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Abstract

In recent years, many deep learning techniques have

been applied to the image inpainting problem: the task of

filling incomplete regions of an image. However, these mod-

els struggle to recover and/or preserve image structure es-

pecially when significant portions of the image are miss-

ing. We propose a two-stage model that separates the in-

painting problem into structure prediction and image com-

pletion. Similar to sketch art, our model first predicts the

image structure of the missing region in the form of edge

maps. Predicted edge maps are passed to the second stage

to guide the inpainting process. We evaluate our model end-

to-end over publicly available datasets CelebA, CelebHQ,

Places2, and Paris StreetView on images up to a resolution

of 512 × 512. We demonstrate that this approach outper-

forms current state-of-the-art techniques quantitatively and

qualitatively.

1. Introduction

Image inpainting, or image completion, involves filling

in missing regions of an image. It is an important step in

many image editing tasks. For example, it can be used to fill

in empty regions after removing unwanted objects from an

image. Filled regions must be perceptually plausible since

humans have an uncanny ability to zero in on visual incon-

sistencies. The lack of fine structure in the filled region is a

giveaway that something is amiss, especially when the rest

of the image contain sharp details. The work presented in

this paper is motivated by our observation that many ex-

isting inpainting techniques generate over-smoothed and/or

blurry regions where detailed image structure is expected.

Like most computer vision problems, image inpaint-

ing predates the wide-spread use of deep learning tech-

niques. Broadly speaking, traditional approaches for image

inpainting can be divided into two groups: diffusion-based

and patch-based. Diffusion-based methods propagate back-

ground data into the missing region by numerically solv-

ing corresponding partial differential equations (PDEs) that

Figure 1: (Left) Input images with missing regions. The

missing regions are depicted in white. (Center) Computed

edge masks. Edges drawn in black are computed (for

the available regions) using Canny edge detector; whereas

edges shown in blue are hallucinated (for the missing re-

gions) by the edge generator network. (Right) Image in-

painting results of the proposed approach.

model desired behaviors [4, 15, 30, 2]. Patch-based meth-

ods, on the other hand, fill in missing regions with patches

from a collection of source images that maximize patch sim-

ilarity [8, 23].

More recently, deep learning approaches have found re-

markable success at the task of image inpainting. These

schemes fill the missing pixels using a learned data dis-

tribution. They are able to generate coherent structures in

the missing regions, a feat that was nearly impossible for

traditional techniques without significant user intervention.

While these approaches are able to generate missing regions

with meaningful structures, the generated regions are often



blurry or suffer from artifacts, suggesting that these meth-

ods struggle to reconstruct high frequency information ac-

curately.

Then, how does one force an image inpainting network

to generate fine details? Since image structure is well-

represented in its edge mask, we show that it is possible to

generate superior results by conditioning an image inpaint-

ing network on edges in the missing regions. Our approach

of “lines first, color next” is partly inspired by our under-

standing of how artists work [14]. “In line drawing, the

lines not only delineate and define spaces and shapes; they

also play a vital role in the composition”, says Betty Ed-

wards, highlights the importance of sketches from an artis-

tic viewpoint [13]. Edge recovery, we suppose, is an easier

task than image completion. We propose a model that es-

sentially decouples the recovery of high and low-frequency

information of the inpainted region.

We divide the image inpainting process into a two-stages

(Figure 1): edge generation and image completion. Edge

generation is solely focused on hallucinating edges in the

missing regions. The image completion then estimates

RGB intensities of the region using hallucinated edges.

Both stages follow an adversarial framework [19] to ensure

that the hallucinated edges and the RGB pixel intensities

are visually consistent. Losses based on deep features are

in corporated into both networks to enforce perceptually re-

alistic results.

We evaluate our proposed model on standard datasets

CelebA [33], CelebHQ [27], Places2 [59], and Paris

StreetView [9]. We compare the performance of our model

against current state-of-the-art schemes. Furthermore, we

provide results of experiments carried out to study the ef-

fects of edge information on the image inpainting task. Our

paper makes the following contributions:

• An edge generator that approximates structural infor-

mation by predicting edge data in missing regions of

an image.

• We demonstrate that using image structure as a priori

significantly improves inpainting results.

We show that our model can be used in some common im-

age editing applications, such as object removal and scene

generation. Our source code is available at:

https://github.com/knazeri/edge-connect

2. Related Work

Diffusion-based methods propagate neighboring infor-

mation into the missing regions [4, 2]. [15] adapted the

Mumford-Shah segmentation model for image inpainting

by introducing Euler’s Elastica. However, reconstruc-

tion is restricted to locally available information for these

diffusion-based methods, and these methods fail to re-

cover meaningful structures in the missing regions espe-

cially for cases with large missing regions. Structure guided

diffusion-based methods have also been proposed such as

[5, 47, 22].

Patch-based methods fill in missing regions (i.e., targets)

by copying information from similar regions (i.e., sources)

of the same image (or a collection of images). Source re-

gions are often blended into the target regions to minimize

discontinuities [8, 23]. These methods are computation-

ally expensive since similarity scores must be computed for

every target-source pair. PatchMatch [3] addressed this is-

sue by using a fast nearest neighbor field algorithm. These

methods, however, assume that the texture of the inpainted

region can be found elsewhere in the image, which may not

always hold. Consequently, these methods excel at recov-

ering highly patterned regions such as background comple-

tion but struggle at reconstructing structure that are locally

unique.

One of the first deep learning methods designed for

image inpainting is context encoder [40], which uses an

encoder-decoder architecture. The encoder maps an image

with missing regions to a low-dimensional feature space,

which the decoder uses to construct the output image. Due

to the information bottleneck in the channel-wise fully con-

nected layer, recovered regions of the output image often

contain visual artifacts and exhibit blurriness. This was

addressed by Iizuka et al. [24] by reducing the number

of downsampling layers. To preserve the effective recep-

tive field from the reduction of downsampling layers, the

channel-wise fully connected layer was replaced by a se-

ries of dilated convolution layers [54] with varying dilation

factors. However, the training time was increased signifi-

cantly.1 Yang et al. [52] uses a pre-trained VGG network

[44] to improve the output of the context-encoder, by min-

imizing the feature difference of image background. This

approach requires solving a multi-scale optimization prob-

lem iteratively, which noticeably increases computational

cost during inference time. Liu et al. [31] introduced “par-

tial convolution” for image inpainting, where convolution

weights are normalized by the mask area of the window

that the convolution filter currently resides over. This ef-

fectively prevents the convolution filters from capturing too

many zeros when they traverse over the incomplete region.

Recently, several methods were introduced by providing

additional information prior to inpainting. Yeh et al. [53]

trains a GAN for image inpainting with uncorrupted data.

During inference, back-propagation is employed for 1, 500
iterations to find the representation of the corrupted image

on a uniform noise distribution. However, the model is slow

during inference since back-propagation must be performed

for every image it attempts to recover. Dolhansky and Fer-

rer [10] demonstrate the importance of exemplar informa-

tion for inpainting. Their method is able to achieve both

sharp and realistic inpainting results when filling in miss-

1Model by [24] required two months of training over four GPUs.



ing eye regions in frontal human face images. Contextual

Attention [56] takes a two-step approach to the problem of

image inpainting by first producing a coarse estimate of the

missing region. The initial estimate is passed to a refine-

ment network with an attention mechanism that searches for

a collection of background patches with the highest similar-

ity to the coarse estimate. [45] takes a similar approach and

introduces a “patch-swap” layer which replaces each patch

inside the missing region with the most similar patch on the

boundary. SPG-Net [46] also follows a two-stage model

which uses semantic segmentation labels to guide the in-

painting process. Free-form inpainting method proposed in

[55] is perhaps closest in spirit to our work, by using hand-

drawn sketches to guide the inpainting process. Our method

does away with hand-drawn sketches and instead learns to

hallucinate edges in the missing regions.

2.1. Image-to-Edges vs. Edges-to-Image

The inpainting technique proposed in this paper sub-

sumes two disparate computer vision problems: Image-to-

Edges and Edges-to-Image. There is a large body of liter-

ature that addresses “Image-to-Edges” problems [6, 11, 29,

32]. Canny edge detector, an early scheme for constructing

edge maps, for example, is roughly 30 years old [7]. Dollár

and Zitnikc [12] use structured learning [37] on random

decision forests to predict local edge masks. Holistically-

nested Edge Detection (HED) [51] is a fully convolutional

network that learns edge information based on its impor-

tance as a feature of the overall image. In our work, we

train on edge maps computed using Canny edge detector.

We explain this in detail in Section 4.1 and Section 5.3.

Traditional “Edges-to-Image” methods typically follow

a bag-of-words approach, where image content is con-

structed through a pre-defined set of keywords. These

methods, however, are unable to accurately construct fine-

grained details especially near object boundaries. Scribbler

[43] is a learning-based model where images are generated

using line sketches as the input. The results of their work

possess an art-like quality, where color distribution of the

generated result is guided by the use of color in the input

sketch. Isola et al. [25] proposed a conditional GAN frame-

work [35], called pix2pix, for image-to-image translation

problems. This scheme can use available edge information

as a priori. CycleGAN [60] extends this framework and

finds a reverse mapping back to the original data distribu-

tion. This approach yields superior results since the aim is

to learn the inverse of the forward mapping.

3. EdgeConnect

We propose an image inpainting network that consists of

two stages: 1) edge generator, and 2) image completion net-

work (Figure 2). Both stages follow an adversarial model

[19], i.e. each stage consists of a generator/discriminator

pair. Let G1 and D1 be the generator and discriminator for

the edge generator, and G2 and D2 be the generator and dis-

criminator for the image completion network, respectively.

To simplify notation, we will use these symbols also to rep-

resent the function mappings of their respective networks.

Our generators follow an architecture similar to the

method proposed by Johnson et al. [26], which has achieved

impressive results for style transfer, super-resolution [42,

18], and image-to-image translation [60]. Specifically, the

generators consist of encoders that down-sample twice, fol-

lowed by eight residual blocks [20] and decoders that up-

sample images back to the original size. Dilated convo-

lutions with a dilation factor of eight are used instead of

regular convolutions in the residual layers to increase re-

ceptive field in subsequent layers. For discriminators, we

use a 70 × 70 PatchGAN [25, 60] architecture, which de-

termines whether or not overlapping image patches of size

70× 70 are real. We use instance normalization [48] across

all layers of the network2.

3.1. Edge Generator

Let Igt be ground truth images. Their edge map and

grayscale counterpart will be denoted by Cgt and Igray,

respectively. In the edge generator, we use the masked

grayscale image Ĩgray = Igray ⊙ (1 − M) as the input,

its edge map C̃gt = Cgt⊙ (1−M), and image mask M as

a pre-condition (1 for the missing region, 0 for background).

Here, ⊙ denotes the Hadamard product. The generator pre-

dicts the edge map for the masked region

Cpred = G1

(

Ĩgray, C̃gt,M
)

. (1)

We use Cgt and Cpred conditioned on Igray as inputs of

the discriminator that predicts whether or not an edge map

is real. The network is trained with an objective comprised

of the hinge variant of GAN loss [36] and feature-matching

loss [49]

JG1
= λG1

LG1
+ λFMLFM (2)

where λG1
and λFM are regularization parameters. The

hinge losses over the generator and discriminator are de-

fined as

LG1
= −EIgray

[D1(Cpred, Igray)] , (3)

LD1
= E(Cgt,Igray) [max(0, 1−D1(Cgt, Igray))]

+ EIgray
[max(0, 1 +D1(Cpred, Igray))] . (4)

The feature-matching loss LFM compares the activation

maps in the intermediate layers of the discriminator. This

stabilizes the training process by forcing the generator to

2The details of our architecture are in the supplementary material.



Figure 2: Summary of our proposed method. Incomplete grayscale image and edge map, and mask are the inputs of G1 to

predict the full edge map. Predicted edge map and incomplete color image are passed to G2 to perform the inpainting task.

produce results with representations that are similar to real

images. This is similar to perceptual loss [26, 17, 16],

where activation maps are compared with those from the

pre-trained VGG network. However, since the VGG net-

work is not trained to produce edge information, it fails to

capture the result that we seek in the initial stage. The fea-

ture matching loss LFM is defined as

LFM = E

[

∑

i

1

Ni

∥

∥

∥
D

(i)
1 (Cgt)−D

(i)
1 (Cpred)

∥

∥

∥

1

]

, (5)

where, Ni is the number of elements in the i’th activation

layer, and D
(i)
1 is the activation in the i’th layer of the dis-

criminator. Spectral normalization (SN) [36] further sta-

bilizes training by scaling down weight matrices by their

respective largest singular values, effectively restricting the

Lipschitz constant of the network to one. Although this was

originally proposed to be used only on the discriminator, re-

cent works [57, 38] suggest that generator can also benefit

from SN by suppressing sudden changes of parameter and

gradient values. Therefore, we apply SN to both generator

and discriminator. Spectral normalization was chosen over

Wasserstein GAN (WGAN) [1], as we found that WGAN

was several times slower in our early tests. For our experi-

ments, we choose λG1
= 1 and λFM = 10.

3.2. Image Completion Network

The image completion network uses the incomplete

color image Ĩgt = Igt ⊙ (1−M) as input, conditioned

using a composite edge map Ccomp. The composite edge

map is constructed by combining the background region

of ground truth edges with generated edges in the cor-

rupted region from the previous stage, i.e. Ccomp = Cgt ⊙
(1−M) + Cpred ⊙ M. The network returns a color im-

age Ipred, with missing regions filled in, that has the same

resolution as the input image:

Ipred = G2

(

Ĩgt,Ccomp

)

. (6)

This is trained over a joint loss that consists of an ℓ1 loss,

hinge loss, perceptual loss, and style loss. To ensure proper

scaling, the ℓ1 loss is normalized by the mask size. The

hinge loss is similar to 3, 4:

LG2
= −ECcomp

[D2(Ipred,Ccomp)] , (7)

LD2
= E(Igt,Ccomp) [max(0, 1−D2(Igt,Ccomp))]

+ ECcomp
[max(0, 1 +D2(Ipred,Ccomp))] . (8)

We include the two losses proposed in [17, 26] commonly

known as perceptual loss Lperc and style loss Lstyle. As

the name suggests, Lperc penalizes results that are not per-

ceptually similar to labels by defining a distance measure

between activation maps of a pre-trained network. Percep-

tual loss is defined as

Lperc = E

[

∑

i

1

Ni

‖φi(Igt)− φi(Ipred)‖1

]

, (9)

where φi is the activation map in the i’th layer of a pre-

trained network. For our work, φi corresponds to activation

maps from layers relu1 1, relu2 1, relu3 1, relu4 1

and relu5 1 of the VGG-19 network pre-trained on the Im-

ageNet dataset [41]. These activation maps are also used to

compute style loss which measures the differences between

covariances of the activation maps. Given feature maps of

sizes Ni = Cj ×Hj ×Wj , style loss is computed by

Lstyle = E

[

∑

j‖G
φ
j (Ĩpred)−G

φ
j (Ĩgt)‖1

]

, (10)

where G
φ
j is a Cj × Cj Gram matrix constructed from ac-

tivation maps φj [17]. We choose to use style loss as it

was shown by Sajjadi et al. [42] to be an effective tool to

combat “checkerboard” artifacts caused by transpose con-

volution layers [39]. Our overall loss function is

JG2
= λℓ1Lℓ1 + λG2

LG2
+ λpLperc + λsLstyle. (11)

For our experiments, we choose λℓ1 = 1, λG2
= λp = 0.1,

and λs = 250. We noticed that the training time increases

significantly if spectral normalization is included. We be-

lieve this is due to the network becoming too restrictive with

the increased number of terms in the loss function. There-

fore we choose to exclude spectral normalization from the

image completion network.



4. Experiments

4.1. Edge Information and Image Masks

To train G1, we generate training labels (i.e. edge maps)

using Canny edge detector. The sensitivity of Canny edge

detector is controlled by the standard deviation of the Gaus-

sian smoothing filter σ. For our tests, we empirically found

that σ ≈ 2 yields the best results (Figure 4). In Section 5.3,

we investigate the effect of the quality of edge maps on the

overall image completion.

For our experiments, we use two types of image masks:

regular and irregular. Regular masks are square masks of

fixed size (25% of total image pixels) centered at a ran-

dom location within the image. We obtain irregular masks

from the work of Liu et al. [31]. Irregular masks are

classified based on their sizes relative to the entire im-

age in increments of 10% (e.g. 0-10%, 10-20%, etc.). All

bins are divided into two batches of 1,750 and 250 masks

for training and testing purposes respectively. Once sepa-

rated, masks are augmented by introducing four rotations

(0◦, 90◦, 180◦, 270◦) and a horizontal reflection for each

mask. This ensures that augmented variations of masks

were not shared between the training and testing sets.

4.2. Training Setup and Strategy

Our proposed model is implemented in PyTorch. The

network is trained with 256 × 256 images with batch size

of eight to obtain results for quantitative comparisons with

existing methods. The model is optimized using Adam op-

timizer [28] with β1 = 0 and β2 = 0.9. Generators G1, G2

are trained separately using Canny edges with learning rate

10−4 until the losses plateau. We lower the learning rate

to 10−5 and continue to train G1 and G2 until convergence.

Finally, we freeze training on G1 while continue to train G2.

For visual comparisons presented in this paper, our model

was trained with 512×512 images using pre-trained weights

from the 256×256 model with the same hyper-parameters.

5. Results

Our proposed model is evaluated on the datasets CelebA

[33], CelebHQ [27], Places2 [59], and Paris StreetView [9].

For the baseline, we use our image completion network only

(no edge data, G2 only). Results of the full model are com-

pared against the the baseline and current state-of-the-art

methods both qualitatively and quantitatively.

5.1. Qualitative Comparison

Figure 3 shows a sample of images generated by our

model. For visualization purposes, we reverse the colors

of Ccomp. Our model is able to generate photo-realistic

results with a large fraction of image structures remaining

intact. Furthermore, by including style loss, the inpainted

images lack any “checkerboard” artifacts in the generated

results [31]. As importantly, the inpainted images exhibit

minimal blurriness. We conjecture that providing edge in-

formation alleviates the burden of preserving structure from

the network. Thus it only needed to learn color distribution.

5.2. Quantitative Comparison

Numerical Metrics Since existing models were evaluated

using 256 × 256, we evaluated our model trained on im-

ages of the same resolution to ensure fair comparisons. The

performance of our model was measured using the follow-

ing metrics: 1) relative ℓ1; 2) structural similarity index

(SSIM) [50], with a window size of 11; 3) peak signal-

to-noise ratio (PSNR); and 4) Fréchet Inception Distance

(FID) [21]. Since relative ℓ1, SSIM, and PSNR assume

pixel-wise independence, these metrics may assign favor-

able scores to perceptually inaccurate results. Recent works

[58, 57, 10] have shown that FID serves as the preferred

metric for human perception. Note that since FID is a dis-

similarity measure between high-level features, it may not

reflect low-level color consistencies that attribute to visual

quality. While FID may not be the ideal metric to mea-

sure inpainting quality, we believe the combination of the

listed metrics provided a better picture of inpainting per-

formance. The results over Places2 dataset are reported in

Table 1. Note that these statistics are based on the synthe-

sized image which mostly comprises of the ground truth im-

age. Therefore our reported FID values are lower than other

generative models reported in [34]. Statistics for competing

techniques are obtained using their respective pre-trained

weights, where available3,4, and are calculated over 10,000

random images in the test set. The full model of Partial Con-

volution (PConv) is not available at the time of writing. We

implemented PConv based on the guidelines in [31] using

the PConv layer that is publicly available.5

Visual Turing Tests We evaluate our results by per-

forming yes-no tasks (Y-N) and just noticeable differences

(JND). For Y-N, a single image was randomly sampled

from either ground truth images, or images generated by

our model. Participants were asked whether the sampled

image was real or not. For JND, we asked participants to

select the more realistic image from pairs of real and gen-

erated images. For both tests, two seconds were given for

each image set(s). The tests were performed over 300 im-

ages for each model and mask size. Each image was shown

10 times in total. The results are summarized in Table 2.

3https://github.com/JiahuiYu/generative_inpainting
4https://github.com/satoshiiizuka/siggraph2017_

inpainting
5https://github.com/NVIDIA/partialconv



Ground Truth Masked Image Iizuka et al. [24] Yu et al. [56] Liu et al. [31] Baseline Ours

Figure 3: Comparison of qualitative results of 512 × 512 images with existing models. From left to right: Ground Truth,

Masked Image, Iizuka et al. [24], Yu et al. [56], Liu et al. (Partial Convolution) [31], Baseline (no edge data, G2 only), Ours

(Full Model).

5.3. Ablation Study

Quantity of Edges versus Inpainting Quality We now

turn our attention to the key assumption of this work: edge

information helps with image inpainting. Table 3 shows in-

painting results with and without edge information. Our

model achieved better scores for every metric when edge in-

formation was incorporated into the inpainting model, even

when a significant portion of the image is missing.

Next, we turn to a more interesting question: How much

edge information is needed to see improvements in the gen-

erated images? We again use Canny edge detector to con-

struct edge information. We use the parameter σ to con-

trol the amount of edge information available to the im-

age completion network. Specifically, we train our im-

age completion network using edge maps generated for

σ = 0, 0.5, . . . , 5.5, and we found that the best image in-

painting results are obtained with edges corresponding to

σ ∈ [1.5, 2.5], across all datasets shown in Figure 4. For

large values of σ, too few edges are available to make a dif-

ference in the quality of generated images. On the other

hand, when σ is too small, too many edges are produced,



Mask CA GLCIC PConv Ours
ℓ 1

(%
)†

10-20% 2.41 2.66 1.55 1.50

20-30% 4.23 4.70 2.71 2.59

30-40% 6.15 6.78 3.94 3.77

40-50% 8.03 8.85 5.35 5.14

Fixed 4.37 4.12 3.95 3.86

S
S

IM
�

10-20% 0.893 0.862 0.916 0.920

20-30% 0.815 0.771 0.854 0.861

30-40% 0.739 0.686 0.789 0.799

40-50% 0.662 0.603 0.720 0.731

Fixed 0.818 0.814 0.818 0.823

P
S

N
R
�

10-20% 24.36 23.49 27.54 27.95

20-30% 21.19 20.45 24.47 24.92

30-40% 19.13 18.50 22.42 22.84

40-50% 17.75 17.17 20.77 21.16

Fixed 20.65 21.34 21.54 21.75

F
ID

†

10-20% 6.16 11.84 2.26 2.32

20-30% 14.17 25.11 4.88 4.91

30-40% 24.16 39.88 8.84 8.91

40-50% 35.78 54.30 15.18 14.98

Fixed 8.31 8.42 10.53 8.16

Table 1: Quantitative results over Places2 (256 × 256)

with models: Contextual Attention (CA) [56], Globally and

Locally Consistent Image Completion (GLCIC) [24], Par-

tial Convolution (PConv) [31], Ours. The best result of

each row is boldfaced except for Canny. †Lower is better.
�Higher is better.

Mask CA GLCIC PConv Ours

JN
D

(%
) 10-20% 20.98 16.91 36.04 39.69

20-30% 15.45 14.27 30.09 36.99

30-40% 12.86 12.29 20.60 27.53

40-50% 12.74 10.91 18.31 25.44

Y
-N

(%
) 10-20% 38.71 22.46 79.72 88.66

20-30% 23.44 12.09 64.11 77.59

30-40% 13.49 4.32 52.50 66.44

40-50% 9.89 2.77 37.73 58.02

Table 2: Y-N and JND scores for various mask sizes on

Places2. Y-N score for ground truth images is 94.6%.

which adversely affect the quality of the generated images.

We used this study to set σ = 2 when creating ground truth

edge maps for the training of the edge generator network.

Figure 5 shows how different values of σ affects the in-

painting task. Note that in a region where edge data is

sparse, the quality of the inpainted region degrades. For

instance, in the generated image for σ = 5, the left eye was

reconstructed much sharper than the right eye.

CelebA Places2

Edges No Yes No Yes

ℓ1 (%) 4.11 3.03 6.69 5.14

SSIM 0.802 0.846 0.682 0.731

PSNR 23.33 25.28 19.59 21.16

FID 6.16 2.82 32.18 14.98

Table 3: Comparison of inpainting results without edge in-

formation (G2 only, baseline) versus results with edge infor-

mation (full model). Statistics are based on 10, 000 random

masks with size 40-50% of the entire image.

Figure 4: Effect of σ in Canny detector on PSNR and FID.

Figure 5: Effect of σ in Canny edge detector on inpainting

results. Top to bottom: σ = 1, 3, 5, no edge data.

Alternative Edge Detection Systems We use Canny

edge detector to produce training labels for the edge gen-

erator network due to its speed, robustness, and ease of use.

Canny edges are one-pixel wide, and are represented as bi-

nary masks (1 for edge, 0 for background). Edges produced

with HED [51], however, are of varying thickness, and pix-

els can have intensities ranging between 0 and 1. We no-

ticed that it is possible to create edge maps that look eerily

similar to human sketches by performing element-wise mul-

tiplication on Canny and HED edge maps (Figure 6). We



trained our image completion network using the combined

edge map. However, we did not notice any improvements

in the inpainting results.6

Figure 6: (a) Image. (b) Canny. (c) HED. (d) Canny⊙HED.

6. Discussions and Future Work

We proposed EdgeConnect, a new deep learning model

for image inpainting tasks. EdgeConnect comprises of an

edge generator and an image completion network, both fol-

lowing an adversarial model. We demonstrate that edge in-

formation plays an important role in the task of image in-

painting. Our method achieves state-of-the-art results on

standard benchmarks, and is able to deal with images with

multiple, irregularly shaped missing regions.

While effectively delineating the edges is more useful

than hundreds of detailed lines, our edge generating model

sometimes struggles to accurately depict the edges in highly

textured areas, or when a large portion of the image is miss-

ing especially for higher resolution images. We plan to ad-

dress this with a multi-scale approach, by first predicting a

low-resolution variant of edge data. The edge data will be

up-sampled, then refined. This process is repeated until the

desired resolution is reached. This allows image structure to

be scaled up with minor degradation using common inter-

polation techniques. Since our image completion network

was able to produce photo-realistic results provided that the

edge data is accurate, we believe our fully convolutional

model can be extended to very high-resolution inpainting

applications by following a pyramid model for edge predic-

tion.

The trained model can be used as an interactive image

editing tool. We can, for example, manipulate objects in the

edge domain and transform the edge maps back to gener-

ate a new image. We provide some examples in Figure 7.

Here we have removed the right-half of a given image to be

used as input. The edge maps, however, are provided by a

different image. The generated image seems to share char-

acteristics of the two images. Figure 8 further shows ex-

amples where we attempt to remove unwanted objects from

existing images.

6Further analysis with HED are available in supplementary material.

(a) (b) (c) (d)

Figure 7: Edge-map (c) generated using the left-half of (a)

(shown in black) and right-half of (b) (shown in red). Input

is (a) with the right-half removed, producing the output (d).

Figure 8: Examples of object removal and image editing us-

ing our EdgeConnect model. (Left) Original image. (Cen-

ter) Unwanted object removed with optional edge informa-

tion to guide inpainting. (Right) Generated image.
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