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Abstract

In this paper we consider the problem of segmenting points

in a collection of images that contain multiple moving ob-

jects. Our contribution is three-fold: (i) we propose a ma-

trix representation of segmentation that permits to formu-

late the problem in terms of “synchronization” of binary

matrices; (ii) we derive a spectral solution to solve such a

problem, which is inspired by previous works on synchro-

nization of rotations, homographies, rigid motions and per-

mutations; (iii) we explain how our solution can be inter-

preted in terms of spectral clustering. The proposed ap-

proach is validated on both synthetic and real scenarios, in

addition to the Hopkins benchmark.

1. Introduction

The synchronization problem is a well studied task in

Computer Vision arising in a variety of applications. The

term originates from time synchronization [17, 11] where

the goal is to synchronize clocks in a network by measur-

ing time differences between pairs of clocks. Other names

include “averaging” and “graph optimization”. In general,

the task of synchronization is to recover elements of a group

by measuring ratios between pairs of elements. Such group

can represent the set of rotations [45, 10, 13, 51, 6] or the

set of rigid motions [12, 49, 5, 3, 38], which find application

in structure from motion, registration of 3D point sets, and

simultaneous localization and mapping. Other examples in-

clude homographies [42, 40] and permutations [35, 63, 43],

which are related to image mosaicking and multi-image

matching, respectively.

There are many techniques available to address synchro-

nization. Among them, the method developed in [45] –

where the problem is cast as a spectral decomposition – is

particularly interesting since it can be applied to any group

admitting a matrix representation. Originally developed for

rotations in 2-space, the same technique was extended to

rotations in 3-space [46, 1], rigid motions [5, 3], homo-

graphies [42] and permutations [35]. It has been recently

shown that the spectral solution can also be derived in situ-

ations where the group structure is missing, such as the case

of partial permutations [2, 30], which form a semigroup and

model missing correspondences in multi-image matching.

In this paper we extend the spectral solution to the case

of binary (i.e. 0-1) matrices, which contain the set of partial

permutations, but they have a poorer structure as multiplica-

tion of two binary matrices is not necessarily a 0-1 matrix.

Synchronization of binary matrices finds application in mo-

tion segmentation, that is the problem of clustering points in

multiple images according to a number of moving objects.

The paper is organized as follows. In Sec. 1.1 we re-

view the previous work on motion segmentation. In Sec. 2

we define a matrix representation of motion segmentation,

that permits to formulate the problem in terms of synchro-

nization. In Sec. 3 we derive a spectral solution to solve

it, which builds upon previous works [45, 46, 1, 5, 3, 42,

35, 2, 30]. We also show that our solution can be inter-

preted in terms of spectral clustering [58]. Besides provid-

ing an interesting insight, as the graph clustering literature is

connected with the synchronization theory, this observation

permits to develop some variants of our method. Experi-

ments on both synthetic and real data are reported in Sec. 4,

where the advantages and limitations of the proposed ap-

proach are discussed.

1.1. Related work

Motion segmentation is the problem of clustering point

trajectories over a sequence of images according to the dif-

ferent motions they belong to. It is an essential task in

several applications in Computer Vision, including surveil-

lance, action recognition, scene understanding and au-

tonomous driving. Motion segmentation can be cast as a

subspace clustering problem since – under the affine cam-

era model – the point trajectories lie in the union of d
subspaces in R

2n of dimension at most 4, where d de-

notes the number of motions and n denotes the number of

images. Existing solutions include Generalized Principal

Component Analysis (GPCA) [54], Local Subspace Affin-

ity (LSA) [62], Power Factorization (PF) [56], Agglomera-

tive Lossy Compression (ALC) [37], Low-Rank Represen-

tation (LRR) [25], Sparse Subspace Clustering (SSC) [9],



Structured Sparse Subspace Clustering (S3C) [21], and Ro-

bust Shape Interaction Matrix (RSIM) [16].

Motion segmentation can also be expressed in terms of

multiple model fitting – under the affine camera model – by

fitting multiple subspaces to feature trajectories in an im-

age sequence. Existing solutions include consensus-based

approaches (e.g. the Hough transform [60], Sequential

RANSAC [57], Multi-RANSAC [66] and Random Sample

Coverage [29]), preference-based approaches (e.g. Residual

Histogram Analysis [65], J-Linkage [47], T-linkage [27],

Random Cluster Model [36] and Robust Preference Analy-

sis [28]), and energy minimization (e.g. PEARL [15] and

Multi-X [4]). Model fitting techniques can also be used

to solve motion segmentation in two images under the per-

spective camera model, by fitting multiple fundamental ma-

trices to corresponding points in an image pair.

Other solutions to motion segmentation include [23, 20,

61]. The authors of [23] formulate a joint optimization

problem which builds upon the SSC algorithm, where it

is required that all image pairs share a common sparsity

profile. In [20] an accumulated correlation matrix is built

by sampling homographies over consecutive image pairs,

and spectral clustering [58] is applied to get the sought

segmentation. Such approach is generalized in [61] where

multiple models (affine, fundamental and homography) are

combined to get an improved segmentation. Different ap-

proaches are analyzed to reach such task, namely Kernel

Addition (KerAdd) [7], Co-Regularization (Coreg) [19] and

Subset Constrained Clustering (Subset) [59]. Motion seg-

mentation is also a sub-task of multibody structure from

motion, that is a generalization of structure from motion

[34] to the dynamic case [41], where motion segmentation

has to be solved in addition to 3D reconstruction. Avail-

able approaches include geometric solutions [55, 53], sta-

tistical techniques [48, 33, 39] and factorization methods

[8, 22, 64].

Our solution to motion segmentation differs from the lit-

erature as it does not assume point trajectories over multi-

ple images, but it only requires matches between pairs of

images. We will clarify this later.

2. Problem Formulation

Here we precisely formulate the problem we are solving.

Let n denote the number of images, let d denote the number

of motions and let pi denote the number of points in image i.
The task is to cluster image points according to d motions.

We observe that the classification of points in two images

i and j can be represented as a matrix Sij ∈ {0, 1}pi×pj

constructed as follows:

• [Sij ]h,k = 1 if point h in image i belongs to the same

motion as point k in image j;

• [Sij ]h,k = 0 otherwise.

The binary matrix Sij is referred to as the partial segmen-

tation of the pair (i, j). It is a local representation of seg-

mentation since it says which points in two different images

belong to the same motion but it does not say which motion

it is.

Similarly, the classification of points in image i can be

represented as a matrix Si ∈ {0, 1}pi×d constructed as fol-

lows:

• [Si]h,k = 1 if point h in image i belongs to motion k;

• [Si]h,k = 0 otherwise.

The binary matrix Si is referred to as the total segmentation

of image i. It is a global representation of segmentation

since it reveals the membership of points with respect to an

absolute numbering of motions. Note that we can interpret

Si as the partial segmentation between image i and a refer-

ence image called the “universe” which contains one point

for each motion. The concepts of total and partial segmen-

tations are illustrated in Fig. 1.

(a) (b) (c)

Figure 1: Sub-figure (a) represents the segmentation of points in

two images i and j, where a label (yellow or blue) is assigned to

each point based on the moving object (star or heart) it belongs to.

Sub-figure (b) reports the binary matrix representing the partial

segmentation of the pair (i, j). Sub-figure (c) reports the binary

matrices representing the total segmentations of images i and j.

It can be checked that

Sij = SiS
T

j . (1)

Equation (1) is called the consistency constraint. In simple

words, it states that the partial segmentation of the pair (i, j)
can be obtained by composing the segmentation between

image i and the universe and the segmentation between the

universe and image j. Thus motion segmentation can be

solved in two steps:

1. compute the partial segmentations Sij for (i, j) ∈
{1, . . . , n} × {1, . . . , n};

2. compute the total segmentations S1, . . . , Sn such that

Eq. (1) is best satisfied.

Concerning Step 1, any algorithm able to perform two-

frame segmentation can be used, such as Robust Preference

Analysis (RPA) [28]. Note that tracks over multiple im-

ages are not required and the actual input is a set of cor-

respondences between image pairs. Indeed, only pairwise



matches are needed in order to perform two-frame segmen-

tation. Step 2 can be recognized as a synchronization prob-

lem [45, 35], where the output matrices S1, . . . , Sn repre-

sent labels of image points. The solution is not unique as

Sij = SiS
T

j = (SiQ)(SjQ)T for any d × d permutation

matrix Q, which corresponds to a different numbering of

motions. Note that the coordinates of points are used in

Step 1 only and they are not used in Step 2.

In practice, the input partial segmentations may contain

some errors, which can be either caused by mismatches or

by failure of the algorithm used for two-frame segmenta-

tion. Thus the task is to compute the total segmentations

such that these errors get compensated by exploiting redun-

dant measures.

3. Proposed Method

In this section we show how to address Step 2 via spec-

tral decomposition. Our approach can be viewed as the ex-

tension of previous works on synchronization of rotations

[45, 46, 1], rigid motions [5, 3], homographies [42] and per-

mutations [35, 2, 30] to binary matrices.

3.1. The exact case

Let p =
∑n

i=1
pi denote the total amount of points over

all the images, and let us collect all the total and partial

segmentations in two block-matrices X ∈ {0, 1}p×d and

Z ∈ {0, 1}p×p constructed as follows

X =

⎡

⎢
⎢
⎣

S1

S2

. . .
Sn

⎤

⎥
⎥
⎦
, Z =

⎡

⎢
⎢
⎣

S11 S12 . . . S1n

S21 S22 . . . S2n

. . . . . .
Sn1 Sn2 . . . Snn

⎤

⎥
⎥
⎦
. (2)

Using this notation, Eq. (1) becomes

Z = XXT (3)

which implies that Z is symmetric positive semidefinite and

it has rank d.

Proposition 1. The columns of X are d (orthogonal) eigen-

vectors of Z.

Proof. Note that ST

i Si is a d× d diagonal matrix such that

the (k, k)-entry counts the number of points in image i that

belong to motion k. Thus XTX =
∑n

i=1
(ST

i Si) is a diag-

onal matrix such that the (k, k)-entry counts the number of

points over all the images that belong to motion k. Combin-

ing this observation with Eq. (3) we get

ZX = XXTX = X

n∑

i=1

(ST

i Si)

︸ ︷︷ ︸

Λ

= X

⎡

⎢
⎣

λ1

. . .

λd

⎤

⎥
⎦

(4)

which is a spectral decomposition, i.e., the columns of X
are d eigenvectors of Z and the corresponding eigenvalues

are contained in the diagonal of Λ. Note that λ1, . . . , λd are

the largest eigenvalues of Z, since Z has rank d, and all the

other eigenvalues are zero.

We assume here that each motion contains a different

number of points, i.e., all the nonzero eigenvalues of Z are

distinct. This implies that – in the absence of noise – the

block-matrix X (and hence the unknown total segmenta-

tions) can be uniquely recovered from the leading eigen-

vectors of Z. The size of Z may be large in practical sce-

narios. However, note that such a matrix is sparse, being

composed of binary matrices, so sparse solvers can be ex-

ploited (e.g. the Matlab command eigs).

3.2. The noisy case

In the presence of noise, Eq. (3) will not be satisfied in

general, so Z will not have exactly d nonzero eigenvalues.

However, Prop. 1 suggests that the eigenvectors of Z corre-

sponding to the d largest eigenvalues can be viewed as an

estimate of X . First, we explain the meaning of this pro-

cedure in terms of an optimization task. In particular, we

show that the leading eigenvectors solve a relaxed version

of a reasonable maximization problem. Then, we derive

an heuristic to obtain the sought total segmentations from

the leading eigenvectors. Such rounding step is required

since the eigenvectors are an approximate solution that is

not guaranteed to have binary entries.

Let us consider the following problem1

max
S1,...,Sn

n∑

i,j=1

trace(ST

ijSiS
T

j )

s.t. Si ∈ {0, 1}pi×d, Si1 = 1 ∀ i = 1, . . . , n

(5)

where 1 denotes a vector of ones (of appropriate dimen-

sions) and the constraint Si1 = 1 means that each point

must belong to (exactly) one motion. We also require each

motion to be non-empty. The cost function in (5) counts,

for each image pair, the number of points equally labelled

by the partial segmentations Sij and SiS
T

j . It can also be

expressed as
∑n

i,j=1
trace(ST

i SijSj) by using basic proper-

ties of the trace operator. Thus Eq. (5) can be rewritten in

matrix form as

max
X

trace(XTZX) s.t. X ∈ {0, 1}p×d, X1 = 1. (6)

1 In real scenarios we might not be able to compute the partial segmen-

tation of all the image pairs, due to missing correspondences. In such a

situation Sij is set to zero, resulting in a zero block in Z, so that the cost

function in (5) counts the contributions coming from the available partial

segmentations only. In particular, note that we can not compute Sii for

i = 1, . . . , n since it is equivalent to the knowledge of the unknown Si,

thus the diagonal of Z will be filled with zero blocks in practice.



Note that the columns of X are orthogonal, since each point

belongs to one motion only.

Solving (6) is a difficult task since the optimization vari-

able is constrained to be a binary matrix. In order to make

the computation tractable, we relax the constraints and con-

sider the following problem

max
U

trace(UTZU) s.t. U ∈ R
p×d, UTU = Id (7)

where the optimization variable is treated as a real matrix

instead of a binary matrix, and its columns are enforced to

be orthonormal. The notation Id represents the d × d iden-

tity matrix, and the notation U (instead of X) is used to

underline that, due to the relaxation, the optimal U will not

be a binary matrix, in general. The constraint UTU = Id,

besides enforcing the columns of U to be orthogonal, also

constraints each column to have the unit norm, thus avoid-

ing the trivial solution where all the points belong to the

same motion. Equation (7) is a generalized Rayleigh prob-

lem, whose solution is given by the d leading eigenvectors

of Z. Such eigenvectors are then scaled by the square root

of the corresponding eigenvalues, in order to ensure that the

sum of nonzero entries in each column in U is (approxi-

mately) equal to the number of points in the corresponding

motion.

We now explain how to turn U into a binary matrix rep-

resenting the sought total segmentations. Recall that – in

the absence of noise – each row of U , which corresponds

to an image point, contains exactly one entry equal to 1,

which corresponds to the motion such point belongs to,

and all other entries are zero. The presence of noise crip-

ples the structure of Z, so that U will not have entries in

{0, 1} in general. However, we expect that, for each row in

U , the entry that reveals the membership to a specific mo-

tion is close to one and all other entries are close to zero.

Thus a reasonable approach is to construct the output ma-

trix X ∈ {0, 1}p×d as follows:

• [X]h,k = 1 if [U ]h,k is the maximum value over row h
of U ;

• [X]h,k = 0 otherwise.

This procedure can be regarded as a “projection” onto the

feasible set.

Dealing with mismatches. In the presence of gross er-

rors, the structure of U may not be so evident. To han-

dle this situation, we propose to label only those points for

which we are sure about the class. Specifically, for each row

in U , which corresponds to an image point, we compute the

ratio between the largest entry and the second-largest en-

try: if this ratio – which should be infinite in the absence of

noise – is larger than a threshold θ, then the point is classi-

fied as explained above; otherwise, the corresponding row

in X is set to zero, meaning that the point is labelled as “un-

classified” or “unknown”. Thus the projection procedure is

modified as follows:

• [X]h,k = 1 if the following conditions are satisfied:

– [U ]h,k is the maximum value over row h;

– [U ]h,k �= 0;

– [U ]h,k/[U ]h,l > θ where [U ]h,l is the second-

maximum value over row h;

• [X]h,k = 0 otherwise.

The condition [U ]h,k �= 0 is introduced to handle zero rows

in U . Indeed, due to the presence of mismatches, the algo-

rithm used for two-frame segmentation may classify some

matches as outliers, i.e., the corresponding points are not as-

signed to a motion, resulting in zero rows/columns in some

partial segmentations. In particular, it may happen that a

point is labelled as outlier in all the image pairs, resulting

in a zero row in Z (and hence in U ). In such a situation

the point is not assigned to a motion, since there is no valid

information to classify it. In order to handle rows that are

nearly (but not exactly) zero, we set all the entries in U
that are smaller than a threshold τ to zero before applying

the projection procedure. The resulting method is named

SYNCH.

3.3. Spectral Clustering interpretation

We now show that SYNCH can be interpreted in terms of

spectral clustering [58]. This interesting observation, be-

sides linking synchronization with graph clustering, allows

us to develop some variants of our approach. In general,

the task of graph clustering is to divide data points – rep-

resented as a graph – into several groups. The idea behind

spectral clustering techniques is to consider a different rep-

resentation of points – based on the eigenvectors of specific

matrices associated with the graph – so that clusters can be

trivially extracted in the new representation.

The key observation is that the matrix Z defined in (2)

can be viewed as the adjacency matrix of a graph con-

structed as follows:

• each node corresponds to a point in an image;

• an edge is present between two nodes if and only if the

corresponding points belong to the same motion.

In a nutshell, SYNCH first performs the spectral decomposi-

tion of Z and then it applies a projection procedure in order

to get a binary matrix representing the total segmentations.

So it can be viewed as a sort of spectral clustering, where

image points are clustered based on the membership to a

specific motion. In particular, the usage of the adjacency

matrix for graph clustering is referred to as the average as-

sociation in the literature (see [44]).



Typically, spectral clustering algorithms adopt k-means

[14] as a post-processing step in order to get clusters from

the eigenvector representation. This suggests an alternative

projection procedure for our approach: after computing the

top d eigenvectors of Z, which are collected in a matrix

U , the total segmentations can be recovered by applying k-

means to the rows of U . Specifically, in order to handle

mismatches, d + 1 clusters are computed and the cluster

that is closest to the zero row is identified as the group of

“unclassified” points. This choice is motivated by the fact

that – in the presence of high corruption – points that are

mismatched in all the image pairs should correspond to zero

rows in Z (and hence in U ), as already observed in Sec. 3.2.

This variant of our method is named SYNCH-KMEANS.

The above analysis implies that any algorithm able to ad-

dress spectral clustering (e.g. those reviewed in the tutorial

[58]) can be used to compute the total segmentations. One

of the most popular is the normalized cuts solution devel-

oped in [31], where the least eigenvectors of the symmetric

normalized Laplacian matrix are computed. Such a matrix

is defined as follows

L = I −D−1/2ZD1/2 (8)

where D denotes the degree matrix of the graph, that is a

diagonal matrix whose (k, k)-entry is the sum of the k-th

row of the adjacency matrix, namely D = Z1. At the end

d + 1 clusters are identified with k-means, with one clus-

ter representing unclassified points. This solution is named

SYNCH-NCUTS.

Note that, although spectral clustering is widely used

in segmentation literature, it has never been applied to the

graph encoded by the matrix Z in Eq. (2) – which represents

multiple two-frame segmentations – so SYNCH-KMEANS

and SYNCH-NCUTS are indeed new approaches. In partic-

ular, note that our graph has p nodes, where p denotes the

total amount of points over all the images. Existing tech-

niques exploiting spectral clustering for motion segmen-

tation (e.g. [23, 20, 61]), instead, consider a graph whose

number of nodes is equal to the number of tracks, meaning

that the task is to cluster tracks over multiple images.

4. Experiments

In this section we report our experimental results.

First, we compared all the variants of our method2

(i.e. SYNCH, SYNCH-KMEANS and SYNCH-NCUTS) on

synthetic datasets based on the Hopkins155 benchmark [50]

(Sec. 4.1). Then, we selected the best version and we com-

pared it with the state of the art on both simulated and real

scenarios (Sec. 4.2). In order to compute the partial seg-

mentations – which constitute the input to our approach –

we fitted multiple fundamental matrices to correspondences

2https://github.com/federica-arrigoni/ICCV_19

in each image pair using RPA [28], whose code is avail-

able online3. This technique extracts multiple models from

outlier-contaminated data by combining principles of robust

principal component analysis [24] and non-negative matrix

factorization [18]. Concerning the parameters of SYNCH,

we used τ = 0.01 and θ = 1.5 in all the experiments. As

done by most papers in segmentation literature, we assumed

that the number of motions was known a priori and we gave

such value as input to all the competing methods.

4.1. Comparisons between our methods

The Hopkins155 benchmark [50] contains 155 se-

quences of indoor and outdoor scenes with two or three

motions, that are categorized into checkerboard, traffic and

articulated/nonrigid sequences. In order to study the ro-

bustness to mismatches of our approach, we considered

three sequences from Hopkins155, namely 1R2RCR g12,

2RT3RTCRT and cars1, whose properties are summarized

in Tab. 1. First, noise-free pairwise matches were obtained

from the available tracks. Then, synthetic errors were intro-

duced by randomly switching a fraction of the correspon-

dences (ranging from 0 to 0.8) in each image pair. All the

results were averaged over 10 trials.

Table 1: The category of the scene, the number of motions d, the

number of images n, and the total number of image points p are

reported for three sequences from Hopkins155 [50].

Dataset Category d n p

1R2RCR g12 checkerboard 2 24 3672

2RT3RTCRT checkerboard 3 23 8211

cars1 traffic 2 20 6140

Since ground-truth segmentation is available, a quanti-

tative evaluation can be provided. More precisely, perfor-

mance was measured in terms of misclassification error, de-

fined as the percentage of misclassified points over the total

amount of classified image points – meaning that points la-

belled as unknown (if any) did not contribute to the error.

We also reported the percentage of classified points.

Results obtained with all the variants of our approach

are reported in Fig. 2. Recall that SYNCH-KMEANS and

SYNCH-NCUTS are general-purpose algorithms for solving

spectral clustering problems that we applied to the matrix

Z in Eq. (2), whereas SYNCH exploits the specific structure

of the matrices involved in our formulation of motion seg-

mentation. Concerning 1R2RCR g12 and cars1, there are

no significative differences between all the analysed tech-

niques, which can tolerate a high percentage of wrong cor-

respondences. Among them, SYNCH classifies the high-

est amount of points. Concerning 2RT3RTCRT, the im-

provement of SYNCH over SYNCH-KMEANS and SYNCH-

3http://www.diegm.uniud.it/fusiello/demo/rpa/



NCUTS in terms of misclassification error is evident. Note

that such dataset is more difficult than the others since it

involves three motions. Therefore, we elect SYNCH as our

choice and drop SYNCH-KMEANS and SYNCH-NCUTS in

subsequent comparisons.
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Figure 2: Misclassification error [%] and classified points [%] ver-

sus fraction of mismatches for some variants of our method on

three sequences from [50].

4.2. Comparisons with the state of the art

In order to compare SYNCH with state-of-the-art tech-

niques, we considered both synthetic data and real images,

in addition to the Hopkins benchmark.

4.2.1 Hopkins benchmark

The Hopkins155 benchmark [50] (that is widely used in

segmentation literature) and the Hopkins12 dataset [56]

(that contains 12 additional sequences with missing data)

provide noise-free tracks over multiple images with ground-

truth labels. Existing works were typically evaluated in

terms of misclassification error, defined as the percent-

age of misclassified tracks over the total amount of tracks.

However, observe that our approach addresses a differ-

ent task than the literature: it requires as input pairwise

matches only and it provides a segmentation of image

points, whereas existing techniques segment tracks. For this

reason, we evaluated our approach in two different ways.

First of all, we computed the percentage of misclassified

points over the total amount of classified image points – as

done in Sec. 4.1 – and we also reported the percentage of

classified points. This is the most natural way to evaluate

the performances of SYNCH. Secondly, in order to make a

meaningful comparison with the state of the art, we applied

the following procedure to the output of our approach: we

labelled each track with the most frequent value among the

labels of all the points belonging to the track. We named

the resulting method SYNCH-tracks. Thus the traditional

misclassification error could be computed as the percentage

of misclassified tracks, where tracks labelled as unknown

(if any) were counted as errors.

Results are reported in Tables 2 and 3 where SYNCH and

SYNCH-tracks are compared to several segmentation algo-

rithms. The fact that our approach is not the best is not sur-

prising since we are making more difficult assumptions (i.e.,

pairwise matches instead of tracks). However, both variants

of our method present good performances: SYNCH achieves

a mean error of 1.19% over all the sequences in Hopkins155

and a median error of 0.28% over all the sequences in Hop-

kins12, and it classifies a significant amount of points on

both datasets; SYNCH-tracks is comparable to most exist-

ing techniques, with a mean error of 3.67% over all the se-

quences in Hopkins155 and a median error of 0.57% over

all the sequences in Hopkins12. The fact that SYNCH-tracks

is generally worse than SYNCH is due to the evaluation pro-

tocol that counts as errors all the unclassified tracks.

4.2.2 Synthetic data

We considered the synthetic dataset based on the

1R2RCR g12 sequence [50] used in Sec. 4.1. We compared

SYNCH with RSIM4 [16] – which provides a robust solu-

tion to subspace clustering, and Subset5 [61] – which can

be considered the current state of the art in motion segmen-

tation with mean error of 0.31% on the Hopkins155 bench-

mark (see Tab. 2). We exploited two different algorithms

for computing tracks from pairwise matches, namely Sta-

bleSfM6 [32] and QuichMatch7 [52]. As in Sec. 4.1, per-

formance was measured in terms of misclassification error,

defined as the percentage of misclassified points over the to-

tal amount of classified image points, and we also computed

the percentage of points classified by each method.

Results are reported in Fig. 3. Note that the error of

SYNCH remains equal to 0% with up to 50% of mismatches

and the percentage of classified points remains equal to

100% with up to 40% of mismatches. Subset and RSIM,

instead, are not robust to mismatches (to different extends).

Indeed, errors in the correspondences propagate into the

tracks making traditional motion segmentation difficult to

solve. By manual inspection it was found that Subset and

4
https://github.com/panji1990/Robust-shape-interaction-matrix

5https://alex-xun-xu.github.io/ProjectPage/CVPR_18/
6
http://www.maths.lth.se/matematiklth/personal/calle/sys_paper/sys_paper.html

7https://bitbucket.org/tronroberto/quickshiftmatching



Table 2: Average misclassification error [%] for several methods on the Hopkins155 benchmark [50]. Results are copied from [61]. The

percentage of points classified by SYNCH is also reported.

LSA [62] GPCA [54] ALC [37] SSC [9] TPV [23] LRR [25] T-Linkage [27] S3C [21] RSIM [16] MSSC [20] KerAdd [61] Coreg [61] Subset [61] SYNCH- tracks SYNCH

Error Error Error Error Error Error Error Error Error Error Error Error Error Error Error Classified

2 Motions 4.23 4.59 2.40 1.52 1.57 1.33 0.86 1.94 0.78 0.54 0.27 0.37 0.23 2.70 0.81 96.13

3 Motions 7.02 28.66 6.69 4.40 4.98 4.98 5.78 4.92 1.77 1.84 0.66 0.75 0.58 6.99 2.48 85.01

All 4.86 10.02 3.56 2.18 2.34 1.59 1.97 2.61 1.01 0.83 0.36 0.46 0.31 3.67 1.19 93.61

Table 3: Average and median misclassification error [%] for several methods on the Hopkins12 benchmark [56]. Results for different

variants of ALC and SSC are taken from [16] whereas results for the remaining methods are copied from the respective papers. The

percentage of points classified by SYNCH is also reported.

PF [56] PF+ALC [37] RPCA+ALC [37] ℓ1+ALC [37] SSC-R [9] SSC-O [9] RSIM [16] KerAdd [61] Coreg [61] Subset [61] SYNCH- tracks SYNCH

Error Error Error Error Error Error Error Error Error Error Error Error Classified

Mean 14.94 10.81 13.78 1.28 3.82 8.78 0.61 0.11 0.06 0.06 5.46 3.19 88.06

Median 9.31 7.85 8.27 1.07 0.31 4.80 0.61 0.00 0.00 0.00 0.57 0.28 99.35

RSIM cluster all the tracks, and unclassified data corre-

spond to image points that were not included in any track

by the algorithm used for multi-image matching. The good

behaviour of our technique is due to two reasons: first, a

robust method (RPA) is used for computing the partial seg-

mentations; secondly, SYNCH is able to reduce (potential)

errors in the partial segmentations by exploiting redundant

measures in a global way. This aspect can be appreciated

in Fig. 4, which reports the histograms of misclassification

error achieved by RPA over all the image pairs. Observe

that RPA produces errors even in the absence of wrong cor-

respondences. Let us consider (e.g.) the case of 40% of

mismatches: it is remarkable that, despite individual partial

segmentations are noisy, our method achieves zero error, as

shown in Fig. 3.
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Figure 3: Misclassification error [%] and classified points

[%] versus fraction of mismatches for several methods on the

1R2RCR g12 sequence [50].

4.2.3 Real data

In order to test our method on real data, we created a small

benchmark consisting of 7 image collections. Note that

there are no standard datasets for the specific task of seg-

mentation from pairwise matches. We considered indoor

scenes with two motions where one object is fixed (i.e. it

belongs to the background), and we acquired from 6 to 10

Figure 4: Histograms of misclassification error achieved by

RPA [28] on a single trial on the 1R2RCR g12 sequence [50]. The

horizontal axis corresponds to the misclassification error in an in-

dividual image pair; the vertical axis corresponds to the number of

pairs where a given error is obtained.

images of size 2922 × 2000 with a moving camera. More

details about the dataset8 are available in the supplementary

material. SIFT keypoints [26] were extracted in all the im-

ages and correspondences between image pairs were estab-

lished using the nearest neighbor and ratio test as in [26],

using the VLFeat library9. Only symmetric matches were

kept and points that are not matched in any image were re-

moved. Such correspondences are noisy, as shown in Fig. 6.

As in Sec. 4.2.2, we compared our approach with RSIM

[16] and Subset [61], where StableSfM [32] and Quick-

Match [52] were used to compute tracks over multiple im-

ages. In order to compute the misclassification error, we

manually labelled points in each sequence, thus producing

a ground-truth segmentation. Results are shown in Tab. 4,

which also reports the percentage of points classified by

each method. See also Fig. 5 and the supplementary ma-

8https://github.com/federica-arrigoni/ICCV_19
9http://www.vlfeat.org/



Table 4: Misclassification error [%] and classified points [%] for several methods on our dataset. The number of motions d, the number of

images n, and the total number of image points p are also reported.

SYNCH StableSfM + Subset [61] QuichMatch + Subset [61] StableSfM + RSIM [16] QuichMatch + RSIM [16]

Dataset d n p Error Classified Error Classified Error Classified Error Classified Error Classified

Pen 2 6 4550 0.82 83.23 17.12 99.36 14.57 82.07 13.94 99.36 12.13 82.07

Pouch 2 6 4971 4.15 69.89 26.14 99.60 24.09 66.12 32.60 99.60 37.30 66.12

Needlecraft 2 6 6617 1.04 76.76 19.13 99.61 17.97 72.51 23.58 99.61 26.84 72.51

Biscuits 2 6 13158 0.51 87.28 9.22 99.47 8.91 82.49 4.58 99.47 34.87 82.49

Cups 2 10 14664 1.01 69.82 12.53 99.29 12.97 74.75 22.78 99.29 33.09 74.75

Tea 2 10 32612 28.12 52.21 7.11 99.37 5.46 82.67 46.98 99.37 41.99 82.67

Food 2 10 36723 0.56 80.66 12.86 99.32 13.83 72.85 19.18 99.32 20.38 72.85

Pen Pouch Needlecraft Biscuits Cups Tea Food

SYNCH

Subset

RSIM

Ground-truth

Figure 5: Segmentation results are reported on sample images from our dataset. Different colours encode the membership to different

motions. For better visualization, unclassified points are not drawn. Among all the competitors, results for Subset and RSIM combined

with StableSfM are reported only.

terial for qualitative evaluations.

Our method achieves the lowest misclassification error

in 6 out of 7 sequences, outperforming both Subset and

RSIM, and it classifies a significant amount of points in

most cases. Traditional methods present poor performances

on our dataset since they are not robust to mismatches,

confirming the outcome of the synthetic experiments in

Sec. 4.2.2. The Tea sequence constitutes a failure case of

our approach. After inspecting the solution, it was found

that the gap between the third-largest eigenvalue (which

should be zero) and the second-largest eigenvalue is not

significant, meaning that it is difficult to solve motion seg-

mentation via spectral decomposition. Recall that SYNCH

solves a relaxed version of the original optimization prob-

lem. Hence, although based on reasonable principles, there

are no guarantees that it provides a correct segmentation.

5. Conclusion

We formulated motion segmentation in a novel way as a

“synchronization” problem, where the task is to find a con-

sistent set of total segmentations – which represent the clus-

tering of points in all the images, starting from a redundant

set of partial segmentations – which represent the cluster-

ing of corresponding points in different image pairs. We

showed that such a problem can be (approximately) solved

via spectral decomposition, generalizing to binary matrices

previous works on synchronization of rotations, rigid mo-

tions, homographies and permutations. Our approach can

deal with mismatches, as demonstrated by synthetic and

real experiments, but it lacks theoretical guarantees. It also

admits an interesting interpretation in terms of spectral clus-

tering. Future work will explore under which assumptions

(if any) SYNCH exactly recovers the unknown total segmen-

tations. We also aim at investigating different relaxations

(e.g. semidefinite programming) to solve Problem (6).

Figure 6: SIFT matches on a sample pair from the Cups sequence.
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