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Abstract

Cross-domain image-to-image translation should satisfy

two requirements: (1) preserve the information that is com-

mon to both domains, and (2) generate convincing images

covering variations that appear in the target domain. This

is challenging, especially when there are no example trans-

lations available as supervision. Adversarial cycle consis-

tency was recently proposed as a solution [29], with beau-

tiful and creative results, yielding much follow-up work.

However, augmented reality applications cannot readily use

such techniques to provide users with compelling transla-

tions of real scenes, because the translations do not have

high-fidelity constraints. In other words, current models are

liable to change details that should be preserved: while re-

texturing a face, they may alter the face’s expression in an

unpredictable way. In this paper, we introduce the problem

of high-fidelity image-to-image translation, and present a

method for solving it. Our main insight is that low-fidelity

translations typically escape a cycle-consistency penalty,

because the back-translator learns to compensate for the

forward-translator’s errors. We therefore introduce an op-

timization technique that prevents the networks from coop-

erating: simply train each network only when its input data

is real. Prior works, in comparison, train each network

with a mix of real and generated data. Experimental re-

sults show that our method accurately disentangles the fac-

tors that separate the domains, and converges to semantics-

preserving translations that prior methods miss.

1. Introduction

Unpaired cross-domain image-to-image translation is

achieving exceptionally convincing results in a variety of

domains [29]. High-fidelity image translation requires not

only credible translations, but also strict preservation of the

factors that are common to both domains. Consider Fig-
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Figure 1: “Coooperative” training setup from prior work

(top), compared with our proposed “uncooperative” training

(bottom). Preventing cooperation between the forward and

back-translation yields a more useful reconstruction loss.

ure 1. We wish to translate an image of a face across two

domains that mostly differ in texture. It is inappropriate for

the translator to additionally change the face’s expression.

Unfortunately, this failure mode is surprisingly common in

standard unsupervised image-to-image models.

Why does this happen? In the standard approach (based

on CycleGAN [29]), there are two main networks: a for-

ward translator, and a backward translator. There are also

two main losses: an adversarial loss, which encourages the

translated images to be indistinguishable from ones in their

target domain, and a cycle consistency loss, which encour-

ages that forward translation (i.e., A to B) followed by back-

ward translation (i.e., B back to A) yields the original input
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Figure 2: Top: Two strategies for optimizing the cycle-

consistency loss: compensation and correction. Opti-

mizing the cycle-consistency loss encourages the forward-

translator to find better mappings (i.e., correction), but also

encourages the back-translator to compensate for bad map-

pings (i.e., compensation). Bottom: real examples of com-

pensation learned by a CycleGAN; cycle-consistency is be-

ing met, but the translations are not faithful.

(i.e., forming a cycle). The problem with this setup is that

there is no “fidelity loss” on the translation. In other words,

the forward translator may generate arbitrary samples in do-

main B, and as long as the backward translator reconstructs

the input, there is no penalty. One can add geometric con-

straints to the translation [6, 23], but these only approxi-

mate a loss on fidelity. We present an approach that directly

penalizes unfaithful translations, by ensuring that forward-

translation errors are preserved during back-translation, as

shown in Figure 1 (bottom).

Our main insight is that cycles are problematic when

the two mapping functions are allowed to cooperate. By

“cooperate” we mean that they optimize for each other’s

outputs. CycleGAN and its many variants [29, 10, 16, 7,

18, 1] all have a cooperative training setup: in each cy-

cle, the first translator receives a real input, and the sec-

ond translator receives a fake input (i.e., an attempted trans-

lation/disentanglement) which it back-translates, and both

networks get penalized according to the reconstruction er-

ror. This essentially asks the second network to com-

pensate for the first network’s errors. This is counter-

productive, because if the second network succeeds, then

the first network need not improve. Given sufficient opti-

mization time, these cooperative setups find extremely ef-

fective “cheats”, in which subtle signals are encoded into

low-fidelity forward translations and subsequently decoded

to achieve near-perfect back-translation, thus defeating the

reconstruction error [4]. This is illustrated in Figure 2.

Our main contribution is in preventing the networks from

compensating for each other’s errors, via a simple optimiza-

tion technique: simply train each network only when its in-

put data is real. With this technique, neither network learns

about the other’s behavior, which renders cooperation im-

possible. Instead, the back-translator simply preserves any

errors made during forward-translation, and the reconstruc-

tion penalty is put entirely on the forward translator. This

forces the networks to learn more faithful mappings to their

target domains.

Our “uncooperative” training also provides a route to

unsupervised factor disentanglement. Several prior works

have modified CycleGANs to perform a disentanglement

and subsequent re-entanglement: the first translator disen-

tangles the input into (1) an image in the second domain,

and (2) a residual; the second translator entangles these to

reconstruct the input [30, 10, 1]. In practice, however, an

unconstrained “residual” path can actually be detrimental

to the final results, since the model may exploit this path

to encode the entire input, greatly facilitating the the cycle-

consistency objective. Prior works have proposed a vari-

ety of methods to mitigate this problem, but usually at the

cost of severely reducing the representational capacity of

the residual (e.g., limiting it to 8 dimensions), and making

strong assumptions about its distribution (e.g., assuming it

is standard normal) [1, 10, 16, 18]. After applying these

heavy constraints, some prior works report that the residual

path simply goes ignored by the model, unless its usage is

facilitated by careful design choices (e.g., rather than sim-

ply concatenating the residual as an input, enforce its usage

as layer-wise normalization coefficients, applied throughout

the second translator) [1, 18]. Our optimization technique

allows us to disentangle multi-scale high-dimensional resid-

uals, without requiring parameter-sensitive representational

constraints.

In experiments with real images, we show that our

optimization method delivers an obvious qualitative im-

provement over the current state-of-the-art, both in terms

of semantics-preservation and residual-factor disentangle-

ment. In synthetic data (where the residual is known), we

demonstrate that our “uncooperative” optimization leads to

quantitatively accurate disentanglement, whereas “coopera-

tive” optimization does not.

2. Related Work

Image-to-image translation has recently attracted great

attention, partly thanks to the success of generative ad-

versarial networks (GANs) [8, 21, 28, 14]. The goal in

image-to-image translation is to translate an image in one

domain to a corresponding image in the second domain.

Pix2Pix [11] trains models for this task using paired data

from the two domains (i.e., input-output pairs, exemplify-

ing good translations). CycleGAN [29] removes the need

for paired data by forming a translation “cycle”—forward

translation followed by backward translation—which per-



mits a natural reconstruction objective between the input

and the back-translation. This is important, because in

many domains, paired examples do not exist (e.g., a face in

the exact same pose/expression in two different physical en-

vironments). CycleGAN often preserves the structural con-

tent of the images, but this may simply be a consequence

of the convolutional architecture [17]. CycleGAN is only

capable of learning one-to-one mappings, but several works

(not all unsupervised) have proposed variants that are ca-

pable of one-to-many mappings, such as Augmented Cy-

cleGAN [1], DRIT [16], MUNIT [10], BicycleGAN [30],

and cross-domain disentanglers [7]. These methods are

able to generate diverse image with similar “content” (i.e.,

structural pattern) but different “style” (i.e., textural render-

ing) through disentanglement. These methods use strong

assumptions or regularizations to avoid undesirable local

optima, including shared latent spaces [10, 16, 7], loss on

KL divergence from simple Gaussians [10, 16, 30], or low-

dimensional representations [16, 1, 30, 7]. The effective-

ness of these methods is therefore highly dependent on pa-

rameter selection.

Image factor disentanglement is necessary if we wish

to control the latent factors in the generated images. Hadad

et al. [9] assumes the availability of attribute labels in a

particular domain, where the goal is to disentangle im-

ages into a target domain plus a residual (i.e., “everything

else”). Many disentanglement works also make strong as-

sumptions on domain knowledge of the latent space, which

includes having data pre-grouped according to individual

factors [24, 15], or having exact knowledge of the structure

and function of individual factors (e.g., for faces: identity,

pose, shape, texture [26, 25]). In this work, we do not have

attribute labels, we do not make assumptions on the latent

space, and we perform disentanglement using only the un-

paired image data. Similar to our method, InfoGAN [3] and

MINE [2] are completely unsupervised, but the approach

in these works is quite different: these methods maximize

the mutual information between the inferred latent variables

and the observations, while we use discriminators and re-

construction to achieve disentanglement.

3. Method

There are three key ingredients to our method: (1) ad-

versarial priors, which encourages the translated images to

be indistinguishable from ones in their target domain, (2)

cycle-consistency, which encourages the translations to be

invertible, and (3) “uncooperative” optimization, which en-

sures the networks do not “cheat” toward an undesirable lo-

cal minimum.

3.1. Preliminaries

Let V and C be two image domains, such that the im-

ages v ∈ V have more information than the images c ∈ C.

That is, V contains variation in some latent factor that is ei-

ther constant or absent in C. This implies that the mapping

V �→ C is many-to-one, and the mapping C �→ V is one-

to-many. As a mnemonic, note that V is variable in some

aspect where C is constant.

Let R be the residual information that is in V but not

in C. Accessing this extra information allows us to form

bijective (one-to-one) mappings, V �→ C×R and C×R �→
V . Note that R is not necessarily an image domain. In

our implementation, each r ∈ R is a collection of deep

featuremaps at multiple scales, which allows its actual form

to be determined entirely by the data.

Our goal is to learn functions that can map between these

domains. We call the first mapping a disentanglement, de-

noted D, since it performs an intricate splitting operation:

D(v) = (c, r). We call the second mapping an entangle-

ment, denoted E, since it performs a merging operation:

E(c, r) = v. Figure 3 relates the notation to the data and

architecture. Note that D and E are inverses of one another.

Our input is a set of samples {ci}
N
i=1

from C, and sam-

ples {vj}
M
j=1

from V . The two datasets are unpaired, and

true correspondences might not exist.

3.2. Adversarial priors

Our model has two main networks, D and E. We would

like to have D : V �→ C × R, and E : C × R �→ V .

To achieve this, we introduce adversarial networks AC and

AV , which learn and impose priors on the distributions of

our networks’ outputs.

The adversarial networks attempt to discriminate be-

tween real and fake (i.e., generated) samples of the domains

C and V . In our notation, we distinguish “fake” samples

with a prime symbol. We train our main networks against

the adversarial labels with the least-squares loss [20]:

LGAN = [AV (v
′)− 1]

2
+ [AC(c

′)− 1]
2
. (1)

In a separate (but concurrent) optimization, we also train

the parameters of the adversaries, with the losses LAC
=

[AC(c)− 1]
2
+ [AC(c

′)]
2
, and LAV

= [AV (v)− 1]
2
+

[AV (v
′)]

2
.

Note that we have no priors on the r′ samples generated

by D, because there is no dataset of “true” r samples. Prior

works manufactured a prior by assuming that R is a low-

dimensional Gaussian distribution (e.g., 8 dimensions, with

zero mean and unit variance) [10, 16, 7, 18]. Here, we avoid

this limiting assumption. We are able to do this because

of our unique optimization procedure, detailed in Sec 3.4.

However, we do obtain some constraints on R by enforcing

cycle consistency, described next.

3.3. Cycle consistency

On each training step, the model runs two “cycles”. Each

cycle generates a reconstruction loss, which constrains the
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model to perform consistent forward-backward translation.

Figure 3 illustrates the cycles.

In the first cycle, the disentangler D receives a random

v from the dataset, and generates two outputs: (c′, r′) =
D(v). These outputs are passed to the entangler E, which

generates v′ = E(c′, r′). If the disentanglement and re-

entanglement are successful, this output should correspond

to the original v. Therefore, we form the reconstruction

objective ℓv = ‖v − v′‖
1
, where ‖·‖

1
denotes the L1 norm.

In summary, this cycle performs E(D(v)) = v′ ≈ v.

The second cycle is symmetric to the first. The entangler

E receives a random c from the dataset, and an r gener-

ated from a random v. Note that it is necessary to use gen-

erated r samples here, since R is completely determined

by the network. We omit the prime on this r since it is

treated as an input rather than an output. From the input

(c, r), the entangler generates v′ = E(c, r). We then pass

v′ to the disentangler, which generates two new outputs

(c′, r′) = D(v′). If the entanglement and disentanglement

are successful, these outputs should correspond to the orig-

inal inputs. We therefore form the reconstruction objectives

ℓc = ‖c− c′‖
1

and ℓr = ‖r − r′‖
1
. In summary, this cycle

performs D(E(c, r)) = (c′, r′) ≈ (c, r).

Collecting the reconstruction objectives, we have

Lrecon = λvℓv + λcℓc + λrℓr. (2)

Observe that there is no “fidelity” objective on the trans-

lated tensor of each cycle (i.e., c′ in Cycle 1, and v′ in

Cycle 2); these tensors only have an adversarial loss. In

other words, there is nothing in the design to force c′ to

correspond to v, or v′ to correspond to c, other than the

back-translation error. As we will show in experiments,

this back-translation requirement is not sufficient, because

the networks are able to cooperate on the back-translation:

when E is the back-translator, it can compensate for errors

made by D, and vice versa.

In practice, many of these “errors” are never corrected.

Instead, they are adapted and refined, to minimize the adver-

sarial loss while facilitating reconstruction. We call these

“cheats”: undesirable outputs that yield near-zero loss. At

convergence, cheats often take the form of a within-domain

transformation: this causes the adversary to not impose a

loss (since the output is still in the correct domain), yet al-

lows the second network to (jointly) learn how to undo the

transformation. These cheats are especially visible in ex-

periments with faces, likely because humans are so sensi-

tive to faces [5]. Figures 1 and 5 show clear examples of

this cheating behavior: while the two domains only differ

in texture/lighting, the networks learn to additionally (and

unpredictably) alter the facial expression.

We observe that this undesirable solution to the recon-

struction error requires both D and E to be complicit in the

scheme. For example, if D transforms its input while trans-

lating it, but E is unaware of the cheat, E will not undo the

transformation while back-translating, yielding a loss. This

leads us to our optimization procedure, which essentially

prevents D and E from cooperating in this way.

3.4. Uncooperative optimization

The total loss we wish to minimize is

Ltotal = Lrecon + LGAN. As long as the forward trans-

lations land in the target domains, LGAN is minimized; as

long as the backward translations reconstruct the inputs,



Lrecon is minimized.

As explained, there is a local minimum to this loss, in

which forward translation includes an undesirable transfor-

mation, and back-translation includes an inverse transfor-

mation. This ruins the fidelity of the translation.

To reach this bad minimum, each network needs to learn

two functions: (1) translating “real” inputs into outputs in a

target domain, and (2) decoding “fake” inputs by undoing

generated translations. Referring to Figure 3, the disentan-

gler D learns the first task in Cycle 1, and learns the second

task in Cycle 2; the entangler E learns these functions in the

opposite order. To prevent this from happening, we prevent

the networks from learning how to decode fake inputs. We

do this by freezing the networks when they receive fake in-

puts. When a network is “frozen”, it is treated as a fixed but

differentiable function, so that gradients flow through it, but

it does not learn. Referring again to Figure 3, this means

training D only in the first cycle, and training E only in the

second cycle (where they respectively receive real inputs).

With this optimization technique, the networks are inca-

pable of learning how to compensate for each other’s er-

rors. This means that an erroneous forward translation will

always be taken “at face value” by the backward transla-

tor, and produce an appropriate loss. This is because the

backward translator’s only experience (in terms of gradient

steps) comes from real data.

This method is a type of alternating optimization, in the

sense that we keep one set of parameters fixed while opti-

mizing the other set, and alternate. In practice, we alternate

on every step. Specifically, we do a forward pass through

Cycle 1, freeze E while we update D, and then do a forward

pass through Cycle 2, and freeze D while we update E.

Including the independent update required for the adver-

sarial networks, this setup requires three optimizers in total.

3.5. Implementation details

Network architecture Our implementation is based on

CycleGAN [29]. The translators’ architecture originally

comes from Johnson et al. [12]: two stride-2 convolutions,

four residual blocks, and two transposed convolutions.

We implement the disentangler as two separate net-

works: one for the C stream and one for the R stream; the R
stream ends before the transposed convolutions. We found

this worked significantly better than using a single network

to produce both C and R.

The entangler uses the same architecture, except it re-

ceives skip connections from the R stream. There are three

such connections: the first uses the featuremap produced af-

ter the stride-2 convolutions; the second uses the featuremap

after two residual blocks, and the third uses the featuremap

after the next (and final) two residual blocks. These R fea-

turemaps are simply concatenated with the corresponding

featuremaps in E. The intent with multiple skip connec-

Figure 4: Uncooperative vs. cooperative optimization re-

sults on the objective function (left) and correlation with

the ground-truth latent factor (right), over training steps.

At convergence, uncooperative optimization achieves near-

perfect disentanglement of the latent factor, whereas coop-

erative optimization does not.

tions is to allow the network the capacity to transfer resid-

uals at multiple levels of scale and abstraction. Our model

has fewer residual blocks than CycleGAN, but the added R
stream makes the total parameter count similar.

For discriminators, we use the 70× 70 PatchGANs [11]

which were also used in CycleGAN. In all models, we apply

spectral normalization to the weights of the discriminators

[22], which we found to stabilize the adversarial training.

Training We set the reconstruction coefficients on V and

C to be ten times the GAN loss, so λv = λc = 10. We

use a smaller coefficient on the the R reconstruction, since

it is a much larger tensor: λr = 0.1. We update the dis-

criminator using generated images drawn randomly from a

history buffer of size 50. We use the Adam solver [13], with

β1 = 0.5, β2 = 0.999, a batch size of 4, and a learning rate

of 0.0002. After the reconstruction errors stop descending,

we linearly decay the learning rate to zero. In total, training

can take up to 300,000 steps, which is approximately 3 days

on a single Nvidia GTX 1080 TI. This is slower conver-

gence than a traditional CycleGAN (which takes 100,000

iterations on our data), likely because the objective is harder

to optimize when “cheating” is disallowed.

Simplified settings for synthetic data For the experi-

ments with synthetic data, we use a model with fewer

parameters. We implement each generator as a fully-

connected network with one hidden layer of 32 units and

ReLU activation. We implement each adversarial discrimi-

nator as a fully-connected network with one hidden layer of

32 units, and leaky ReLU activation. Our experiments sug-

gest that the discriminators have more than sufficient capac-

ity to correctly learn the distributions of C and V and keep

equilibrium with the generators. We use the same training

setup as in the real-image experiments, except we set the

batch size to 128, and training to convergence takes approx-

imately 60,000 iterations, which is 1 hour on a single GPU.



4. Experiments

In this section, we demonstrate that our method outper-

forms prior work on (1) accuracy of disentanglement, (2)

fidelity of translation, (3) coverage of modes (in multi-

modal translations). Ground-truth disentanglements do not

exist in real image data, so we use a simple synthetic sce-

nario to quantitatively evaluate accuracy, then present real-

world qualitative results for fidelity and coverage.

4.1. Disentanglement accuracy

One of our claims is that uncooperative optimization

is critical for accurate disentanglement. This is based on

the idea that a uncooperative models are less able to find

“cheats” which bypass the need for accuracy.

In other words, we need to show that “uncooperative”

optimization leads to correctly disentangling R,C from

within V , in a setting where “cooperative” optimization

fails. We present one in which the ground-truth factors are

1D, and entanglement/disentanglement is simply concate-

nation/splitting. We find that cooperative optimization is

incapable of learning this simple operation, whereas unco-

operative optimization succeeds.

Models In this experiment, we use two identical models

(see the “Simplified settings for synthetic data” in Sec. 3.5),

and change only the optimization method: one uses the pro-

posed “uncooperative” optimization, and the other uses the

baseline “cooperative” optimization.

Data Since ground-truth latent factors are generally un-

known in real data, it is necessary to design synthetic data

for this experiment. We define the latent factors C and R
to be Gaussian distributions. We generate synthetic entan-

glements vi ∈ V by concatenating a sample ci ∼ C with

a sample ri ∼ R. Specifically, we draw the elements of C
from a 1D Gaussian with µ = 2.0, σ = 1.0, and draw the

elements of R from a 1D Gaussian with µ = −2.0, σ = 1.0.

We find that results are not sensitive to dimensionality (ex-

cept in convergence time), and so present only the simplest

version here, setting the dimensionality of both C and R to

1, making the dimensionality of V equal to 2. Note that

the R domain is never encountered at training time, except

in its entangled form inside V . The task is to recover R,

using only disentanglement/entanglement cycles, and un-

paired samples of V and C.

Metrics We measure the similarity of the actual R domain

(used to generate V samples) to the learned R′ domain (dis-

entangled from V samples) using the absolute value of the

Pearson correlation coefficient ρ = |cov(R,R′)/(σRσR′)|,
which equals 1 if the two variables have a totally linear

relationship, and is closer to 0 otherwise. This (unlike a

Ours MUNIT CycleGAN
Photo to render

Ours MUNIT CycleGAN
Render to photo

InputInput

Figure 5: Domain translation results on the face dataset,

compared with MUNIT and CycleGAN. In both translation

directions, MUNIT and CycleGAN sometimes alter the ex-

pression of the subject; our method keeps expression intact.

distance metric) allows solutions where the learned R′ is

a scaled version of the true R, which is appropriate since

scaling may be absorbed in the model weights.

Results Our results are summarized in Figure 4. The two

models converge in approximately the same number of it-

erations. At the end of training, the cooperative version

achieves a correlation coefficient of 0.695, while the un-

cooperative version achieves 0.998. Results vary slightly

across iterations (and across initializations), but correlation

does not noticeably improve for the cooperative version,

even if training is extended to 200k iterations.

Overall, this shows that uncooperative optimization

leads the model to disentangle the true latent factors, while

cooperative optimization does not.

4.2. High-fidelity translation

One of our claims is that the uncooperative training leads

to high-fidelity translations. By this, we mean that the trans-

lation retains as much information as possible from the in-

put, without altering it. To evaluate this, we compare our

compare our model’s forward translations against those of

CycleGAN and MUNIT.

Baselines CycleGAN is a popular baseline in unsuper-

vised (but unimodal) image-to-image translation; our archi-

tecture is based on it. MUNIT is a state-of-the-art unsuper-

vised multimodal image-to-image translation method.

Data We note that MUNIT was originally applied to

translating between widely different domains, e.g., trans-

lating dogs to lions. While this type of translation is im-

pressive, it is also difficult to evaluate, and it is not clear

that close pixel-wise correspondence/fidelity is even desir-

able in that task.

In this paper, we primarily focus on translating a hu-

man face across two appearance domains: photos of the



face captured by a head-mounted camera, and renders of the

face produced by a parametric face model (already adapted

to the input face). This has an application in social vir-

tual/augmented reality (VR/AR), where we would like users

to interact with each other “face-to-face” (inside the virtual

environment) as naturally as possible.

We collected the face data ourselves. The real photos

(representing the V domain) were captured by a camera

attached to the actor’s headset, with the lens pointed to-

ward the bottom half of the actor’s face; lighting variation

was achieved with a set of lights surrounding the actor;

background variation was achieved by placing large com-

puter monitors behind the actor and displaying random im-

ages. Rendered images of the same face (representing the

C domain) were produced by fitting a deep parametric face

model to the actor [19], and generating random expressions

from a viewpoint similar to the headset view. There are

7074 real photos, and 1000 rendered images. The task is to

translate a photo of a face to (or from) a rendered-like image

of the same face, while maintaining the face’s expression.

For completeness, we also show results on translating

architectural facades ↔ labels [27], which is a task used in

prior work [29]. We have also experimented with the aerial

photos ↔ Google maps task [29], but did not find noticeable

differences between the methods on that task.

Metrics In the face image experiments—which are nec-

essarily qualitative—we rely on the fact that humans are

extremely adept at reading faces [5], and attempt to demon-

strate that our model achieves obviously better disentangle-

ments than prior methods. The results on aerial and facade

data (introduced in prior work) is harder to interpret at a

glance, but close inspection can reveal differences in sharp-

ness and spatial consistency with the input. We note that

even when ground truth translations exist, it does not make

sense to evaluate against them, since these are many-to-

one/one-to-many mappings, and totally unsupervised mod-

els (as considered here) cannot be expected to generate la-

bels that match the ground truth (e.g., as assumed in the

“FCN score” used in Pix2Pix [11] and CycleGAN [29]).

Results Figure 5 compares our method against MUNIT

and CycleGAN on the face dataset. The results show

that while CycleGAN and MUNIT perform the appearance

translation, they make small but very noticeable shifts in

the facial expression, e.g., turning a closed mouth into a

smile, or changing a grimace to a pout. This is due to the

drawbacks of cooperative training, described earlier. Our

method does not have this problem, and translates the faces

across domains without altering expression. Figure 6 shows

the same experiment but for the facades ↔ labels task, with

similar results: while our method retains, for instance, exact

CycleGANMUNITOursGround truth

CycleGANMUNITOursGround truth

Label to facade

Facade to label

Figure 6: Domain translation results on facade/label im-

ages. While MUNIT and CycleGAN introduce artifacts

(which make back-translation easier during training), our

model performs high-fidelity translation.

spatial positions of the features in either domain, the base-

line methods tend to make small shifts in position and scale.

4.3. Multi-modal outputs

Our model is designed to produce multi-modal outputs,

through a “mix-and-match” method, where we use C from

one input and R from another input, and entangle these to

form a novel sample of V . We compare against MUNIT,

which is the current state-of-the-art method for this task.

More specifically, generating multiple outputs from a

single input involves the following steps: (1) given vi as in-

put, generate ci; (2) given an unrelated vj as input, generate

rj ; (3) entangle ci, rj , to produce the composite vij . In the

face context, since the domain C contains expression but



not lighting, this setup means extracting expression from

one image, and extracting everything else (which is mostly

lighting and backgrounds) from another image, and com-

bining these factors into a new image. The experimental

setup is similar for MUNIT: a “content code” is generated

from vi, and a “style code” is generated from vj , and these

are encoded into the final output. We do this for multiple

vj , to show the effect of transferring a variety of residual

factors onto the same face.

Data We use the same face data as in the high-fidelity

task, and also aerial photos ↔ Google maps [29], which

we find has more evident multi-modality than the facades.

Results Figure 7 shows the results of this experiment on

the faces dataset, for MUNIT and our model. The figure

shows expressions from vi across rows, and residuals from

vj (i.e., lighting/background conditions) across columns.

For an overview of the results, the reader may scan across

rows to inspect that expression is transferred from the left-

most row, and scan across columns to inspect that light-

ing and backgrounds are transferred from the topmost row.

MUNIT appears to have only learned to transfer the global

intensity from the vj source. Our model appears to be trans-

ferring backgrounds, and even casting distinct shadows onto

the face. However, some shadows appear reduced in inten-

sity (e.g., third column), suggesting that expression-lighting

disentanglement is not perfect here.

In the supplementary, we also show results of this exper-

iment on the aerial photos ↔ Google maps dataset, where

we treat the Google map as C (assuming it has less infor-

mation), and the aerial photos as V . In this domain, it ap-

pears MUNIT transfers very little from the residual, while

our model incorporates textures and objects (e.g., note the

white object transferred from the first residual). Both meth-

ods appear to retain the spatial layout of the input map.

5. Discussion

In this work, we address the compensation issue in trans-

lation cycle-consistency, which typically diminishes the

utility of the reconstruction loss. In compensation, the back-

translator (undesirably) adapts to the weaknesses and short-

cuts of the forward-translator. Hypothetically, there is an-

other way to (partially) defeat the loss, which may be called

exploitation. In exploitation, the forward-translator (unde-

sirably) adapts to the weaknesses and shortcuts of the back-

translator. The enduring exploitation issue may explain the

subtle imperfections in our outputs.

Another limitation of our approach is that we do not ad-

dress many-to-many mappings. Our approach is only multi-

modal in one direction.

Output composites

Residual

Expression

Output composites

Residual

Expression

MUNIT

Ours

Figure 7: Face relighting results of MUNIT (top) vs our

model (bottom). In each table, the leftmost column shows

the input ci from which expression is drawn; the top row

shows the input vi from which everything else is drawn.

In summary, we introduced the problem of high-fidelity

image-to-image translation, motivated it for augmented re-

ality applications, and presented an unsupervised method

for solving it. We identified a fundamental cause of low-

fidelity translations: cooperation between the forward trans-

lator and the backward translator, which allows the forward-

translation to “hide” information, and the back-translator to

“recover” from noticeable errors. This is a critical problem

in real applications. We presented an “uncooperative” op-

timization scheme that prevents the problem. Our results

demonstrate that uncooperative optimization leads to high-

fidelity image translations, making image-to-image transla-

tion not only fun, but useful for augmented reality.
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[27] R. Tyleček and R. Šára. Spatial pattern templates for recogni-

tion of objects with regular structure. In German Conference

on Pattern Recognition, pages 364–374. Springer, 2013. 7

[28] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt,

A. Graves, and K. Kavukcuoglu. Conditional image genera-

tion with pixelcnn decoders. CoRR, abs/1606.05328, 2016.

2

[29] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. In CVPR, 2017. 1, 2, 5, 7, 8

[30] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros,

O. Wang, and E. Shechtman. Toward multimodal image-

to-image translation. In Advances in neural information pro-

cessing systems, pages 465–476, 2017. 2, 3


