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Abstract

In this work we consider the problem of generating aes-

thetically pleasing photography, sometimes termed photo-

graphic fine art (PFA). We cast this problem as a generative

modeling task and use a conditional GAN framework. Re-

cent works have shown that conditioning based on seman-

tic information is beneficial for improving photo-realism.

In this work we propose a novel GAN architecture which

is able to generate photo-realistic images with a specified

aesthetic quality by conditioning on both semantic and aes-

thetic information. To condition the generator, we propose

a modified conditional batch normalization layer. To condi-

tion the discriminator, we use a joint probabilistic model of

semantics and aesthetics to estimate the compatibility be-

tween an image (either real or generated) and the condi-

tioning variable. We show quantitatively and qualitatively

that our model, called PFAGAN, is able to generate images

conditioned on semantic categories and aesthetic scores.

1. Introduction

Most works in the computer vision community related

to image aesthetics seek to assess [19, 20, 23, 15, 27] or en-

hance [36, 22, 15, 5] the aesthetic quality of a given image.

In this work we aim to generate aesthetically pleasing im-

ages using a generative model. Recent years have seen an

explosion in works aiming to model natural image distribu-

tions. In particular, models based on generative adversarial

networks (GANs) [8] and variational auto-encoders [14, 31]

have been used to learn generative models of images. Ini-

tially, only fairly simplistic image distributions such as digit

images from MNIST were successfully modeled. More

recently, visually complex images from ImageNet or the

CelebA faces dataset [12, 26, 2] can be modeled with a high

degree of realism.

GANs in particular have been shown to produce highly

photo-realistic images but are notoriously difficult to train.

This is due to several factors, including the sensitivity of the

minimax objective function to minor changes in the model

architecture and hyper-parameters [8, 33, 30]. One method

Figure 1: Synthetic images generated using PFAGAN:

columns show images conditioned to have high aesthetic

quality and to depict the “lake”, “meadow”, “sunset”, and

“barn” categories.

for improving stability and photo-realism is to condition the

generative model using semantic information, e.g. class la-

bels, which encourages the model to generate an image de-

picting the corresponding class [24, 29]. This also has the

benefit of serving to regularize the model, which is of par-

ticular importance for small-scale training datasets. Class-

conditional generation can also enable applications where

some control over the synthesized images is desired.

In this work, we aim to generate aesthetically pleasing

images and propose a novel GAN architecture which can

be conditioned using both semantic and aesthetic informa-

tion. We use the AVA dataset [28] to train and evaluate our

model. AVA is, to the best of our knowledge, the largest

image dataset with both semantic and aesthetic annotations.

The aesthetic annotations of AVA are histograms of scores;

each image in AVA is associated with a histogram of scores

given by different observers. Most works that use this data

don’t use these score histograms directly, but convert the

histogram into a binary label by thresholding the mean score

of each image. However, the chosen threshold is arbitrary

and can introduce noise when training [27]. In fact, [28]

found that, when training aesthetic classification models us-

ing thresholded scores as labels, removing training images

with scores close to the threshold resulted in faster model

convergence and similar test-time performance. An addi-



tional issue with removing low-quality images is that it re-

moves useful training data for learning to condition on se-

mantics. Given these two issues, we elect to directly use the

(normalized) score histograms to condition our generative

model.

In doing so we make the following main contributions:

• We propose a novel discriminator which conditions

on both semantics and aesthetics. To aesthetically-

condition the discriminator, we propose a projection-

based compatibility function between score his-

tograms and image representations in the discrimina-

tor.

• We propose a novel mixed-conditional batch normal-

ization method to condition the generator on both vari-

ables. To do this we map score histograms to param-

eters that condition batch normalization layers in the

generator.

Our quantitative and qualitative results show that PFAGAN

is able to generate images that conform to semantic and aes-

thetic conditioning (cf. Figure 1).

2. Related work

A broad literature exists covering deep generative image

models, and there are a plethora of works in recent years

which are able to generate highly realistic images using

methods based on variational auto-encoders [14, 31] and

GANs [8]. We focus on works that propose conditional

GANs and GANs for aesthetics, as these are most closely

related to our own.

Conditional GANs: GANs were originally formulated to

train a generator to mimic some target distribution, and are

often used to model datasets such as MNIST [17], CIFAR

[16] and ImageNet [32]. These datasets all contain images

belonging to one of a distinct set of categories. Therefore,

generating realistic images conforming to the statistics of

these datasets necessarily requires the generator to implic-

itly learn categorical information. In order to more explic-

itly encode this categorical information, Chen et al. [3] in-

troduce structure in a subset of the input random vector

to the generator using information-theoretic regularization.

Using this regularization they were able to encode varia-

tions in MNIST, such as digit rotation and digit category, in

this subset of the input random variables.

Rather than learning to disentangle in this manner, works

on conditional GANs have sought to explicitly encode vari-

ations of interest within the random vector [24, 29]. Cate-

gorical disentanglement is of particular interest, where one

would like an explicit mapping between one or more vari-

ables in the random vector and a given object category in

the target dataset. Typically, the categorical information is

encoded with a one-hot vector that is appended to a ran-

dom noise vector. To improve conditional generation, sev-

eral works have augmented the objective function with loss

functions targeting the categorization task [29].

Alternatives to concatenating the category embedding

with the random vector have been proposed. For generators

for example, works such as [26, 2] use conditional batch

normalization [4]. In particular, category-specific scale and

shift parameters are used in the batch normalization layers

to generate category-specific images. For discriminators,

[26] propose a projection-based alternative to concatenation

which introduces categorical information using a compati-

bility function between the category embedding and the im-

age representation. In this work, we propose a modified

version of conditional batch normalization for continuous

rather than discrete conditional information. We also ex-

tend the projection discriminator to allow for conditioning

on both discrete and continuous conditioning variables.

GANs for aesthetics: Deng et al. [5] proposed a model

for aesthetics-driven image enhancement which takes as in-

put an image and generates a modified image with enhanced

aesthetic properties. There have been may works address-

ing the related problem of style transfer, where the goal is to

transfer the style from a source image to an existing target

image [7, 6]. One work which aims to transfer aesthetically-

pleasing styles is [34], where the authors perform style

transfer on headshot photos using styles preferred by pro-

fessional photographers when taking portraits. There has

been very little work exploring aesthetics-aware training of

GANs. The only work of which we are aware is that of

[39], which includes two additional objectives in the loss

function for training the GAN. One is a content-aware loss

which captures the distance between feature maps given by

the generator and those given by VGGNet [35]. The as-

sumption is that VGGNet encodes semantic properties and

so minimizing this loss will enhance the semantic proper-

ties of the generated image. In contrast to this, we aim to

condition the generator using a specific semantic category.

The second loss is an aesthetics-aware loss which aims to

maximize the aesthetic score of generated images (using an

auxiliary network to score the images according to their aes-

thetic quality). While this encourages the generator to syn-

thesize aesthetically pleasing images, it does not allow the

generator to be conditioned on an aesthetic random variable

as in our case.

3. Method

We propose to use a GAN to learn a generative image

model conditioned on semantic and aesthetic properties.

The model consists of a generator G(z, ys, ya; θg) and a

discriminator D(x, ys, ya; θd), where z is the input noise

vector, ys is the conditional semantic information, ya is the



Figure 2: Schema of the components of PFAGAN: (a) the ResNet block with upsampling (RNBlock-Up) for the generator

with MCBN layers; (b) the full generator network; (c) the full discriminator network. The RNet-Dwn layer differs from the

RNBlock-Up layer in that the input is downsampled rather than upsampled and regular batch normalization is used.

conditional aesthetic information, x is the generated image,

and θg and θd are the parameters of G and D respectively.

We train the model using the standard two-player adversar-

ial game described in [8], using a hinge loss [38, 18]:

min
D

Eq(ys,ya)

[

Eq(x|ys,ya) [max(0, 1−D(x, ys, ya))]
]

+

Eq(ys,ya)

[

Ep(z) [max(0, 1 +D(G(x, ys, ya), ys, ya))]
]

min
G

− Eq(ys,ya)

[

Ep(z) [D(G(z, ys, ya), ys, ya)]
]

,

(1)

where q and p represent the true distribution and that of the

generator G respectively.

3.1. Conditioning the generator

To condition the generator we propose a normaliza-

tion procedure for convolutional layers that is related to

both conditional batch normalization [4] and conditional in-

stance normalization [6]. We first review these two normal-

ization procedures before describing our mixed-conditional

batch normalization approach.

Conditional batch normalization was proposed to con-

dition visual representations on continuous language em-

beddings, and is formulated as follows:

oi,c = λ̂c

(

hi,c − µc

σc

)

+ β̂c, (2)

where hi,c is element i of channel c, and µc and σc are

the computed batch statistics. The scaling parameters, λ̂c

and β̂c, are computed by first applying two affine transfor-

mations to the language embedding to compute the vectors

∆λ ∈ R
|C| and ∆β ∈ R

|C|, where |C| is the number of

channels. λ̂ and β̂ are computed as:

λ̂ = λ+∆λ; β̂ = β +∆β (3)

The affine transformation was learned after fixing all other

parameters in the network.

Conditional instance normalization was originally de-

signed to condition visual representations on different vi-

sual styles. It is formulated as:

oi,c = λs,c

(

hi,c − µc

σc

)

+ βs,c. (4)

Here, s ∈ S , where S is the set of (style or semantic) cat-

egories, and λs,c and βs,c are the category- and channel-

specific scaling and shifting parameters. [6] showed that

this simple mechanism is sufficient to learn a generator con-

ditioned on categorical information. The λs,c and βs,c pa-

rameters are stored in a look-up table and trained via back-

propagation with the rest of the network.

Mixed-conditional batch normalization: To condition

on both categorical information related to semantics and

continuous information in the form of score distributions,

we propose a three-step approach that draws inspiration

from the two previous normalization methods. First, we

select a set of parameters for a semantic category s from a

look-up table. This set is As = {Wλ,s, bλ,s,Wβ,s, bβ,s},

where Wλ,s,Wβ,s ∈ R
R×|C|, bλ,s, bβ,s ∈ R

|C|, and R is

the dimension of the score histogram. The set parametrises

two affine transformations of the aesthetic information ya,

which is encoded as a normalized score histogram. In the



second step, these two affine transforms produce λs,a ∈
R

|C| and βs,a ∈ R
|C| as follows:

λs,a = y⊤a Wλ,s + bλ,s;

βs,a = y⊤a Wβ,s + bβ,s.
(5)

Lastly, elements of λs,a and βs,a are used, as in eqn 4,

to condition on semantics and aesthetics. In Figure 2 we

illustrate how we incorporate our mixed-conditional batch

normalization layer, which we call (MCBN), into the gen-

erator. We learn the affine transformation parameters end-

to-end with the rest of GAN parameters. MCBN is similar

to conditional batch normalization in that affine transforma-

tions are used to compute the scaling and shifting parame-

ters. It is also related to conditional instance normalization

in that the affine parameters are selected via a look-up table

and trained end-to-end.

3.2. Conditioning the discriminator

We extend the projection discriminator of [26], which

maps a categorical or continuous conditioning variable into

a shared space with an image representation. The dot prod-

uct between the projection of the conditioning variable and

the image representation serves as a compatibility function.

This function is then maximized when training the gener-

ator, and maximized (resp. minimized) when training the

discriminator with real (resp. generated) images.

To arrive at the projection formulation, [26] showed that

the optimal solution for the hinge discriminator loss can be

decomposed into the sum of two likelihood ratios. In our

case in which there are two conditioning variables, the op-

timal solution D∗ can be decomposed similarly:

D∗(x, ys, ya) = log
q(x|ys, ya)q(ys, ya)

p(x|ys, ya)p(ys, ya)

= log
q(ys, ya|x)

p(ys, ya|x)
+ log

q(x)

p(x)
,

(6)

where the semantic information is encoded as a one-hot

vector ys. To model q(ys, ya|x) and p(ys, ya|x) we assume

that ys and ya are conditionally independent. While works

have shown that aesthetic properties are content-dependent

this simplifying assumption worked well in practice. We

then formulate the optimal solution as follows:

D∗(x, ys, ya) = log
q(ys|x)

p(ys|x)
+ log

q(ya|x)

p(ya|x)
+ log

q(x)

p(x)
. (7)

Assuming a log-linear model for q(ys|x) gives [26]:

log q(ys|x) = vq⊤s φ(x)− logZq
s (φ(x)), (8)

where s is the semantic category, φ(x) is the image repre-

sentation and Zq
s is the partition function of q(ys|x). Mod-

eling p(ys|x) analogously gives:

log
q(ys|x)

p(ys|x)
= (vqs − vps )

⊤φ(x)− log
Zq
s (φ(x))

Z
p
s (φ(x))

. (9)

If we model q(ya|x) and p(ya|x) as Gaussian distribu-

tions then, as shown in [26], we can obtain the following

similar form:

log
q(ya|x)

p(ya|x)
= κ+ y⊤a Uφ(x)− log

Zq
a(φ(x))

Z
p
a(φ(x))

, (10)

where κ is a constant dependent only on ya that can be ig-

nored in the optimization, and U is a projection from ya to

the image representation space.

We estimate log
q(x)
p(x) − log

Zq

s
(φ(x))

Z
p

s (φ(x))
− log

Zq

a
(φ(x))

Z
p

a(φ(x))
as

ψ(φ(x)), where ψ is a fully-connected layer in our case.

We can then parametrize D as:

D(x, ys, ya) = y⊤s V φ(x) + y⊤a Uφ(x) + ψ(φ(x)), (11)

where y⊤s V = vs = vqs − vps . The semantic and aesthetic

embedding functions V and U are trained end-to-end along

with the other GAN parameters.

3.3. Implementation and network architecture

We use a ResNet[10]-like architecture for both D and

G, similar to those used in [26]. G uses two MCBN layers

within each ResNet convolutional block. We applied spec-

tral normalization [25] to all of the weight tensors in D. We

generate images of resolution 128× 128. The architectures

for D and G are shown in Figure 2. We trained both net-

works with a learning rate of 0.0002 and updated the dis-

criminator 5 times for every update of the generator. We

used the Adam optimization algorithm [13] for both net-

works, with β1 = 0 and β2 = 0.9. We used a batch size

of 256 and used early stopping to terminate training. Our

model, implemented in PyTorch, took 40 hours to train us-

ing 2 Nvidia V100 GPUs.

4. Dataset creation

There is no publicly available large-scale dataset

with both reliable semantic annotations and reliable aes-

thetic annotations. Aesthetics datasets sourced from

dpchallenge.com, such as AVA [28], contain reliable

aesthetic annotations, in the form of a histogram of scores

ranging from 1 to 10. Images in AVA have on average 210

scores. However, images from dpchallenge.com only

contain weak and incomplete semantic annotations in the

form of tags given to images by photographers. Photogra-

phers are limited to a maximum of 2 tags, chosen from a

pre-defined list, so additional tags that might be relevant

(e.g. an image can be relevant to “nature”, “landscape”,

“black and white” and “rural” tags) cannot be added. In

addition, different taggers have different conceptions of the

semantics of different tags and no guidance is given in us-

ing them. As a result, images with a given tag tend to have a

high variety of visual content and such tags are too noisy to

be reliably used to train our model. Datasets sourced from



Flickr or photo.net have similar limitations to collect-

ing semantic annotations. Their aesthetic annotations are

also less interpretable and more sparse.

To obtain semantic annotations we adopt a semi-

supervised approach. We use the AVA dataset [28], which

contains 255K images from dpchallenge.com. A sub-

set of 20K images from the AVA dataset was weakly anno-

tated with 8 semantic categories using tags obtained from

dpchallenge.com [28], with roughly 5K images per

category. For each of these 20K images, we queried the

entire AVA database to retrieve visually similar images. For

this image retrieval procedure, we extracted representations

for each database image using the model of Gordo et al. [9]

and ranked the databases images in decreasing order of their

dot-product similarity to each query image. While this rep-

resentation was trained on images of landmarks, we found

that the representations worked well for our task. Figure 3

shows representative query results for several images.

Among the top 5000 retrieved images for each query,

we retain all images with a similarity score higher than

0.65. This gives 8 sets of retrieved images, one per cat-

egory. For each set of images, we clustered their associ-

ated image representations using spectral clustering, with

the number of clusters set to 100, resulting in 800 image

clusters. We manually inspected and grouped similar clus-

ters and discarded clusters that were incoherent or had fewer

than 500 members. After this procedure, we obtained a

dataset of 38506 images with 11 pseudo-labels correspond-

ing to: “barn”, “beach”, “bird”, “cat”, “flower”, “lake”,

“meadow”, “mountain”, “portrait”, “sunset”, “trees”. We

call this dataset AVA-Sem. Image samples from each cate-

gory are shown in Figure 4, along with the number of im-

ages per category. One can observe that the clusters are se-

mantically coherent, although there is still a high variance

of style and composition, and some false positives.

5. Experiments

We now describe our evaluation of PFAGAN using quan-

titative and qualitative experiments. For testing, we use

ya and ys pairs from the training set to condition random

variable z. As an alternative to using conditioning infor-

mation from the training set, one could model the distribu-

tion m(ya, ys) of pairs and sample from it. However if the

model is not sufficiently accurate this would run the risk of

using unrealistic vectors to condition our model.

Metrics: Several metrics have been proposed to evaluate

generative image models [33, 21]. The two most widely-

used ones are the inception score (IS) [33] and the Fréchet

inception distance (FID) [11]. User studies have also been

proposed but are difficult to replicate consistently [33].

The inception score (IS) is derived from the softmax pre-

dictions of a deep classification model, InceptionV3 [37],

trained on ImageNet. It was conceived to evaluate two de-

sirable properties of a generative image model. The first

is that it should generate images for which the inception

model gives high confidence for one class, i.e., there should

be a clear and recognizable object that belongs to one of the

classes in the dataset. The second is that it should generate

images for which the inception model gives diverse predic-

tions, i.e. the model should generate diverse content and

avoid mode collapse. However there are serious drawbacks

to the IS [1, 21] and for this work it is less appropriate be-

cause our model wasn’t trained with ImageNet images and

was trained to generate scenic images in addition to object-

centered images. However we observed that it correlated to

some extent with more realism and report it for complete-

ness, using code provided by the authors of [33].

The FID is derived from the image representations ex-

tracted from InceptionV3. It is a measure of the distance

between the distribution of representations extracted from

real images and that of generated images. Both distributions

are modeled as Normal distributions. IntraFID is a variant

of FID introduced by [26] to evaluate category-conditional

GANs, and is the average of the FID scores calculated be-

tween generated images and real images for each category.

In our case, we would like to evaluate both the semantics-

conditional generation and the aesthetics-conditional gen-

eration. We report results on semantics by computing the

IntraFID. That is, for generated and real images with se-

mantic category s, we calculate the statistics of their distri-

butions. We then average across the categories. Because

the aesthetics conditioning uses a continuous random vec-

tor ya we can not directly use FID or IntraFID. We create

two aesthetics-related categories, HiQ and LoQ by retain-

ing real and generated images with mean scores (as com-

puted using their normalized score histograms) higher than

6.5 and lower than 4.5, respectively. We then calculate the

FID separately for these two categories.

Using a pre-trained model: To learn to generate realistic

images, one needs large-scale datasets, ideally with many

samples per category. As our dataset is fairly small-scale,

we experimented with initializing our model using a model

pre-trained on AVA, which has 255K images, compared

to the 38506 images in AVA-Sem. Because the full AVA

dataset does not have semantic annotations, we trained a

version of PFAGAN in which the parameters for seman-

tic conditioning were removed. Specifically, for each batch

normalization layer in the generator, a single set of affine

transformation parameters A was used to map aesthetic an-

notations to scaling and shifting parameters. For the dis-

criminator, the y⊤s V φ(x) term was removed from equa-

tion 11. We then initialize each As in PFAGAN with the

corresponding pre-trained A for that layer. We initialize the

V embedding with random Gaussian noise.



Figure 3: Query results for a sample of AVA images. The first column contains the query image while the remaining columns

show the retrieved images in decreasing order of similarity. Note that the first retrieved image is always the query image

itself. See section 4 for details.

(a) barn (1808) (b) beach (1622) (c) bird (1519) (d) cat (2051) (e) flower (10868)

(f) lake (3280) (g) meadow (2092) (h) mountain (720) (i) portrait (7871) (j) sunset (3319) (k) trees (3356)

Figure 4: Images from each of the 11 pseudo-categories of AVAc. In parentheses we show the number of images for each

category. The categories are highly semantically coherent, despite a few false positives such as the images of flowers in the

“trees” category. See section 4 for details.

5.1. Results

In Table 1 we report results on the AVA-Sem dataset with

(PFAGAN-pt) and without (PFAGAN) pre-training. We re-

port the inception score (IS) calculated over all images. We

also report the Intra-FID score across semantic categories

(Intra-FID-Sem), the FID for high-quality images (FID-

HiQ), and the FID for low-quality images (FID-LoQ). Un-

surprisingly, pre-training the model significantly improves

performance for all FID-based metrics. In addition, FID-



Method IS Intra-FID-Sem FID-HiQ FID-LoQ

PFAGAN 3.81 117.50 113.68 120.71

PFAGAN-pt 3.95 75.25 80.62 66.80

PDGAN [26] 3.59 86.89 76.96 74.54

Table 1: Results on AVA-Sem dataset with (PFAGAN-pt)

and without (PFAGAN) pre-training, as well as the projec-

tion discriminator GAN [26]. We report the inception score

(IS) and different FID metrics (cf. section 5.1).

HiQ is a fair bit higher than FID-LoQ. This may be due in

part to increased complexity in modeling high quality im-

ages. We discuss this further in section 5.2.

Comparison to baseline: We compare to the projection

discriminator GAN (PDGAN) [26], which can be consid-

ered the baseline version of PFAGAN in which the aes-

thetics projection term in equation 11 and the MCBN are

removed. We explicitly condition PDGAN using only se-

mantic information ys, and condition on aesthetics implic-

itly by training using only the subset of AVA-Sem (17948

images) with a mean score greater than 5.5 (the midpoint

of the rating scale). In Table 1 we see that the FID-LoQ is

significantly worse than for PFAGAN-pt, which is to be ex-

pected as PDGAN was trained using only HiQ images. The

FID-HiQ is better, which can be explained by the same fact.

However the Intra-FID-Sem performs much worse. This

is unsurprising as the dataset now has fewer images with

which to train the model to condition semantically. Note

that pre-training PDGAN with AVA did not improve perfor-

mance, indicating that AVA is not effective for pre-training

if the final GAN will be conditioned only on semantics.

5.2. Qualitative results:

In Figure 6 we show randomly generated images for all

11 categories, ordered by decreasing FID score. HiQ im-

ages are shown in the top 5 rows while LoQ images are

shown in the bottom ones. We generated the images us-

ing PFAGAN-pt. For several categories, the model is able

to effectively replicate key aesthetic characteristics. For

example, reflection on water is visible for images in the

“lake” and “sunset” categories, and rule-of-thirds composi-

tion is present in the “sunset” and “barn” categories. Land-

scape categories such as “lake”, “beach” and “sunset” tend

to show more realism than categories corresponding to ani-

mals, plants and people, such as “portrait” and “cat”. This

is likely because images in the former category are dom-

inated by low-frequency and/or repetitive textures that are

relatively easy to model. Additional causes of low realism

for some categories include too few training examples, and

a high degree of intra-class variability. A degree of mode

collapse is evident for several semantic-aesthetic configura-

Figure 5: Generated images with a model conditioned only

on aesthetic information. The first 4 rows contain images

conditioned on HiQ aesthetic score distributions, while the

last 4 rows contain images conditioned on LoQ aesthetic

score distributions. While general aesthetic properties of

high- and low-quality images have been learned, the images

exhibit limited semantic structure.

tions.

The HiQ generated images clearly have different char-

acteristics when compared to their LoQ counterparts. For

example, HiQ images tend to exhibit high colour contrast

and saturation, particularly for landscape categories where

a dramatic sky is desirable. In other categories such as

“flower” and “portrait”, they exhibit less clutter than LoQ

images. We validated this quantitatively by computing the

FID between generated HiQ images and real LoQ images

(denoted HiQG-vs-LoQR) and vice versa (denoted LoQG-

vs-HiQR). We obtained FID=86.13 for HiQG-vs-LoQR and

FID=88.95 for LoQG-vs-HiQR, both of which are higher

than our FID-HiQ and FID-LoQ scores. This indicates that

our generated HiQ images (resp. generated LoQ images)

are indeed closer to real HiQ images (resp. real LoQ im-

ages) than our generated LoQ images (resp. generated HiQ

images), and that PFAGAN is able to effectively use the

aesthetics-conditioning information to modulate image gen-

eration.

Conditioning on semantics was key to generating realis-

tic images. To illustrate this, Figure 5 shows images gen-

erated using the version of PFAGAN which is conditioned

using only aesthetic information (and was used for pre-

training). The top 4 rows are generated with HiQ annota-



lake meadow sunset beach barn flower mountain portrait trees cat bird

Figure 6: Generated images for the 11 categories in AVAc. The columns are ordered by decreasing FID score. The first 5

rows contain images conditioned on HiQ aesthetic score distributions, while the last 5 rows contain images conditioned on

LoQ aesthetic score distributions.

tions and the bottom 4 with LoQ ones. While some differ-

ences in color saturation can be observed between the two

sets of images, there is little recognizable structure.

6. Conclusion

We introduce the problem of aesthetics-conditional im-

age generation and propose a conditional GAN model, PFA-

GAN, that generates photographic fine art by conditioning

the generator on both semantic and aesthetic criteria. We

propose a mixed-conditional batch normalization layer to

condition the generator. We use a projection-based condi-

tioning method for the discriminator that assumes condi-

tional independence of the image aesthetics and semantics

given the image. We show that PFAGAN is able to cap-

ture both aspects, aesthetic and semantic, in the generative

model.
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