.

To generate images with spatial structure, one solution

proposed by Kossaifi et al. is to utilize pre-existing geomet-

ric information to enforce such structure [16]. By leverag-

ing a wealth of existing data and models on facial structures,

Kossaifi et al. managed to constrain GAN outputs to a rea-

sonably shaped face with correct positions for eyes, nose,

and mouth. The issue with this work is that it cannot be ex-

tended beyond faces; other objects do not have the existing

models to support them. For instance, our datasets do not

have such information and cannot use GAGAN’s approach.

Another approach for using generative models with spatial

structure was proposed by Yao et Al [31]. However, their

goal is to generate 3D data while ours is to regularize using

3D information to improve GAN performance in general.

Similarly, Yan et al. attempt to learn 3D using multiview

similar to our paper. However, their goal is also to generate

multiview shapes while we are using the multiview only as

a regularization. Finally, Shubham et Al proposed a multi-

view consistency approach for learning shape. This is simi-

lar to our idea for multiview but we apply our approach for

GAN regularization rather than only learning shapes.

In contrast, SAGAN proposes a self-attention mecha-

nism in which the GAN learns by itself which distant re-

lationships it should focus upon [34]. Such an approach

allows the GAN self to learn structural consistency and can

be used for any data. As an extension to SAGAN, BigGAN

dramatically expands the scale in both neural network size

and dataset. It greatly improved results for generating Im-

ageNet but its performance is affected by mode collapse.

This can be verified from the weights of BigGAN pro-

vided by DeepBrain which shows that about 15-20 classes,



e.g keyboards, pickelhaubes generated are completely mode

collapsed and are of low quality [3]. We find the results of-

ten lack structural consistency. For instance, a goldfish gen-

erated from BigGAN have mispositioned eyes, no heads.

Furthermore, another weakness stems from the use of 3 bil-

lion images and 512 TPUs to train. Such a model is beyond

to reach of most and lacks practicality for many datasets.

In contrast, StyleGAN generates hyper-realistic samples at

high resolution by leveraging high-level information such

as pose, identity, and variation in the low level such as

hair [15]. Despite its impressive performance, it can still

generate interesting results like a camera instead of a mouth

and other awkward artifacts. Note that for both BigGAN

and StyleGAN such errors can be reduced by controlling

the diversity but leads to significant mode collapse. Thus,

our approach should be considered orthogonal to these work

where we seek to find image regularization which enforces

more consistency.

Our work is also similar to inpainting approaches in the

sense that generating multiview is like inpainting the sides

of an image. Goals for inpainting is simply to fill in the

missing areas based on a given mask [19]. In many cases,

the inpainting approach also relies on GAN based approach

[32, 33] to fill in the gaps. However, our approach’s main

purpose is instead to regularize GAN and improve GAN

performance rather than either making a 3D reconstruction

or inpainting some information. The output of our multi-

view may be poor which would be acceptable so long it

improves base results without our regularization. Similarly,

the GAN discriminator may be a poor predictor of image

quality but can, in general, provide good gradient for train-

ing the generator. Another work by Almalioglul et al. pro-

posed the use of GAN for assisting depth estimation by gen-

erating warped views [1]. The model proposed is similar to

research on structure from motion where pose and depth are

estimated. However, unlike our paper, their model contains

the ground truth for the warped image while we must gener-

ate it unsupervised. Thus, the generation of such an image

should not suffer from as much structural consistency prob-

lems. Furthermore, our paper seeks to combine both RGB

and depth maps to improve results.

Finally, an important source of inspiration for our work

is the recent depth estimation approach from LEGO [30].

This work combines self-learned edges, depth, normals,

and multiview synthesis to create sharper boundaries and

smooth depths maps. Unlike our work, LEGO seeks to es-

timate depth from monocular motion and although unsu-

pervised, does not attempt to generate new data as a GAN

does. Another similar work relating to multiview synthe-

sis by Zhou et al. proposes to generate a different view

of the same object by copying pixels of an existing image.

Furthermore, it also utilizes ShapeNet as a dataset [36]. In

contrast, our work introduces similar concepts to GAN and

can generate new data.
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Figure 2. 2D to 3D viewpoint transformation

3. Models

In this section, we detail our 3D-information embedding

models. First, we cover the transformation needed for pro-

jection between 3D objects and 2D images. This will be

leveraged by our second model to obtain projected multi-

view by rotating and projecting the 3D object. Second, we

present the first model which enforces locally planar sur-

faces and non-rapidly changing colors of objects. Finally,

we review the design of the multiview synthesis model

which has the potential to generate the same object but at

different angles.

3.1. 3D Projection to 2D

The models assume that 2D images rely on some under-

lying 3D objects since 2D images are formed by mapping

3D objects onto a focal plane, as shown in figure 2. A 3D

coordination system is introduced here to assist with com-

putations. It is assumed that we are using a pinhole camera

positioned at the origin or the center of the projection in 3D

coordinates. The camera looks at the scene along the z-axis

with the focal plane positioned at z = f . The coordinates

transformation between 3D objects (xs, ys, zs) and 2D im-

ages (xi, yi) on the focal plane z = f obey the following

equation:

xi = f
xs

zs

yi = f
ys

zs

(1)

We can express this transformation by formulating the in-

trinsic camera matrix. Here, we use homogeneous coordi-

nates which expand dimension by 1 to weight all coordi-

nates value. Thus, the 3D to 2D projection using homoge-

neous coordinates can be captured by the intrinsic camera

matrix K of size 3 by 4 where K is equal to
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Figure 3. The architecture of model 1. Our model generates an RGB, depth and edge output compared to the normal RGB output. Also,

this DC-GAN architecture with 7 layers is used in all our models.
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⎣

fx 0 cx
0 fy cy
0 0 1

⎤

⎦

We define fX , fy as the focal plane distances and they

should have the same value f . However, they can be influ-

enced by camera errors or non-uniformly scale during pre-

processing. Finally, we define cx, cy as the principal point

coordinates which are coordinates of the projection center.

Inversely, 2D to 3D projection can also be computed by ma-

trix multiplications given depth values. Given a pixel p(i,j)
and its depth d, its 3D coordinate is evaluated as

φ(p(i,j)) = d ∗K−1 ∗ [i j 1] (2)

For both datasets in this paper, the intrinsic camera matrices

are given.

3.2. Image-Depth-Edge Alignment Model

The input to our GAN generator is a randomly gener-

ated uniform noise of size 512. The generator outputs a

(256,256,5) image where the channels are RGB values, the

depth map, and the edge map. The discriminator receives

and trains on both generated and real data of 5 channels.

The discriminator is assigned the role of the critic to min-

imize the distribution distance between fake and real data.

The model can be seen in figure 3

Rather than use depth and edge map as only extra chan-

nels, we leverage a common strategy to regularize the

second-order derivative of depth and the first-order deriva-

tive of RGB [30] [9] [35]. Specifically, we are inspired by

the ideas from Yang et al. [30] on how to utilize edge infor-

mation to improve regularization. It is assumed that each

edge contour defines a surface and all surfaces are locally

planar with color not rapidly changing. In a more mathe-

matical way for each pixel p(i,j), the neighborhood of that

pixel on the same surface as p(i,j) should inherit the same

depth map gradient and the same image color.

Note that all the derivatives are approximated by nu-

merical differentiation and the process is shown as fol-

lows. Given a pixel p(i,j), the neighbourhood is defined as

p(i−1,j),p(i+1,j),p(i,j),p(i,j). The second-order derivative of

depth maps is approximated along x-axis and y-axis by its

neighbours.

∇2
xD(p(i,j)) =

D(p(i+1,j))−D(p(i,j))

‖φ(p(i+1,j))−φ(p(i,j))‖
2 −

D(p(i,j))−D(p(i−1,j))

‖φ(p(i,j))−φ(p(i−1,j))‖
2

(3)

Similarly, the first order derivative of RGB can be approxi-

mated along x+ axis or x- axis.

∇x+RGB(p(i,j)) =
RGB(p(i+1,j))−RGB(p(i,j))

∥

∥φ(p(i+1,j))− φ(p(i,j))
∥

∥

(4)

In general, the regularization loss L on depth and edge

maps is computed along both x-axis and y-axis.

Lx = |∇2
xD(p(i,j))|+

|∇x+RGB(p(i,j))|+|∇x−
RGB(p(i,j))|

2

Ly = |∇2
yD(p(i,j))|+

|∇y+RGB(p(i,j))|+|∇y−
RGB(p(i,j))|

2

(5)

L = Lx + Ly (6)

However, directly applying this loss will lead to too many

edges being created. As such, a regularization is needed to

constrain the number of edges.

L+ = |E(p(i,j))|
2 (7)
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Figure 4. The architecture model of our conditional GAN model 2. The model takes a conditional transformation matrix as part of its inputs

and generates RGB-D outputs.
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Figure 5. Our model 2 regularization loss. The initial view can be rotated to directly match a conditionally generated sample of the same

rotation angle with a mask applied for out of bounds indices.

3.3. Multiview Synthesis Model

For the second model, we propose a multiview synthe-

sis [28] [27] approach where we can force the model to em-

bed depth information inside the generator. The depth infor-

mation is used to first re-project a 2D image into 3D space.

We then re-project back to obtain multiview images of the

input image at different angles. Meanwhile, the model gen-

erates images from multiple views and create a generator

regularization loss which verifies that the generated RGB-

D images match the projected RGB-D images gained under

the help of the depth information.

This model is designed as a conditional GAN [21] which

adds some conditions as input along with the noise vector z

into the generator; in this paper, it is chosen to be the stan-

dard transformation matrix T (θ) of view change by degree

of θ. The generator will output an image at θ degree ro-

tated view. We can then generate multiple views by keeping

the z vector fixed while modifying the rotation matrix. The

generator outputs an RGB-D image with the specified ro-

tation. Meanwhile, only images with a rotation degree of

0 and real RGB-D images are passed to the discriminator.

The architecture is shown in figure 4. Although generated

images at different angles θ �= 0◦ are not passed to the dis-

criminator, they are supervised by our multiview synthesis

loss. We first generate images at angles θ ∈ [0, 10]◦, θ = 0◦

and θ ∈ [−20, 0]◦. Then, we can transform the initial im-

age at rotation θ = 0◦ to the left and the right by projecting

2D images into 3D coordinates and rotating it in 3D coor-

dinates [8]. Let m be the 2D homogeneous coordinate of an

image pixel in the original view and m1 be the correspond-

ing coordinate in the rotated view with the transform matrix

T. As introduced in subsection 3.1, the 3D coordinate M is

equivalent to

M = d ∗K−1 ∗m

T ∗M = d ∗K−1 ∗m1

(8)

After simplification, we are able to get

m = K ∗ T ∗ k−1 ∗m1 +
K ∗ C

d
(9)

where R is the rotation matrix and C is the translation matrix

from T [8]. Given that rotation can include new information

which the original view cannot see, a mask is necessary to

handle pixels indexed outside the boundaries of the image



and prevent any loss penalties. This regularization loss is

shown in detail in figure 5 along with images created by our

transformations.

4. Experimental Settings and Evaluations

In this section, we introduce the experiment settings,

training procedure. We further present the results of our

two models which are evaluated qualitatively and quantita-

tively. The models are shown to outperform the state-of-

arts WGAN under the same settings which generate clearer

shapes and arrange objects with spatial orders. We also use

the Frechet Inception distance [11] to provide comparable

performance metrics for our models. Note that our goal here

is not to generate multiview or 3D as a goal but to improve

the results for the normal GAN output using 3D information

as regularization.

4.1. Experiment setting

Datasets and pre-processing

For our training dataset, we generated our RGB-D data us-

ing ShapeNet CAD models [4]. To do so, we used Unity

Engine and Ray tracing with an orthogonal projection. We

positioned 5 cameras at the +z, +x, -x, +y, and -y-axis. For

each model, 15 shots are taken at 3 sets of different rota-

tion, translation and scale picked from a uniform random

distribution. Each image’s background was set to be com-

pletely black to improve learning speed. The resolution of

the RGB-D obtained was 256 by 256. Due to time con-

straints and technical difficulties, we limited to the plane

models of ShapeNet. The airplane models are highly var-

ied ranging from jumbo jets to fighter planes to even heli-

copters and show considerably more variation compared to

other shapes such as cars from ShapeNet. After pruning im-

ages where the airplane was scaled too small or at strange

angles, we were left with 57,088 RGB-D images. As we set

the background to black, obtaining the contour edges of the

plane is straightforward resulting in a 5-channel image.

To study complex scenes with variegated objects, we

used the NYU Depth Dataset V2 [25] for various indoor

scenes recorded by a Microsoft Kinect RGB and depth cam-

eras. It is comprised of video sequences of 1449 pairs of

aligned RGB and depth images labeled by object classes

and object contours and video sequences of raw datasets

without labels. The raw datasets used here for bedrooms,

living rooms, dining rooms, and offices contain depths taken

at different angles from the RGB images with missing val-

ues. We selected images from the video sequences while

attempting to avoid repetitive scenes. Then, those im-

ages were pre-processed by the given toolbox to project the

depths onto the coordinates of the images and to fill missing

values of depth by colorization [18]. Next, the edge labels

were generated by side outputs of the Holistically-nested

Edge Detection models [29]. The edge detection model is

pre-trained by the paper authors Xie and Tu. Finally, 5-

channel images of size 4,460 were re-scaled to 256 by 256

pixels to match our models.

Note that for both our ShapeNet dataset and NYU

dataset, depth was normalized to [0, 1] where the closer

the data, the smaller its depth. However, 0 is considered a

special value where the depth is infinity.

Training settings

All the experiments are completed on either an NVIDIA

GEFORCE 1080 Ti or a cloud server using a single

NVIDIA TESLA P100. Both generator and discriminator

utilized an improved WGAN architectures and loss scaled

for images of 256 by 256 instead of 64 by 64. We set

lambda to 10 plus our regularization losses. The models are

trained by RMSProp optimization with learning rate 0.0002

and batch size 32. We found RMSProp worked better com-

pared to Adam even though [10] claimed Adam works well

with their loss. The intrinsic camera matrix K we used is

the scaled Kinect camera matrix according to the size of

images. The Kinect intrinsic camera matrix for (640,480)

pixels image is

⎡

⎣

518.8579 0 325.5824
0 519.4696 253.7362
0 0 1

⎤

⎦

This matrix was provided from the NYU dataset.

Model 1 sets the weight of the regularization loss to 0

during the first 7 epochs, increasing gradually to 0.55 and

finally reduced to 0.3 after 135 epochs. We do so much that

the generator can first stabilize and then be steadily affected

by our regularization loss. To improve results towards the

end of the training, we reduce regularization constraints so

to allow the model to learn more details. For Model 2, in-

stead of adjusting loss weight, we slowly adjust the rotation

range starting from 0. This functions similarly to a weight

adjustment as a loss with smaller rotations will be reduced.

In this manner, the model can smoothly learn the rotation.

Otherwise, a problem we faced is that the model could not

properly learn the rotation and resulted in blank generated

images since it could only minimize loss that way. Finally,

the rotation coefficients were set to be between [-20, 20].

This small rotation angle avoids having objects rotated com-

pletely out of view which can occur depending on the depth

of the object. Note that the baseline model has the same

setting except that it does not add the regularization losses.

4.2. ShapeNet Results

We first trained on trained on ShapeNet data with 57,088

images. The results can be seen in figure 6. All the models



Figure 6. Model results for ShapeNet Dataset. The 1st row is from baseline WGAN, 2nd row is from Model 1, 3rd row is from Model 2,

and the last row is real images.

Figure 7. Sampled 3D reconstruction results from generated depth + RGB from both Model 1 and Model 2. The 3D view was generated

from the Unity Engine. Note that there is some roughness in the generated depth

are trained using the adjusted DC-GAN architecture with

the same number of layers and filter number on the same

data. We noticed during training was that the GAN quickly

was associating the edge and depth with its RGB. This

means for edges generated, the results were always follow-

ing the contour of the object. The addition, our regulariza-

tion losses led to more constrained and reasonable shapes

of planes generated, enhancing the quality of generated im-

ages dramatically from the baseline.

To further verify the correctness of depth generation, 3D

reconstruction from the depth and RGB views are provided

in figure 7. We can see the general shape and spatial struc-

ture from the object. We rotated all objects to the right to

show the contour of the airplane. Note that since a view is

only from one side, the depth does not create a complete

object but a partial 3D structure. An interesting point about

the depth map generated is that when displayed in 3D, there

are frequent rough spots and spikes in depth. At worst, this

can lead to points completely detached from the object it-

self. This is not noticeable from the 2D depth map which

seems reasonably smooth. The most common spike occurs

around the contour of the object where the depth switches

from distance to the object to infinity. This problem is likely

due to the fact these points are right between the depth of

the object and infinity. We believe a smoothing of the area

around the contour can reduce the impact of this problem.

Model Score

Real Data 8.5

Model 1 122.56

Model 2 125.29

Baseline 175.88
Table 1. Frechet Distance for ShapeNet Dataset

Finally, Frechet Inception Distances(FID) [11] were

computed for the ShapeNet models with 4,000 fake and

4,000 real images. We can see that the performance of

both Model 1 and Model 2 shows no obvious difference.

However, both models surpass the baseline model signifi-

cantly 1. However, with the current FID score, there re-



Figure 8. Model 1 generation results trained on NYU Depth V2 Dataset

mains plenty of room for improvements.

4.3. NYU Depth V2 Results

Our model 1 is also trained with 4,460 NYU Depth V2

images in figure 8. Though the generated textures of objects

are blurry, we can discern each object in a complex scene;

this is especially evident from observing depth or edge out-

puts. The matching between images and edge maps is rea-

sonable and present us with meaningful object contours.

This is in contrast to the baseline model where only color

blocks are learned without clear objects. Moreover, spatial

structures of rooms such as depths of rooms, orders of ob-

jects and flows of lights are cleanly learned in the generated

images, while the baseline model does not perform as well

in terms of distinguishable depths. The imperfect results,

especially the lack of details can be partially explained to

the nature of the dataset. The data is drawn from video se-

quences with unavoidable repetitions and sometimes only

shows the corners of a room. Furthermore, despite being

a fairly small dataset, the NYU dataset shows significant

scene diversity ranging from bedrooms, living rooms, din-

ing rooms, and offices which can be difficult for a GAN

to learn with so few data points. Overall, we can see that

adding our regularization did improve overall performance

even if somewhat poor.

5. Discussion and Future Works

In this paper, we have introduced two new regularization

models to improve GAN image generation ability by using

3D information as regularization. Our generator is there-

fore trained to embed both edge information and depth in-

formation and is regularized by that information. Our mod-

els possess major potentials for performance improvements

using deeper network architectures and improving datasets.

Though our models require more experimental results and

analysis, the designs of our models do work as expected and

the improvements in objects’ shapes and spatial structures

from the baseline are visible. The edge and depth informa-

tion not only brings extra contour and position information

but also sketches out a global spatial structure of the image.

Furthermore, the alignment of RGB, depth and edge maps

are useful for understanding what the GAN is trying to cre-

ate, especially for a complex scene such as the NYU Depth

V2 dataset.

Another observation is that Model 1 seems to supervise

shapes and structures more proficiently while model 2 is

more adept at generating smoother depth maps. We reason

that it is because model 2 does not regularize edge-depth

values but instead focuses on continuous transformations

in 3D which smooths its final result. Therefore for future

work, it would be natural to combine these 2 models fur-

ther improve generated details in RGB-D images. More-

over, during the training of model 1, we noticed that regu-

larization loss did not decrease much itself during training

but led to adjustments in the generator WGAN loss. Dur-

ing this process, the loss would become unstable and then

slowly readjust; studying such a process and how it deviates

from the normal learning process can be a further topic.

Although our view synthesized results are not state of

the art, the multiview regularization has shown good per-

formance in improving GAN results. Further investigation

should be made for whether improved generated multiview

can augment regularization performance. In addition, cur-

rent angles changes are small but perhaps larger angles can

improve regularization. Another approach for improving

our model is to train the discriminator with generated im-

ages at different angles. This can be further expanded if

we add real images at different angles but it requires ad-

justments of architectures to efficiently take advantages of

multiview real images. Furthermore, a model using the at-

tention architecture could also be advantageous as shown in

SAGAN.
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