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Abstract

As a concise and classic framework for object detection

and instance segmentation, Mask R-CNN achieves promis-

ing performance in both two tasks. However, considering

stronger feature representation for Mask R-CNN fashion

framework, there is room for improvement from two aspects.

On the one hand, performing multi-task prediction needs

more credible feature extraction and multi-scale features

integration to handle objects with varied scales. In this pa-

per, we address this problem by using a novel neck module

called SA-FPN (Scale Aware Feature Pyramid Networks).

With the enhanced feature representations, our model can

accurately detect and segment the objects of multiple scales.

On the other hand, in Mask R-CNN framework, isolation

between parallel detection branch and instance segmenta-

tion branch exists, causing the gap between training and

testing processes. To narrow this gap, we propose a uni-

fied head module named EJ-Head (Effective Joint Head) to

combine two branches into one head, not only realizing the

interaction between two tasks, but also enhancing the effec-

tiveness of multi-task learning. Comprehensive experiments

show that our proposed methods bring noticeable gains for

object detection and instance segmentation. In particular,

our model outperforms the original Mask R-CNN by 1˜2

percent AP in both object detection and instance segmenta-

tion task on MS-COCO benchmark. 1

1. Introduction

In the past few years, object detection and instance

segmentation results were rapidly improved by the vi-

sion community for the powerful baseline system Mask R-

CNN([11]), which extends Faster R-CNN([9]) by adding a

branch for predicting an object mask in parallel with the ex-

isting part for bounding box recognition. The mask branch

is a small FCN([20]) applied to each RoI([13]), predicting a

segmentation mask in a pixel-to-pixel manner. This method

1Code will be available soon.

is conceptually natural and offers extensibility and robust-

ness, shows a surprisingly smooth, flexible, and fast system

for instance segmentation results. All in all, Mask R-CNN

is a breakthrough in the field of instance segmentation.

However, this remarkable multi-task learning method

suffers from a common problem of modern detection meth-

ods. That is scale variation, since Convolutional Neural

Network is sensitive to scales. And what’s more, perform-

ing multi-tasks needs more credible feature extraction exe-

cution and multi-scale complementary features integration.

Therefore, it is urgent to tackle this problem.

Feature pyramid is a common practice. FPN([15]) aug-

mented a top-down path with lateral connections for object

detection. It exploits the inherent multi-scale, pyramidal

hierarchy of deep convolutional networks to construct fea-

ture pyramids with marginal extra cost. PANet([18]) ex-

tends FPN with an additional bottom-up path augmentation

and proposes adaptive feature pooling from multi-scale fea-

tures.

Rethinking the extracted multi-scale features of general

FPN, we find that the top-down pathway FPN only in-

troduces high-level semantic information to low-level fea-

ture, while ignore the role of low-level feature for localiza-

tion. This inspires us to design a novel FPN called SA-

FPN (Scale Aware Feature Pyramid Networks) to address

the challenge of scale variation. SA-FPN, combining Top-

Down style FPN and Bottom-Up style FPN, absorbs the

characteristics of them and becomes a more accurate mod-

ule for scale variation perception.

Another aspect for improvement of Mask R-CNN in

multi-task learning is about the parallel isolated branches of

Mask R-CNN. The segmentation branch of Mask R-CNN is

based on the output of Region Proposal Network (RPN) in

training stage, which ignores the inherently tie in those two

tasks and is inconsistent with testing processes. In common

sense, instance segmentation is connected detection based

on the bounding box strictly, which is more meticulous than

the bounding box. However, the bounding box is easy to ob-

tain than the masking label. It is worthy of trying to explore

and enhance the interrelations between object detection and



instance segmentation.

In this paper, we make a natural extension of Mask R-

CNN architecture, merging the detection branch and the in-

stance segmentation branch into single branch. This smart

framework contribution of our work named EJ-Head (Ef-

fective Joint Head), including three operations: “Interleav-

ing”,“Heavy feature” and “Shared Conv”. EJ-Head pro-

motes both two tasks consistently and provides an example

for improving multi-task learning.

In general, we improve two aspects in Mask R-CNN

by proposing SA-FPN (Scale Aware Feature Pyramid Net-

works) and EJ-Head (Effective Joint Head). Experimen-

tal results on the challenging COCO benchmark show that

when using our proposed modules, detection and instance

segmentation performances are improved by about 1.6 and

1.4 percent AP increment in box AP and mask AP, respec-

tively.

The main contributions of our work highlighted as fol-

lows. (1) We propose SA-FPN (Scale Aware Feature Pyra-

mid Networks), which effectively integrates multi-scale

complementary feature and solves the problem of scale vari-

ation in an innovative way. (2) We slickly mix the mask

branch and detection branch into one branch and introduce

EJ-Head (Effective Joint Head), which can reinforce each

task and also eliminate the gap between training and test-

ing processes. (3) We propose a newly enhanced Mask R-

CNN, which provides a reference and is helpful for further

research on multi-task learning.

2. RELATED WORK

2.1. Deep Object Detectors

Deep learning based methods([10, 13]) have tremen-

dously pushed forward the remarkable progress in object

detection over a short period of time. Mainstream object

detection frameworks roughly fall into two categories. Two-

stage methods like Faster R-CNN([9]), R-FCN([6]), Mask

R-CNN([11]) generate a sparse set of candidate propos-

als that contain all objects while filtering out the major-

ity of negative locations in the first stage, and then clas-

sify the proposals into foreground classes or background

in the second stage. Single-stage approaches, such as

SSD([19]),YOLO([22]),RetinaNet([16]) directly regress to

predict the bounding boxes. Detection frameworks with

multiple stages like Cascade R-CNN([5]) are also popu-

lar and bring tremendous improvement for object detection.

But the huge training time and resources make them not

commonly used like Faster R-CNN([9]), no matter in in-

dustry or in academia.

2.2. Scale Variation

Scale variation across object instances has been treated

as one of the most knotty problem in modern development

of detection. To address this challenge, several approaches

have been proposed. Image pyramid is an intuitive way,

SNIP ([24]) and SNIPER([25]) select a specific scale for

each resolution during multi-scale training. However, these

methods suffer a lot from the inevitable increase of infer-

ence time. Instead of taking multiple images as input, fea-

ture pyramid method uses multi-level features of different

layers. FPN([15]) is the most famous representative of this

strategy. It takes the fused feature map with the highest res-

olution to pool features and achieves superior performance.

SSD([19]), DSSD([7]) and MS-CNN([1]) perform object

detection at multiple layers for objects of different scales.

PANet([18]) boosts information flow in proposal-base in-

stance segmentation framework, enhances the entire feature

hierarchy with accurate localization signals in lower layers

by bottom-up path augmentation, which shortens the infor-

mation path between lower and top layers feature.

2.3. Instance Segmentation

Instance segmentation is a task to predict class label and

pixel-wise instance mask in an image. There are mainly two

streams of methods in instance segmentation, segmentation

based methods and detection based methods. The former

are less commonly used nowadays. Segmentation based

methods like ([26]) first predict the labels of each pixel and

then identify object instances therefrom. However the per-

formances of these methods are always unsatisfactory.

So we will mainly discuss the detection based method

in this paper. Detection based methods follow a similar

diagram: get the region of each instance and then predict

the mask, showing a strong connection to object detec-

tion. Instance-FCN([5]) proposes instance-sensitive FCNs

to generate the position-sensitive to obtain the final masks.

DeepMask([8]) learns to propose segment candidates in a

sliding window fashion. FCIS([14]) takes position-sensitive

maps with inside/outside scores to generate the instance

segmentation results, but exhibits systematic errors on over-

lapping instances and creates spurious edges. MaskLab([4])

produces instance-aware masks by combining semantic and

direction predictions. Cascade Mask R-CNN is a multi-

stage object detection and instance segmentation framework

derived from Cascade R-CNN ([2]), which comprises mul-

tiple stages where the output of each stage is fed into the

next one for higher quality refinement. But this multi-stage

mechanism inevitably brings extra computation overhead of

inference.

3. Framework

In this section, we will describe our proposed new frame-

work for object detection and instance segmentation in de-

tails.

Overview. Based on Mask R-CNN, as shown in Figure 1,

it is distinctive in two aspects: (1) It aims to remedy the



TD-FPN

BU-FPN

SA-FPN

RPN

RoI Align

EJ-Head

(b) Mask R-CNN with SA-FPN and EJ-Head

BR

Class

Box

Mask

Box Filter

2xFC

4xConv Deconv

Boundary Refinement

Interleaving

FPN

RPN

RoI Align

(a) Original Mask R-CNN 

Class

Box

Mask

2xFC

4xConv Deconv

7 x 7 

14 x 14

14 x 14

Enriched Feature

Figure 1. Architectures of the original Mask R-CNN in (a) and our proposed model in (b). Obviously, our model is different from the

original model by reformimg two modules. SA-FPN (Scale Aware Feature Pyramid Networks) combines TD-FPN (Top-Down style FPN,

as shown in green) and BU-FPN (Bottom-Up style FPN, as shown in yellow) together. And EJ-Head (Effective Joint Head) proposes

three operations. “Enriched feature” represents enhencing the extracted RoI feature, “Boundary Refinement” means adding additional

convolutions on this pathway for optimization of the boundary , “Interleaving” is an operation to filter the predicted bounding boxes which

get a high IoU (Intersection-over-Union) with ground truth and then feed positive samples into the instance segmentation branch.

problem of scale variation by fusing Top-Down style FPN

and Bottom-Up style FPN into a novel neck module called

SA-FPN. (2) It explores the interrelations between object

detection and instance segmentation, eliminating the gap

between training and testing processes and enhancing both

two tasks.

Overall, these changes to the framework architecture ef-

fectively improve two tasks and also provides a reference

for further research on multi-task learning.

3.1. Scale Aware Feature Pyramid Networks

Scale variation across object instances is one of the most

challenging problems in object detection, especially for

very small or huge objects. Simply using multi-scale im-

age pyramids has some improvement in accuracy but suf-

fers a lot from increasing inference time. Feature pyramid

is popular to deal with this knotty problem, and Top-Down

style FPN in ([15]) is the most widely used feature pyramid

structure.

As illustrated in Figure 2 (a), a general FPN is a Top-

Down style structure that feeds the last output of the back-

bone into the top of feature pyramid, and the information

flow direction is from shallow to deep in the backbone and

from the top to bottom in feature pyramid. Up-sampling op-

eration and lateral connection fusion are applied step by step

to get a larger feature until the bottom of the pyramid. Thus,



(a) TD-FPN (b) BU-FPN (c) BUF-FPN 
Figure 2. Three different architectures of FPNs. (a) is the most widely used Top-Down style FPN, which is used in the baseline model. (b)

and (c) are two newly designed Bottom-Up style FPNs. The main difference is that in (b) each layer of feature pyramid combines with only

neighboring shallower layer, while in (c) both neighboring shallower and deeper features are fused. So we call (c) Bottom-Up-Fusion FPN

(BUF-FPN). Details are shown in purple dotted boxes in (b) and in orange dotted boxes in (c). Experiments in Table 3 show that BU-F

FPN performs better. And when we concatenate (a) and (c) together and add 1x1 convolutions to reduce dimensions, we propose SA-FPN

(Scale Aware FPN), as illustrated in Figure 1 (a).

deep feature map with high semantic information and shal-

low feature map with high resolution are combined. This

greatly boosts the performance on small objects detection

and therefore improves the overall detection performance.

However, the top-down pathway of general FPN only in-

troduces high-level semantic information to low-level fea-

ture, but ignore the subsidiary role of low-level feature like

edges and textures which also are important for accurately

localizing instances. Most of the improvements caused

by Top-Down FPN come from more accurate detection on

small objects. Shallow features with high resolution con-

tain useful low-level features. Different layers are of dif-

ferent resolutions, the fusion operation between neighbor

shallower or deeper feature is also important.

Following the discussion above, we design two new

Bottom-Up style FPNs, as illustrated in Figure 2 (b) BU-

FPN and (c) BUF-FPN. Experiments in Table 3 show that

(c) BUF-FPN performs better. The main difference between

(b) and (c) is the feature integration operation, Details are

shown in purple dotted boxes in (b) and in orange dotted

boxes in (c). In (b) each layer of feature pyramid com-

bines with only neighboring shallower layer, while in (c)

both neighboring shallower and deeper layers. So we use

(c) BUF-FPN as the default Bottom-Up style FPN for fur-

ther experiments.

BU-FPN takes every level output of the backbone as the

input of the next step and applies down-sampling and fu-

sion operation step by step to build a feature pyramid from

bottom to top. Letting low-level information guide high-

level semantic information, BU-FPN is especially better at

accurate detection of large objects.

When we combine TD-FPN (Top-Down FPN) and BUF-

FPN (Bottom-Up-Fusion FPN) together, a scale sensitive

neck module called SA-FPN (Scale Aware FPN) is pro-

posed. Experiments in Table 3 show that concatenating per-
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Figure 3. Detail of Boundary Refinement(BR) module in EJ-Head.

There are two branches, one is two stacked convolutions, the other

is a shortcut. Finally two branches are added at the pixel level,

which brings the boundary alignment effect.

forms better then element-wise addition. Then we add 1x1

convolutions to reduce dimensions. In line with expecta-

tions, SA-FPN absorbs the advantages of two style FPNs

and improves both detection and instance segmentation in

different object scales.

3.2. Effective Joint Head.

For multi-task learning, parallel execution of tasks is a

common practice. However, instance segmentation in Mask

R-CNN is such a detection based method that relies heavily

on detection. Thus, the interaction between these two tasks

is worth further exploring.

Firstly, we simply connect the segmentation branch be-

hind the detection head in series when training, feeding the

bounding box predictions of the detection into the mask

head. As shown in Figure 1 (b), green dotted boxes

“Interleaving” represents this execution. “Interleaving” is

an operation to filter predicted bounding box which have

IoU(Intersection over Union) with ground truth boxes of at

least 0.5 and feed positive samples of mask into instance

segmentation branch. In this way, the segmentation branch

can take advantage of the detection process, realizing the

interaction between two tasks. Moreover, the training and

testing pipelines are highly consistent. And experiments in



Table 1. Comparison with state-of-the-art methods on COCO test-dev dataset. Note that Our main research is about single-stage methods.

Multi-stage mechanism like Cascade Mask R-CNN inevitably brings extra computation overhead of inference.

Method Backbone box AP AP50 AP75 mask AP AP50 AP75

Faster R-CNN + RoI Align ResNet101-FPN 38.0 58.7 40.6 - - -

FCIS ResNet101 - - - 29.2 49.5 -

FCIS+ ResNet101 - - - 33.6 54.5 -

MaskLab ResNet101 39.6 60.2 43.3 35.4 57.4 37.4

MaskLab+ ResNet101 41.9 62.6 46.0 37.3 59.8 39.6

Mask R-CNN ResNet101-FPN 40.9 62.3 44.3 37.0 59.1 39.4

PANet ResNet101-FPN 42.8 64.0 46.4 38.0 60.5 40.4

Ours ResNet101-FPN 42.5 64.0 46.1 38.4 60.6 40.9

Cascade Mask R-CNN ResNet101-FPN 44.4 65.6 48.3 38.4 60.2 41.4

Table 4 prove this operation indeed improved performance.

Merging heavy mask branch into box branch may

slightly increase the burden of box branch. We enlarge the

extracted RoI features from 7 x 7 to 14 x 14, and name it

“Enriched Feature” as shown in blue dotted boxes in Fig-

ure 1 (b). The quality of RoI features is enhanced by the en-

larged receptive field. Richer features further help enhance

both the detection and instance segmentation. Experiments

in Table 4 show the effectiveness of our operation.

The whole flow of information goes through an unified

path. Despite increased resolution, we can add additional

convolutions on this pathway to further boost localization

especially for details and edges of objects. As shown in

Figure 3 the yellow dotted boxes “Boundary Refinement”

means this execution. Boundary Refinement module is a

residual structure for boundary alignment. Experiments in

Table 5 show that “Boundary Refinement” is more superior

than directly two stacked 3 x 3 simple convolutions together.

4. Experiments

4.1. Datasets and Evaluation Metrics

Datasets Description. We perform all experiments on MS-

COCO([17]), which is the most representative and chal-

lenging dataset for object detection as well as instance seg-

mentation. Following COCO-2017 settings, we train our

models on 2017train (115k images) and present experimen-

tal results on 2017val and 2017test-dev.

Evaluation Metrics. We report the standard COCO-style

evaluation metric AP (averaged over IoU thresholds) on two

tasks, including AP50, AP75 (AP at different IoU thresh-

olds) and APS , APM , APL (AP at different scales). Both

box AP and mask AP are evaluated.

4.2. Implementation Details

In all experiments, we use ResNet([12]) as backbones.

In experiments based on ResNet-50, we use 8 NVIDIA TI-

TAN Xp GPUs (2 images per GPU). To ensure the consis-

tency of the overall batch size for heavier backbone network

ResNet-101, we utilize 16 GPUs (one image per GPU) in

our experiments. The input shape of images are resized to

1333 and 800 for training and testing. We train all models

with PyTorch([21]) and mmdetection([3]). We adopt differ-

ent training strategies to save the training time. Specifically,

unless noted, for ablation studies, we train for 12 epochs

with an initial learning rate of 0.02, and decrease it by 0.1

after 9 and 11 epochs. While for the models used to com-

pare with state-of-the-art methods, we train for 20 epochs

with the same learning rate, and decrease it by 0.1 after 16

and 19 epochs.

4.3. Benchmarking Results

We compare our model with the state-of-the-art ob-

ject detection and instance segmentation approaches on the

COCO dataset. In Table 1, we can see that our method ex-

hibits substantial improvements compared to the single task

(i.e., object detection or instance segmentation) methods. In

particular, our model is 4.5% absolutely better than Faster

R-CNN([23]) (with RoI Align) in the criterion of box AP.

Our method also outperforms FCIS([14]) model by 3.0% in

mask AP.

We then conduct the comparisons with multi-task learn-

ing methods that jointly predict object bounding boxes and

segmentation masks. Notably, comparing with Mask R-

CNN, our model reports 1.6% and 1.4% gains in terms

of box AP and mask AP, respectively. Obviously, our

model performs better than MaskLab+([4]). Compared

with PANet([18]) which is the state-of-the-art single-stage

based method, our model performs even a little better. Al-

though the proposed model performs slightly worse than

Cascaded Mask R-CNN, the multi-stage method consumes

more computing resources and time.

4.4. Ablation Study

Component-wise Analysis. To evaluate the effectiveness

and generalization ability of two main components (i.e.,

SA-FPN and or EJ-Head), we conduct comparative experi-

ments on different backbones and methods. From Table 2,



Table 2. Effects of each component in our design. Results are reported on COCO 2017val.

Model Backbone box AP mask AP

Mask R-CNN (Baseline) ResNet50-FPN 37.2 34.1

Mask R-CNN + SA-FPN ResNet50-FPN 37.8 34.6

Mask R-CNN + EJ-Head ResNet50-FPN 38.2 34.8

Mask R-CNN + SA-FPN + EJ-Head (Ours) ResNet50-FPN 38.9 35.5

Mask R-CNN ResNet101-FPN 39.4 35.9

Mask R-CNN + SA-FPN + EJ-Head (Ours) ResNet101-FPN 41.0 37.3

Cascade Mask R-CNN ResNet50-FPN 41.3 35.7

Cascade Mask R-CNN + SA-FPN + EJ-Head ResNet50-FPN 42.8 36.9

Table 3. Ablation study of FPN designs on COCO 2017val. BU-FPN (shown in Figure 2 (b)) means using the fusion operation in Bottom-

Up style FPN to compensate shallow feature by fusing only shallower neighboring feature. While BUF-FPN (shown in Figure 2 (c)) fuse

both higher and lower level neighboring feature. APS , APM , APL means AP at small, middle and large scales. Note that in the following

discussion, we treat BUF-FPN as the default Buttom-Up style FPN.

FPN design box AP APS APM APL mask AP APS APM APL

TD-FPN 37.2 33.8 56.7 65.0 34.1 28.0 52.4 62.8

BU-FPN 34.6 30.0 53.0 65.2 31.8 24.8 49.0 63.0

BUF-FPN 36.8 32.0 55.9 66.1 33.7 26.6 50.9 63.9

TD-FPN add BUF-FPN 37.0 32.8 56.3 65.2 33.9 27.1 51.3 63.0

SA-FPN (TD-FPN concat BUF-FPN) 37.9 34.5 57.4 65.6 34.8 29.4 52.7 63.3

we can see that the SA-FPN module improves the box AP

and mask AP by 0.6% and 0.5% respectively, compared to

the Mask R-CNN methods based on ResNet-50-FPN back-

bone. Accordingly, the EJ-Head contributes to 1.0% and

0.7% improvement under the same settings. The combina-

tion of SA-FPN and EJ-Head modules brings significant im-

provements by 1.7% and 1.4% respectively, demonstrating

that these two modules work in a complementary manner.

Besides, consistent improvement is achieved based on the

ResNet-101 backbone. It is also worthy to note that the pro-

posed SA-FPN and EJ-Head modules also provide consid-

erable improvements for multi-stage method like Cascaded

Mask R-CNN, showing that our method can serve as plugin

units for existing methods.

SA-FPN Design. In this paper, SA-FPN module is pro-

posed to address the problem of scale variation. As shown

in Table 3, TD-FPN performs better for small objects while

BU-FPN and BUF-FPN are better for large objects. BUF-

FPN fuses neighboring feature of both higher and lower

level performs better than BU-FPN which only exploits

neighboring feature from lower layer. And concatenating

performs better then element-wise addition, so we add 1x1

convolutions to reduce dimensions. This demonstrating the

bi-directional fusion manner obtains better feature represen-

tation in Bottom-Up style FPN. Our SA-FPN module con-

bines Top-Down style FPN (TD-FPN) and Buttom-Up style

FPN (BUF-FPN) and obtains 0.7% and 0.6% improvements

respectively, indicating that the combination facilitates the

handling of objects with varied scales.

EJ-Head Design. Next we investigate the effect of

key ingredients of EJ-Head including “Enriched feature”,

“Boundary Refinement” and “Interleaving”. As shown in

Table 4, each component performs better than the Mask R-

CNN. In particular, “Boundary Refinement” module brings

the most significant improvement over baseline model by

0.6% for box AP, indicating that the quality of RoI is en-

hanced by the enlarged receptive field. In addition, “In-

terleaving” with “Enriched Feature” exhibits the superior

improvements over 0.6% for mask AP, which verifies the

effectiveness of the proposed modules. Overall, EJ-Head

achieves 1.1% and 0.7% on box AP and mask AP, respec-

tively.

In Table 5 we study the various designs of “Boundary

Refinement” module in EJ-Head. The proposed Boundary

Refinement module performs better than directly stacked

convolutions. The residual structure plays an important role

for boundary alignment. Stacked convolutions also have a

little bit boost, but not very obvious as Boundary Refine-

ment. When stacked more convolutions, it even will harm

the performance of mask prediction.

Qualitative results of multi-task learning results are il-

lustrated in Figure 4. These results are based on ResNet-

101-FPN, achieving a box AP of 42.5 and mask AP of 38.4.

Masks are shown in color, bounding boxes and categories

are also shown. It can be clearly seen that people and cars

of different scales achieve accurate detection and robust in-

stance segmentation, which shows the effectiveness of our

methods. Moreover, in real-world scenarios such as au-

tonomous driving, video surveillance and even in the wild,

small objects are well parsed and sensed, and large objects

have clear contour boundaries and detailed information.



Figure 4. Examples of multi-task learning results on COCO 2017test-dev. Predicted detection results are shown in yellow bounding boxes,

masks are also shown.

Table 4. Ablation study of EJ-Head on COCO 2017val. The original Mask R-CNN uses none of three operations as shown in the first row

in the table.

Method Interleaving Enriched Feature Boundary Refinement box AP mask AP

Mask R-CNN(Baseline) 37.2 34.1

Mask R-CNN � 37.2 34.5

Mask R-CNN � 37.6 34.4

Mask R-CNN � 37.8 34.2

Mask R-CNN � � 37.7 34.7

Mask R-CNN + EJ-Head � � � 38.3 34.8

Table 5. Ablation study of the design of “Boundary Refinement”

on COCO-2017val. “Simple Conv” means using common 3 x 3

stacked convolutions. “Simple Conv x 2 + Shortcut” is shown in

Figure 3.

Boundary Refinement(BR) box AP mask AP

None 37.2 34.1

Simple Conv x 1 37.4 34.1

Simple Conv x 2 37.6 34.1

Simple Conv x 3 37.6 34.0

Simple Conv x 2 + Shortcut 37.8 34.2

5. Conclusions and Future Work

In this paper we improve Mask R-CNN by proposing

SA-FPN and EJ-Head for multi-task learning. This frame-

work progressively integrates complementary multi-scale

features in SA-FPN and enhances both detection and in-

stance segmentation tasks with EJ-Head. It shows an inno-

vative way to remedy scale variation issue, and also inter-

weaves detection and segmentation branches for multi-task

learning. Without bells and whistles, our overall system ob-

tains remarkable improvements on COCO test-set, achiev-

ing 42.5 box AP and 38.4 mask AP. We hope our simple

and effective approach will serve as a new baseline and con-

tribute to both object detection and instance segmentation.
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