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Abstract

Cross-domain mapping has been a very active topic in

recent years. Given one image, its main purpose is to trans-

late it to the desired target domain, or multiple domains in

the case of multiple labels. This problem is highly challeng-

ing due to three main reasons: (i) unpaired datasets, (ii)

multiple attributes, and (iii) the multimodality (e.g. style)

associated with the translation. Most of the existing state-

of-the-art has focused only on two reasons i.e., either on (i)

and (ii), or (i) and (iii). In this work, we propose a joint

framework (i, ii, iii) of diversity and multi-mapping image-

to-image translations, using a single generator to condi-

tionally produce countless and unique fake images that hold

the underlying characteristics of the source image. Our

system does not use style regularization, instead, it uses

an embedding representation that we call domain embed-

ding for both domain and style. Extensive experiments over

different datasets demonstrate the effectiveness of our pro-

posed approach in comparison with the state-of-the-art in

both multi-label and multimodal problems. Additionally,

our method is able to generalize under different scenarios:

continuous style interpolation, continuous label interpola-

tion, and fine-grained mapping.

1. Introduction

The ability of humans to easily imagine how a black

haired person would look like if they were blond, or

with a different type of eyeglasses, or to imagine a win-

ter scene as summer is formulated as the image-to-image

(I2I) translation problem in the computer vision commu-

nity. Since the recent introduction of Generative Adversar-

ial Networks (GANs) [19], a plethora of problems such as

video analysis [51, 7], super resolution [33, 9], semantic

synthesis [26, 10], photo enhancement [24, 25], photo edit-

ing [49, 14], and most recently domain adaptation [21, 43]

have been addressed as I2I translation problems.

Initially, translating from one domain into another re-

quired paired datasets that exactly matched both do-

mains [26] e.g., edges↔shoes or edges↔handbags datasets.
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Figure 1. Stochastic Multi-Label Image-to-Image Transla-

tion (SMIT). Our model learns a full diverse representation for

multiple attributes using a single generator.

However, this approach is unpractical because the full rep-

resentation of the cross-domain mapping is, in most cases,

intractable. Existing techniques try to perform determinis-

tic I2I translation with unpaired images to map from one

domain into another (one-to-one) [55, 4, 37, 25], or into

multiple domains (one-to-many) [12, 46, 20]. Neverthe-

less, many problems are fundamentally stochastic as there

are countless mappings from one domain to another e.g., a

day↔night or cat↔dog translation.

Recent techniques [34, 23, 39] have successfully ad-

dressed the multimodal representation for one-to-one do-

main translation. These methods are based on the idea de-

veloped on traditional I2I approaches [55, 56], in which the

generator tends to overlook a noise injection. As a con-

sequence, these techniques studied the problem of disen-

tangling representation as style transfer, including a shared

content space representation and a style encoder network.

In this paper, we propose Stochastic Multi-Label Image-

to-Image Translation (SMIT), a novel and robust framework



AdaIn

Residual

Layers

N(0,I)

0 10 1101

Domain 

Embedding 

Real 

 Image

Fake 

Mask

Target Labels

Random Style

Generator

AdaIn

Residual

Layers

Generator

N(0,I)

0 01 0100

Source Labels

Random Style

rec

CLS Fake/True

Discriminator

clssrc

Fake  

Image

Real 

Mask

Real 

Image

attn

Domain 

Embedding 

Figure 2. Overview of SMIT. We translate an image by jointly taking as input a random style and target attributes into the generator. The

Domain Embedding is a map projection that uses random and fixed parameters for the embedding. The discriminator aims at classifying

only the source and the attributes, i.e. no style regularization. We use the original source attributes and a different style to recover the real

image.

that includes multiple labels and diversity, and does not re-

quire either style or content regularization. Moreover, we

build our entire approach using a single generator that does

not ignore the noise perturbation, i.e. for different level of

noise our method produces different styles with the under-

lying characteristics and structure of the target domain1. As

illustrated in Figure 1, SMIT learns a full distribution for

each attribute, so it can perform diverse translation for dif-

ferent fine-grained or broader attributes. It is important to

remark that in contrast to [12, 46, 30] the trainable param-

eters in the SMIT generator are not label-dependent, that

is there is a negligible difference either on computational

time or on memory consumption when learning as many

as 40 attributes instead of just 2 labels. Figure 2 presents

an overview of our model. We radically depart from main-

stream approaches [12, 46, 30], where the target domain is

inserted through the spatial concatenation, instead we indi-

rectly inject the style and the target labels through Adaptive

Instance Normalization (AdaIN) [22] layers in the genera-

tor, and the discriminator aims at recovering only the labels,

i.e. we remark the importance of no style regularization.

We perform a comprehensive quantitative evaluation of

SMIT either for disentanglement or multiple domain I2I

problems, demonstrating the advantages of our method in

comparison with existing state-of-the-art models. We also

show qualitative results on several datasets that validate the

effectiveness of our approach under varied and challenging

settings.

More precisely, our main contribution is to propose a sin-

gle and end-to-end system with an agnostic-domain gener-

ator capable of performing style transformation, multi-label

mapping, style interpolation, and continuous label interpo-

lation with no need of style regularization. For reproducibil-

1Hereafter, we refer to domains as the number of labels per dataset, and

style as the diversity induced by noise.

ity, we plan to release our source code and trained models.

2. Related Work

Generative Adversarial Networks (GANs) [19] have

proven to be a powerful approach to learn statistical data

distributions. GANs rely on game theory where there are

two networks (discriminator and generator) optimizing a

Minimax function, a training scheme also known as adver-

sarial training. The discriminator learns to distinguish real

images from fake ones produced by the generator, and the

generator learns to fool the discriminator by producing real-

istic fake images. Since their introduction, GANs have pro-

vided remarkable results in several computer vision prob-

lems, such as image generation [47, 11, 29], image transla-

tion [26, 55, 3, 37], video translation [51, 7] and resolution

enhancement [6, 33, 2]. As our approach lies in the domain

of image-to-image translation, it is the focus of our related

work review.

Conditional GANs (cGANs) In vanilla GANs [19], the

information regarding the domain is unknown. Conversely,

on conditional GANs (cGANs) [44], the discriminator not

only distinguishes between real and fake, but it also trains

an auxiliary classifier for the conditional data distribu-

tion. cGANs have been applied in image-to-image trans-

lation problems for semantic layouts [26, 10], super res-

olution [33], photo editing [49], and for multi-target do-

mains [12, 30, 46]. While traditional cGANs exploit the

underlying conditional distribution of the data, they are con-

strained to produce deterministic outputs, i.e. given an input

and a target label, the output is always the same. In com-

parison, our approach introduces a style randomness in the

generation process.

Image-to-Image Translation (I2I) Isola et al. [26] in-

troduced a framework in which they trained cGANs us-



CycleGAN BiCycleGAN StarGAN MUNIT&alike DRIT GANimation SMIT

[55] [56] [12] [23, 3, 39] [34] [46] (ours)

Unpaired Training ✓ ✓ ✓ ✓ ✓ ✓

Multimodal Generation ✓ ✓ ✓ ✓

Multiple Attributes ✓ ✓ ✓

One Single Generator ✓ ✓ ✓

Fine-grained Transformation ✓ ✓ ✓

Continuous Label Interpolation ✓ ✓

Style Transformation ✓ ✓ ✓

Style Interpolation ✓ ✓ ✓

Attention Mechanism ✓ ✓

Table 1. Feature comparison with state-of-the-art approaches in I2I translation. SMIT uses a single generator trained with unpaired

data to produce disentangled representations of a multi-targeted domain.

ing paired datasets. This work led to a new set of previ-

ously unexplored I2I problems. Based on these findings,

Zhu et al. [55] extended the framework by introducing the

cycle-consistency loss, which allowed to perform cross-

domain mapping using unpaired datasets. Although Cycle-

GAN [55] is currently one of the most common backbones

for I2I models and frameworks, it is constrained to one-to-

one domain translation, hence it needs one generator per

domain. In contrast, our method uses a single generator re-

gardless of the number of domains.

Other works [12, 46] extended the cycle-consistency in-

sight in order to cope with multiple domains, by using a sin-

gle generator. These methods take the label as independent

features to the first layer of the generator, hence constrain-

ing the generator weights to restricted applications. Sim-

ilarly, additional methods [30, 20] tackled the multilabel

mapping problem from a VAE-GAN [32] perspective. Our

approach neither uses a variational autoencoder representa-

tion nor does it depend on label weights, since the generator

has always the same number of parameters regardless of the

application.

Disentangled Representations A recurrent limitation in

traditional I2I methods is their deterministic output. In im-

age generation problems [47, 11, 28], disentangled repre-

sentations are achieved by injecting random noise in the

generator. Nevertheless, this idea cannot be used on the

seminal CycleGAN, as this framework learns to ignore the

noise vector due to the lack of regularization [55].

Recently, there have been efforts [10, 56, 8] to produce

diverse representations from a single input. For instance,

BiCycleGAN [56] bypassed the regularization issues of Cy-

cleGAN and it included a random noise vector in the train-

ing scheme, thus generating images of higher quality than

CycleGAN. However, this approach requires paired data to

train, which makes it unfeasible to scale in real-world sce-

narios.

Furthermore, generating multimodal images can also be

studied as a problem of style transfer [17, 18] between two

images. Inspired by the work of Gatys et al. [17], recent ap-

proaches [23, 39, 34] split the generator encoder into a two-

stream content and style encoder, where the content stream

extracts the underlying structure, shape and main informa-

tion to be preserved on the image, and the style one draws

the rendering attributes it aims at transferring. These disen-

tangled representations are similar in spirit with the Cycle-

GAN cycle-consistency adversarial loss since they perform

a cross-domain mapping for the style and content space.

Consequently, it is difficult to perform fine-grained transla-

tions. In comparison, our proposed approach does not suffer

in this regard, since we neither constrain the content nor the

style distributions. Moreover, as the experiments will show,

SMIT is suitable for both coarser translations and subtle lo-

cal appearances e.g., art in-painting or facial expressions,

respectively.

Continuous Interpolation On the one hand, Pumarola et

al. [46] introduced a cGAN framework that takes as input

continuous rather than discrete labels. This approach en-

ables the generation of examples with continuous labels at

inference time, however, it does not handle diversity for the

same input. On the other hand, for binary problems, Lee et

al. [34] and Huang et al. [23] performed continuous inter-

polation between two styles in order to produce a pseudo-

animated style transferring with images that belong to the

same domain. Our work uses both target and style continu-

ous interpolation.

Table 1 summarizes our main differences with respect

to the literature for either multi-label or multimodal trans-

lation. SMIT has richer capabilities that those of existing

methods as we perform fine-grained local transformation,

style transformation, continuous style interpolation, contin-

uous label interpolation, and multi-label transferring using

one single generator.

3. Stochastic Multi-Label Image-to-Image

Translation (SMIT)

Our final goal is to generate multi-attribute images with

different styles using a single generator. As illustrated in

Figure 2, our method is an ensemble of three different net-



works: a generator, a discriminator, and a domain embed-

ding (DE). The generator takes the source image as input

and translates it. The discriminator does not only differenti-

ate between real and fake samples, but it also approximates

the output distribution of the real target by means of an aux-

iliary classifier. Finally, SMIT uses the DE to merge both

target style and target labels into the generator.

3.1. Problem Formulation

Let Xr ∈ R
H×W×3 be the real image. Xr is encoded

by a set of N discrete or continuous labels yr ∈ R
N . Ad-

ditionally, for each possible Xr, there is an unknown style

distribution sr ∈ R
S . Given a target label yf , and a target

style sf , we want to learn a mapping function G to produce

a fake image Xf , without having access to the joint distri-

bution p(Xr,Xf ):

G(Xr, yf , sf ) → Xf ∈ R
H×W×3 (1)

As it is common in cGANs [12, 46, 11, 47], we have a

discriminator D that outputs the source domain probability,

i.e. true or fake, and a classification/regression estimator,

namely, D(Xf ) → {0, yf} and D(Xr) → {1, yr}.

3.2. Model

Generator (G) We build upon the CycleGAN genera-

tor [55]. It is inspired in an encoder-decoder architecture,

which consists of down-sampling layers, residual blocks,

and up-sampling layers. Importantly, we use Instance Nor-

malization (IN) [15, 52], Adaptive Instance Normalization

(AdaIN) [22], and Layer Normalization (LN) [5] for the

three stages, respectively. The main reason we only use

IN during the first stage and not in the up-sampling is be-

cause they introduce undesirable properties to the global

mean and variance that are modified by AdaIN in the resid-

ual Layers.

Domain Embedding (DE) We indirectly input the tar-

get attribute and the style randomness through AdaIN [22]

weights. AdaIN normalization is computed from Equa-

tion 2, where x is the input and z are the adaptive parame-

ters.

AdaIN(x, z) = zw
x− µ(x)

σ(x)
+ zb (2)

z = DE(y, s) (3)

As the AdaIN parameters depend entirely on the number

of feature maps of the input x, they are agnostic to both

style and label domains, which makes the generator entirely

label and style independent. This key property makes SMIT

highly suitable for transfer learning, addressing a drawback

of cGANs in real-world scenarios.

It is important to mention that since the style and label

dimensions may differ from the z dimensions, we use a pro-

jection embedding representation to encode style and label

inputs to a fixed size suitable for AdaIN (Equation 3).

We remark that the DE does not require any training

scheme, instead it is inspired by Language Modeling meth-

ods [40, 13, 36, 41, 45] that uses random initialization to

map the input to a space embedding distribution. Particu-

larly, we use a simple random embedding, i.e. a fully con-

nected layer to map from style and labels concatenation to

the AdaIN parameters. Our rationale is as follows: By al-

ways ensuring different z, we guarantee different normal-

ization parameters, which means different fake images. We

study the DE behaviour in more detail in Section 5.1.

Discriminator (D) As previously stated, the discrimina-

tor has two outputs: source domain (src) and auxiliary clas-

sifier (cls). First, we use the idea of patch-GAN [26], to tell

whether the source is fake or true based on a patch rather

than a single number (Dsrc). Second, we have a binary

cross entropy loss function for the conditional labels (Dcls).

If continuous labels are used, then a regression objective

loss should be applied. However, as we will discuss Sec-

tion 5.2, our approach is capable of generating continuous

labels even if it was trained with discrete ones.

3.2.1 Training Framework

In order to approximate function G in Equation 1, we split

our general loss function for clarity.

Adversarial Loss We use the recently introduced aver-

aged Relativistic Adversarial Loss (RGAN) [27] and the

hinge version [42] loss to train the adversarial loss. RGAN

relies on the idea that the discriminator not only estimates

whether images are real or fake, but it also estimates the

probability that the given real images are more realistic than

the fake ones.

LD = Dsrc(Xr)− ||Dsrc(Xf )||1

LG = Dsrc(Xf )− ||Dsrc(Xr)||1

Ladv = LD + LG (4)

Conditional Loss The adversarial loss does not include

any regularization for the conditional labels, yet the gener-

ator must be able to produce both realistic and conditioned

images. To solve this issue, we define the conditional loss

as:

Lcls = Dcls(X ) log(y) + (1− Dcls(X )) log(1− y) (5)

Recovery Loss In order to produce Xf , we jointly input

the target label and the target style. Therefore, the cycle

consistency loss employed to recover the original image can

be naively defined as:



Xr ≈ Xrec = G(G(Xr, yf , sf ), yr, sr)

Note that the original style (sr) is an unknown parameter.

Nonetheless, we assume that sr is drawn from a known nor-

mal distribution, and therefore reformulate the reconstruc-

tion loss by adding a different random style s′f . We assume

random styles during the whole training process. Thus, we

compute the reconstruction or cycle consistency loss as:

Xrec = G(G(Xr, yf , sf ), yr, s
′

f )

Lrec = ||Xr −Xrec||1 (6)

Attention Loss Until this point, there is no guarantee that

the output of our generator will preserve background details

e.g., the underlying structure, or the identity of a person. To

solve this particular issue, we regularize our model with the

unsupervised attention mechanism proposed by Pumarola et

al. [46]. We add a new and parallel layer to the generator

output (Xf ) that works as the attention mask (M).

The attention loss encourages fake images to change

only certain regions with respect to the real input, and it

is decomposed by the following terms:

[Xf ∈ R
H×W×3, M ∈ R

H×W ] = G(Xr, yf , sf )

Xf = M · Xr + (1−M) · Xf

Lattn = ||M||1 (7)

Identity Loss To further stabilize the training framework,

we regularize our model with the identity loss that is defined

as follows:

Lidt = ||Xr − (G(Xr, yr, s
′′

f ))||1 (8)

Overall Loss We define our full objective function in

Equation 9, as the weighed sum of the previous losses:

L = λadvLadv+λclsLcls+λrecLrec+λattnLattn+λidtLidt

(9)

Remarkably, our method does not require style regular-

ization [23, 34] since we use a training framework that can

easily bypass it.

4. Experimental Setup

We validate our method over several and very different

datasets and tasks, such as instance facial synthesis [38],

emotion recognition [31], Yosemite summer↔winter [26],

and edges-to-object generation [26].

In the supplementary material, we extend our qualita-

tive results to painters [4], Alps seasons [4], RafD [31],

BP4D [54], EmotionNet [16], and full CelebA [38] with

40 attributes.

4.1. Evaluation Metrics

Diverse Translation The LPIPS metric [53] allows us

to quantify the similarity between two different images.

LPIPS computes the L2 distance between pairs of deep fea-

tures (e.g., AlexNet, VGG, etc) images.

Multi-label Translation Besides the LPIPS score, we

also compute the Inception Score (IS) [48] that is a pop-

ular score for I2I problems. The IS employs an Inception

Network [50] to classify fake images and thus rank them

according to their scores with respect to the prior distri-

bution. Additionally, we report the Conditional Inception

Score (CIS) [23] that quantifies both high quality and di-

verse mapping.

4.2. Evaluation Framework

Given the unique nature of our approach, we unfold the

quantitative evaluation into two different schemes: multi-

modal evaluation, and multi-label evaluation.

Multimodal Evaluation We directly use MUNIT [23]

and DRIT [34] to compare our method in GAN-based dis-

entangled representations. For fair comparison under this

setting, we work within the same datasets Edges [26] and

Yosemite [55]. To this end, we train MUNIT and DRIT and

report the corresponding LPIPS over the whole test set.

We use the LPIPS score to measure the diversity of the

generated images. As there is no standard evaluation frame-

work for the diversity in GAN-based problems, we use a

set of two metrics. First, as in MUNIT, we compute the

diversity one-vs-all across the entire dataset (D), using the

diversity in the real data as a reference. Then, we use one

single fixed style to produce the cross-mapping in order to

compute the diversity along the entire fake dataset. Second,

as in DRIT, given a single image, we measure the partial di-

versity (PD) across different modalities (20 different styles)

and report the average and standard deviation over each im-

age, over the whole set.

Multi-label Evaluation Additionally, for purely multi-

label I2I methods, we train an Inception network [50] on

a RafD train set (90%) and report the IS and CIS over the

remaining test set (10%). We retrain StarGAN and GANi-

mation [46] under exactly the same settings in order to make

a fair comparison.

4.3. Implementation Details

We use an ensemble of three different convolutional net-

works: Generator, Discriminator, and a Domain Embedding

(DE).

Similar to previous methods [23, 34], we assume the

style to be drawn from a prior Gaussian distribution with

0 mean and identity variance, namely N (0, I). Therefore,

the DE takes this 20-dimensional style vector and the N -

dimensional target domain (one hot encoded) as inputs to

produce the corresponding AdaIN number of parameters.

We provide a more detailed description of the architec-

ture of our networks and training details in the supplemen-

tary material.



Input DRIT MUNIT SMITno_style SMITDE_learning SMITstyle_encoder SMITSMITno_attention

Figure 3. Ablation experiments. Qualitative comparisons over the Yosemite dataset [26]. Given the same input, we report the output for

the related work [34, 23] and for each ablation experiment. Each row depicts different styles.

5. Results

We quantitatively and qualitatively demonstrate the ef-

fectiveness of SMIT in several settings. First, we perform

ablation experiments, then we show qualitative results over

different datasets, and finally we perform an extensive quan-

titative evaluation and compare our results against the state-

of-the-art.

5.1. Ablation Study

We establish different baselines that define the main

components of our framework: DE learning, removing the

style randomness, adding style regularization, and remov-

ing the attention mechanism. We perform a qualitative and

quantitative comparison for each of them, and we report our

findings in Figure 3 and Table 2, respectively.

DE learning Studying DE parameters is one of our main

interests as it is the only controller between the style and

labels, and the mapped image. We observe that the gen-

erator can easily fall in mode collapse if the DE weights

are learned, thus producing almost the same images for dif-

ferent styles. In order to overcome this problem, we ana-

lyze the DE contribution to the general system either with

learned or fixed random parameters. As we can see in Fig-

ure 3, SMITDE learning, learning the DE parameters leads to

full mode collapse, since the style has a negligible impact

on the AdaIN generator parameters. This behaviour is due

to the fact that the gradients that come from the auxiliary

classifier force the domain embedding to produce stable

outputs, and therefore the same output thanks to the lack

of specialized and per domain style regularization. Con-

versely, by establishing fixed weights on the DE, we guar-

antee diversity, i.e., from Equation 2 we observe that for

different scale and bias, we ensure different behaviour on

the normalization, hence different outputs.

Among all the datasets [38, 26, 16, 4, 55, 31] in which

we validate our system, we observed that for datasets that

contain a small number of samples with only two differ-

Yosemite [26]

D PD

SMITno style 0.412±0.046 -

SMITDE learning 0.413±0.044 0.004±0.003

SMITno atention 0.406±0.041 0.105±0.071

SMITstyle encoder 0.418±0.043 0.133±0.063

SMIT 0.419±0.048 0.145±0.072

Table 2. Ablation quantitative evaluation. We report the diver-

sity (D) and the partial diversity (PD) for every ablation study in

our method.

ent domains (e.g., Yosemite [55], ∼1k images per domain),

there is a decline in the quality of the fake images when

the DE has fixed random parameters. More precisely, even

though the auxiliary classifier is highly confident after a few

iterations, and the generator learns to fool the discrimina-

tor, the generator produces pixelation in the images. Nev-

ertheless, given the simplicity of the dataset, pixelated im-

ages fulfill the conditions to fool the discriminator, i.e. fake

images are realistic enough and they fall into the statisti-

cal representation of the labels. We further study this be-

haviour by combining two different settings: DE training

(no pixelation and deterministic) and DE fixed (pixelation

and stochastic). We split the AdaIN parameters into dif-

ferent small networks with different behaviours (learned or

fixed weights), which share the input (target domain and

style). We found that learning either small or big parts of

the AdaIN layers induces mode collapse to the whole sys-

tem. Nonetheless, with enough training iterations the pixe-

lation issue is nuanced and not too evident. Surprisingly, we

observed that the partial diversity metric (PD) is higher for

highly pixelated images than smooth yet diverse ones. This

finding indicates that the partial diversity is not related to

both quality and diversity, but only to diversity at any cost

(e.g., change in color, pixelation, etc).

This form of coupling style and domain information is in

line with [35, 17] as to use global statistics is better suited

for the purpose of style transferring, rather than spatially

connected features (e.g., concatenating the image and the

labels) as other methods usually employ [34, 12, 46].



Figure 4. Qualitative results for facial analysis mapping [38]. Example results for an image in the wild. For each attribute (column), we

show the corresponding translation for four different modalities (rows).

Edges2Shoes [26] Edges2Handbags [26] Yosemite [26] # Parameters

D PD D PD D PD (Generator)

CycleGAN [55] 0.272±0.048 - 0.293±0.081 - 0.272±0.048 - 2x11.4M

DRIT [34] 0.237±0.149 0.028±0.030 0.296±0.181 0.056±0.060 0.398±0.038 0.126±0.019 2x21.3M

MUNIT [23] 0.295±0.051 0.077±0.057 0.365±0.052 0.123±0.067 0.335±0.045 0.208±0.034 2x15.0M

SMIT (ours) 0.303±0.058 0.072±0.056 0.367±0.048 0.096±0.072 0.437±0.041 0.145±0.072 8.4M

Real Data 0.313±0.052 - 0.374±0.051 - 0.447±0.049 - -

Table 3. Multimodal quantitative evaluation. We report the LPIPS score to compare the diversity (D) and partial diversity (PD) with

respect to the multimodal approaches. Better results are boldfaced according to their significant values.

No Style By removing the style, our network behaves on

a fully deterministic way since fixed labels always impose

the same statistics over the generator (Figure 3 and Table 2,

SMITno style).

Style Encoder MUNIT [23] and DRIT [34] share a com-

mon practice by using a style encoder, where they regularize

the style or noise previously injected in the generator. We

also evaluate the necessity of such a mechanism. To this

end, we deploy a separate network for style encoding (S),

whose purpose is to extract the style that is injected to fake

images, i.e. computing s′f ≈ S(Xf ). As we depict in Fig-

ure 3 (SMITstyle encoder) and Table 2, there are no qualitative

or quantitative differences by using this regularizer. How-

ever, the style encoder is a different network as big as the

discriminator, so it increases the training time and mem-

ory consumption. Moreover, we argue that having a fixed

random embedding as DE is enough to produce diversity

because we force the generator to always produce different

images regardless of the lack of regularization in the style.

Therefore, the style encoder is not performing a critical role

within our system. It is worth noting that the style encoder

in conjunction with the DE-training has no effect on the di-

versity.

Due to the nature of multi-label problems, the style reg-

ularization is unhelpful in its simple form because of the

high label entanglement. Thus, for any style encoding, it

would require different styles for different labels using as

many domain embeddings as domains, and perform cycle-

consistency in a way that styles are tied to labels, which is

difficult in practice.

Attention Mask We observe that the attention mech-

anism plays a critical role for the entire training scheme

for those fine-grained datasets e.g., CelebA, EmotionNet,

BP4D. Without this loss, our framework takes the easiest

way in the translation process, i.e. uniformly changing the

color of the input (Figure 3, MUNIT). We argue that with

enough iterations, this undesirable property leads to higher

partial diversity due to diversity in color.

Furthermore, our Domain Embedding differs from the

Multi-Layer Perceptron (MLP) proposed by MUNIT [23]

as they use domain-specific yet trainable networks in order

to transform from the style vector representation to the

AdaIN number of parameters, which prevents the mode

collapse problem. Note that we only use a single Domain

Embedding regardless the multi-domain nature.

5.2. Qualitative Results

We now proceed to highlight the SMIT capabilities over

the CelebA dataset. In Figure 4, we demonstrate the effec-

tiveness of our method for 10 different attributes, switching



RafD [31]

CIS IS D PD

StarGAN [12] 1.00±0.00 1.66±0.38 0.15±0.01 -

GANimation[46] 1.00±0.00 1.51±0.33 0.16±0.01 -

SMIT (ours) 1.25±0.06 2.51±0.70 0.17±0.01 0.004±0.001

Real Data - 1.18±0.18 0.16±0.01 -

Table 4. Multi-label quantitative evaluation. We report the re-

sults for Inception Score (IS), Conditioned Inception Score (CIS),

and LPIPS diversity metric (D and PD), for multi-label frame-

works.

one attribute at a time (columns) for different styles (rows).

From these transformations, we observe that our model is

indeed learning a fully continuous representation for the at-

tributes, as it generalizes across different modalities either

for subtle or broader transformations such as eyeglasses or

smiling, or gender or hair colors, respectively. Similarly,

in the supplementary material we depict different emotion

translations and compare against state-of-the-art methods.

Moreover, in the supplementary material, we show that,

given fixed style and fixed labels, our model is able to gen-

erate always the same attributes for different people, i.e. the

same eyeglasses, bangs, etc. We also report the attention

mask visualizations. Additionally, we show translations

for painters [4], Alps [4], RafD [31], edges2objects [26],

BP4D [54], EmotionNet [16], and full CelebA [38] datasets.

We also depict qualitative differences with StarGAN, GAN-

imation, and FaceApp [1] over the CelebA dataset.

Interpolations Following common practice within Multi-

modal Image-to-Image translation methods [34, 23], where

we assume that each style is randomly sampled from a nor-

mal probability distribution, our method also benefits from

style interpolation going from one style to another by per-

forming a spherical interpolation.

Even though the labels are binary attributes at train time,

the DE transforms them into a higher dimensional represen-

tation given by the number of channels in the AdaIN layers.

Inserting the labels in the form of continuous labels into the

generator is of importance as we can easily perform contin-

uous inference before the DE. The absence or presence of

any label is correlated with different representations in the

AdaIN parameters.

In the supplementary material, we show visualizations

for style and label interpolation. Note that we do not ex-

plicitly train with continuous labels.

5.3. Quantitative Results

Next, we quantitatively compare SMIT with respect to

the literature. We separate our experiments into two strate-

gies due to the lack of both multi-label and multimodal

translation methods.

Multimodal Evaluation As we depict in Table 3, we

compare directly with DRIT and MUNIT over edges2shoes,

edges2handbags and Yosemite datasets.

Our method produces higher LPIPS for the entire test

set (D), and competitive results across partial diversity (PD)

with respect to the state-of-the-art since there is no signif-

icant differences with MUNIT. We hypothesize that MU-

NIT’s [23] good performance in the PD score is because

this method is focused on color transformation and render-

ing rather than texture or content (Figure 3, MUNIT col-

umn). MUNIT constrains the content latent space, produc-

ing thus highly diverse mappings across a batch, and low

general diversity if the style is fixed. As we retrain DRIT

and MUNIT, it is worth to mention that DRIT’s poor per-

formance on edges2shoes and edges2handbags is due to the

lack of diversity for object→edge mapping.

Remarkably, due to the reduced number of parameters

(Table 3, number of parameters), SMIT takes less computa-

tional resources than baseline approaches to training, that is

SMIT fits four times the batch size used in DRIT [34] and

MUNIT [23], using one Titan X GPU.

We provide more quantitative results for each domain in-

dependently in the supplementary material.

Multi-label Evaluation Table 4 shows our results for

StarGAN, GANimation, and SMIT. For each image, we

perform 7 different translations (ignoring the ground truth

translation). As we expected, StarGAN and GANimation

obtain a constant CIS (1.0) and high IS scores, which indi-

cates their lack of diversity but good qualitative translations.

SMIT significantly overcomes related methods in diversity

and image quality. Note that SMIT also outperforms the

IS and D for the real images, demonstrating thus the ef-

fectiveness in both quality and diversity beyond the original

dataset. In the supplementary material, we discriminate CIS

and IS over each label independently.

Even though StarGAN and GANimation use a single

generator and share a similar number of parameters, it is

important to remark that they reshape the label vector into

the input image size. This issue arises in high-resolution

image to image translation as neither the number of param-

eters nor the computational time are negligible. By contrast,

SMIT is suitable either for low or high resolution as it is

label-agnostic dependent.

6. Conclusions

In this paper, we presented a novel, robust yet simple

method for automatically performing stochastic image-to-

image translation for multiple domains using a single gen-

erator. We demonstrated the capability of our approach

with respect to the state-of-the-art in both disentangled and

multi-label scenarios by achieving jointly high quality and

diversity representations for both coarse or fine-grained

translations. Moreover, SMIT is directly suitable for ei-

ther multimodal interpolation or continuous interpolation in

style and label intensity domains, respectively.
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