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Abstract

Data augmentation is acknowledged to help deep neu-

ral networks generalize better, while their augmentation

transfer ability is far from satisfactory. The networks per-

form worse when tested with augmentations not used during

training, which is also a manifestation of insufficient gen-

eralization ability. To address this problem, we carefully

design a novel Augmentation invariant Loss (AiLoss) to as-

sist networks to learn augmentation invariant by minimizing

intra-augmentation variation. Based on AiLoss, we propose

a simple yet efficient training strategy, Augmentation In-

variant Training (AIT), to enhance the generalization abil-

ity of networks. Extensive experiments show that AIT can

be applied to a variety of network architectures, and con-

sistently improve their performance on CIFAR-10, CIFAR-

100 and ImageNet without increasing computational cost.

Further extending AIT to multiple networks, we propose

multi-AIT to learn inter-network augmentation invariant,

which achieves better performance in enhancing general-

ization ability. Moreover, further experiments present that

networks trained with our strategy do obtain better augmen-

tation transfer ability and learn features that are invariant

to augmentations. Our source code is available at Github1.

1. Introduction

Data augmentation is widely used to reduce the general-

ization error of neural networks in many machine learning

tasks. Commonly used data augmentation approaches in

computer vision include horizontally flipping, random crop,

grayscale, etc. Through these ways, new variants can be

synthesized from original training data samples.

1https://github.com/juicecwc/Augmentation-Invariant-Training
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Figure 1. (a) presents an example of the poor augmentation trans-

fer ability of neural network. We select an image from the 522-th

class “croquet ball” of ImageNet, and obtain the left image af-

ter applying random crop to it. Further implementing grayscale

delivers the right one. The results below the images are the pre-

dictions of the same network trained with only random crop aug-

mentation. (b) shows the gap between variants generated from

different samples. The samples are chosen from the 230-th class

“Shetland sheepdog” of ImageNet, and we use horizontally flip-

ping, random crop, and color jittering to generate the variants.

(c) compares the feature distribution before and after minimizing

intra-augmentation variation. The big circle means a class, and

the small solid ones of the same color but different shades repre-

sent variants generated from the identical sample, while the dotted

circles in the right are distinct samples.



Conventional training strategy for data augmentation is

merely adding the variants to training data and optimizing

the network to predict the same label as their original sam-

ples. However, the network does not obtain good augmen-

tation transfer ability through this way [8]. For example, a

network trained with random crop augmentation may per-

form well on a test set that mainly contains spatial distor-

tion compared to the training set. However, if we add other

augmentations to the test set such as color jittering, the per-

formance may drop a lot. As shown in Figure 1(a), the

Resnet50 [4] model trained on ImageNet [18] using only

random crop augmentation predicts the right label for the

original image, while concludes a wrong result with high

confidence for the grayscale image. This gap of augmen-

tation between training data and test data is quite common,

including different lighting conditions, color space, spatial

shape, backgrounds and so on. Therefore, poor augmenta-

tion transfer ability can harm the performance in the real-

world application heavily.

A natural idea to improve augmentation transfer ability is

applying the kinds of augmentations as various as possible

during training, then the network may generalize to all aug-

mentations. However, [2] presents that a proper combina-

tion of augmentations rather than a large number of them is

better. Then how can network improve augmentation trans-

fer ability? This is a key challenge in deep learning.

Before we formally discuss how to address this problem,

let us scrutinize an observation first. Compared to other

samples of the same class, variants are much more similar

to their original samples. As shown in Figure 1(b), there is

an apparent gap between the left three variants and the right

ones, while it is totally ignored by the conventional training

strategy. This gap implies that there is some invariant in the

variants which distinguishes variants generated from differ-

ent samples, and we call it augmentation invariant. Aug-

mentation invariant is an important property of data distri-

bution, since it describes the association between variants

and their original samples. Augmentation invariant mainly

includes invariance related to data augmentation, such as

spatial invariance and color invariance. Intuitively, the net-

works which have learned augmentation invariant are more

robust to the variation of augmentations, and thus have bet-

ter augmentation transfer ability.

To this end, we introduce a novel loss function called

Augmentation invariant Loss (AiLoss) to help networks

learn augmentation invariant. This loss function is designed

based on the intuition that the key to learning augmentation

invariant is minimizing intra-augmentation variation. And

the intuition is explained in Figure 1(c). The left big circle

illustrates the feature distribution of variants before mini-

mizing intra-augmentation variation, where the variants are

mixed together, while the right one is the desired distribu-

tion after applying AiLoss. The variants belonging to the

same sample are clustered together, and there is an apparent

gap between different samples.

Based on AiLoss, we propose an efficient training strat-

egy to help the network learn augmentation invariant. As

presented in Figure 2, the variants are firstly inputted into

the network in a pairwise way. Then AiLoss is applied

to jointly supervise the training together with the original

Softmax Loss. Through this way, the network is optimized

to not only predict the right label, but also minimize intra-

augmentation variation, and thus the augmentation trans-

fer ability is enhanced. We call this strategy Augmenta-

tion Invariant Training (AIT). The implementation of AIT

is straightforward. It requires no changes to the data or net-

work, and introduces no additional computational overhead.

Our contributions can be summarized as follows:

(1) We propose to enhance the augmentation transfer

ability of networks by learning augmentation invariant.

Augmentation transfer ability represents the performance

of generalizing to augmentations not seen during training.

Augmentation invariant defines the association among dif-

ferent variants, which are generated by the same sample us-

ing random data augmentations. Networks that have learned

augmentation invariant are more robust to the variation of

augmentations, and thus can obtain better augmentation

transfer ability.

(2) A novel AiLoss is designed to learn augmenta-

tion invariant by minimizing intra-augmentation variation.

Based on AiLoss, we propose a simple yet efficient training

strategy named AIT. Extensive experiments carried out on

CIFAR-10, CIFAR-100 and ImageNet show that AIT can

improve the generalization ability of networks significantly.

Further extending to multiple networks, we propose multi-

AIT to learn inter-network augmentation invariant. Multi-

AIT shows better performance in enhancing generalization

ability and is also promising to train small student networks.

(3) Further experiments demonstrate that networks

trained with our algorithm do obtain better augmentation

transfer ability. AIT outperforms baseline when tested with

augmentations not seen during training. The visualization

of feature distributions also shows AiLoss can help net-

works learn features that are more discriminative and in-

variant to augmentations.

2. Related Work

Invariant Learning. Other related works on invariant

learning include [11] [7] [3] [6] [24] [23] [20] [16]. Pool-

ing [11] down-samples an input representation, and makes

the output feature invariant to scale or orientation changes.

STN [7] proposes a new module to learn spatial invari-

ant, such as pose, scale and warping. Deformable convo-

lution [3] is also introduced to learn dense spatial transfor-

mation, which samples the feature map in a local and dense

manner rather than global transformation. Dropout [20]
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Figure 2. Augmentation Invariant Training (AIT) schmatic. Each sample generates two variants after random augmentations, and their

probability distributions predicted by the network are p1 and p2 respectively. AiLoss (LAi) measures the similarity between p1 and p2, and

jointly supervises the training of the network with Softmax Loss (LS).

randomly drops some values during training and thus can

reduce the effects of sample noise. Spectral Norm [24],

IN [23] and IBN-Net [16] can capture and eliminate appear-

ance variance, such as colors and styles. Different from the

above works, this paper does not design any complicated

module or architecture, but proposes to learn augmentation

invariant from data distribution itself by carefully designing

loss function and training strategy.

Generalization Ability. Generalization is the ability of

the network to fit unseen samples. According to the data

distribution difference of training data and test data, gen-

eralization can be divided into intra-domain generalization

and cross-domain generalization. Previous works typically

improve the intra-domain generalization ability by reducing

overfitting. Data augmentation [11] [15] [27], regulariza-

tion [12] [6] and noise injection [20] [1] are common tech-

niques. For cross-domain generalization, transfer learning

methods such as finetuning, domain adaption [21] [14] and

domain generalization [9] are mainly studied. Our algo-

rithm belongs to the former, since augmentations will not

change the domain of data. And AiLoss is actually a regu-

larization term, which can help reduce overfitting.

3. Approaches

3.1. Augmentation invariant Loss (AiLoss)

3.1.1 Formulation

We firstly formulate the conventional training process with

data augmentation. Given a sample x from class y, with

y ∈ {1, 2, ..., c}, a variant v = F (x, seed) is obtained by

applying random augmentation F (·, seed) to x, where seed

means the random seed. Then the variant is fed into the net-

work Θ(·, θ) with trainable parameter θ to output the pre-

diction as p = Θ(F (x, seed), θ). Adopting Softmax Loss

as the classification loss function, the final loss can be cal-

culated as l = softmax(y, p). And the optimization of

this network is to minimize l, in other words, it maximizes

posterior probability of the groundtruth class.

For two variants v1 and v2 generated from the same sam-

ple, they share the same label y, whose predictions are p1
and p2 respectively. Under the supervision of Softmax Loss,

argmax
k

(pk
1
) and argmax

k

(pk
2
) are optimized to be equal to

y. In this case, argmax
k

(pk) is invariant for variants gener-

ated from the same sample, where pk denotes the k-th value

of p. However, for other variants from another sample with

the same label, they are also optimized to predict class y.

In other words, Softmax Loss treats the variants from the

identical class equally and does not take advantage of the

association between the variants and their original samples.

In order to minimize intra-augmentation variation, it is

reasonable to intend to optimize p1 and p2 to be more simi-

lar. To this end, we adopt symmetric KL divergence to mea-

sure the similarity between two probability distributions:

D(p1, p2) = KL(p1 ‖ p2) +KL(p2 ‖ p1)

=
c∑

k=1

(pk
1
log

pk
1

pk
2

+ pk
2
log

pk
2

pk
1

).
(1)

D(p1, p2) measures the logarithmic difference between

p1 and p2, and it is always non-negative, with D(p1, p2) =
0 if and only if p1 = p2. Since this difference can be seen as

an error in classification, regarding minimizing it as training

target is reasonable. So we directly adopt this formulation

as our AiLoss

LAi = D(p1, p2). (2)

In this way, each variant is trained to match the probabil-

ity distribution with its peer throughout the whole training

process.

We adopt the joint supervision of Softmax Loss and

AiLoss to train deep neural networks:

L = LS + λLAi, (3)

where Ls = softmax(y, p1) + softmax(y, p2) and λ is

the loss weight to balance the two loss functions.



3.1.2 Discussion

Actually, in addition to minimizing the variation between

p1 and p2, many other optional methods are also able to

achieve our purpose. For instance, the outputs of the penul-

timate layer, known as features, can be optimized to be more

similar as well. Denoting f1 and f2 as the features of v1 and

v2, the similarity of f1 and f2 can be measured by Euclidean

distance, formulated as D(f1, f2). Theoretically, minimiz-

ing D(f1, f2) can also reduce intra-augmentation variation,

and AiLoss is changed to D(f1, f2) in this case. Moreover,

the outputs of other layers are also worth trying, as well as

other similarity metrics.

All the situations above have been considered, and exten-

sive experiments are conducted to find out the best formula-

tion. According to the experiment results in Section 4.2.1,

AiLoss is finally formulated as the KL divergence of pre-

dictions.

3.2. Augmentation Invariant Training (AIT)

3.2.1 Basic Structure

The structure of AIT is presented in Figure 2. During train-

ing, the variants generated by augmentations F1(x, seed1)
and F2(x, seed2) are fed into the network in a pairwise way.

Under the joint supervision of Softmax Loss and AiLoss,

the network tends to predict the correct label for each vari-

ant and minimize the variation between the two predictions

at the same time. If not specified, F1 and F2 are set to be

identical.

3.2.2 Extension to more networks

Inspired by Deep Mutual Learning (DML) [28], we adopt a

similar structure to extend AIT to multiple networks, de-

noted as multi-AIT. In DML, a cohort of networks are

trained collaboratively and learn from each other during

the training phrase. Similarly, multi-AIT trains a group of

networks together with their inputs being different variants

generated from the same sample.

The key distinction between AIT and multi-AIT is that

variants in the former share network, while those in the

latter don’t. Following the formulation in Section 3.1.1,

the variants v1 and v2 are fed into two networks Θ1(x, θ1)
and Θ2(x, θ2) respectively in multi-AIT. And the predic-

tions are reformulated as p1 = Θ1(F1(x, seed1), θ1) and

p2 = Θ2(F2(x, seed2), θ2). Subsequent loss function for-

mulation remains unchanged.

Through this way, multi-AIT combines the advantages

of AIT and DML. Networks are trained to make consistent

predictions between both variants and their peer networks.

Thus they can learn inter-network augmentation invariant.

4. Experiments

4.1. Datasets and Settings

CIFAR-10 & CIFAR-100: For samples in CIFAR-

10 [10] and CIFAR-100 [10], following [13], we apply 4

pixels zero padding on each side, and then randomly crop

out a 32×32 patch from the padded sample or its horizontal

flip. Those 32× 32 patches are the variants fed to into net-

work during the training phase. At the testing stage, no aug-

mentation is applied to the original samples. In order to ver-

ify the generalization of our algorithm, three different kinds

of networks including MobilenetV2 [19], Resnet32, and

Wide Resnet WRN-28-10 [25] are adopted. We use SGD

with momentum of 0.9 to train the network, and set weight

decay as 0.0001 except WRN-28-10, for which weight de-

cay is set to 0.0005 so as to reproduce the baseline accuracy

described in their paper. The initial learning rate is 0.1 and

divided by 10 at 80 and 120 epoch. The models are trained

for 160 epoches with a mini-batch size as 128.

ImageNet: Our augmentations for ImageNet mainly

follow the practice in [4]. Firstly, a crop of size randomly

sampled from 0.08 to 1.0 of the original size and an aspect

ratio randomly sampled from 3/4 to 4/3 of the original as-

pect ratio is made from the original sample or its horizontal

flip. Then we resize that crop to 224 × 224 and generate a

variant of the sample. In testing, the sample is firstly resized

to 256× 256, and then a 224× 224 patch is center cropped

out from it. SGD with momentum of 0.9 and weight decay

of 0.0001 are adopted to train Resnet18 and Resnet50 on

ImageNet. The initial learning rate is 0.1 and devided by 10

at 30, 60, 80 and 90 epoch. The models are trained for 100

epoches with a mini-batch size as 256.

4.2. Ablation Study

4.2.1 Experiments on the formulation of AiLoss

As discussed in Section 3.1.2, the numerously available

choices to formulate AiLoss can be summarized as two

types: (i) which similarity metric Ailoss uses and (ii) which

layer it applies to.

For the similarity metric, any arbitrary differentiable dis-

tance can be used, and we experiment the mostly common

three metrics: KL divergence, Euclidean distance, and the

combination of the former two.

The layers in the network can be classified into three

categories based on the output type, spatial feature map

layer(FM-layer), feature layer(F-layer) and classification

layer(C-layer), which outputs feature map, feature and log-

its respectively. We select a layer from each category as a

comparison. Specifically, this experiment is carried out on

CIFAR-100 using Resnet32, and the last three layers of this

network are utilized, whose outputs are 8 × 8 feature map,

64-dim feature and 100-dim logits, respectively. For a fair



Dataset Network Baseline AIT

CIFAR-10

Resnet32 92.56 93.14

MobileNetV2 93.76 94.57

WRN-28-10 95.83 96.03

CIFAR-100

Resnet32 69.83 71.48

MobileNetV2 74.51 76.30

WRN-28-10 80.50 81.65

ImageNet
Resnet18 70.29/89.56 70.65/89.93

Resnet50 76.02/92.96 76.53/93.12

Table 1. Top-1 accuracy (%) on CIFAR-10, CIFAR-100 and top-1/top-5 accuracy (%) on ImageNet.

comparison, the loss weight is set as λ = 1. And the results

are presented in Figure 3.

Two observations can be obtained from the results:

(i) It is not advisable to apply AiLoss before pooling.

FM-layer performs the worst and even can not converge in

most cases, while F-layer achieves better results than base-

line but a little worse than C-layer. Noting that there is only

one average pooling layer between FM-layer and F-layer,

this indicates that AiLoss only takes effect after pooling

layer. This is because pooling combines features from each

spatial location, and eliminates position mismatch between

feature maps.

(ii) KL divergence performs better for formulating

AiLoss in C-layer, while the combination of KL divergence

and Euclidean distance is preferable in F-layer. The main

difference between KL divergence and Euclidean distance

is that the former measures the similarity of two probabil-

ity distributions while the latter estimates the distance of

two vectors. In other words, there is statistical meaning in

KL divergence, whereas Euclidean distance pays more at-

tention to the value itself. In neural networks, logits are

manipulated for computing probabilities, and features are

widely used for comparing distance in numerous instance

recognition tasks such as face recognition [22] and person

re-identification [17]. Thus, the proposition at the beginning

of this paragraph is scientifically reasonable.

Above all, we formulate AiLoss with KL divergence and

apply it in the classification layer.

4.2.2 Experiments on loss weight λ

Since the hyper parameter λ dominates intra-augmentation

variation, it is essential to the final performance. Compara-

tive experiments using Resnet32 on CIFAR-10 and CIFAR-

100 are conducted to investigate the sensitiveness of this

parameter.

We vary λ from 0 to 4, where λ = 0 is the baseline with-

out AiLoss. The results are presented in Figure 4. It shows

that AiLoss can significantly improve the accuracy with a

fitting λ. For both CIFAR-10 and CIFAR-100, the best set-

ting is λ = 1. We also observe that smaller λ is better for

Figure 3. Top-1 accuracy (%) on CIFAR-100 using Resnet32 with

different similarity metrics and layer types. The blue dotted line

illustrates the baseline accuracy trained w/o AiLoss.

CIFAR-10 while a larger one is properer on CIFAR-100.

This results from the substantially more classes in CIFAR-

100, which leads to the larger value of Softmax loss. There-

fore, a larger loss weight for AiLoss is necessary to balance

them. Based on these results, we set λ = 1 in the following

experiments.

(a) CIFAR-10 (b) CIFAR-100

Figure 4. Comparison of results trained with different loss weights

λ for AIT on CIFAR-10 and CIFAR-100 (Top-1 accuracy (%)).

4.3. Classification Experiments

4.3.1 CIFAR-10 & CIFAR-100

We apply various network architectures to compare our ap-

proach with baseline. From the results of CIFAR-10 and

CIFAR-100 shown in Table 1, two major observations are



Network Types Baseline AIT DML multi-AIT

Net1 Net2 Net1 Net1 Net1 Net2 Net1 Net2

Resnet32 Resnet32 69.83 71.48 70.64 71.07 72.32 72.13

MobileNetV2 MobileNetV2 74.51 76.30 76.21 76.10 76.78 76.70

WRN-28-10 WRN-28-10 80.50 81.65 82.31 81.95 82.69 82.80

Resnet32 MobileNetV2 69.83 71.48 71.50 76.59 73.15 75.87

Resnet32 WRN-28-10 69.83 71.48 71.06 78.88 73.23 79.24

MobileNetV2 WRN-28-10 74.51 76.30 77.19 81.92 78.14 81.14

Table 2. Comparison between multi-AIT and DML on CIFAR-100.

as follows.

First, AIT is effective in boosting the performance of net-

works. The top-1 accuracy on CIFAR-10 is raised by 0.56%

on average, and the improvement on CIFAR-100 is more

significant, with an average of up to 1.51%. This demon-

strates that AiLoss can enhance the generalization ability of

networks by learning augmentation invariant.

Second, AIT is adaptive to different network archi-

tectures. We adopt Resnet, MobileNet and Wide-Resnet

(WRN) to evaluate the sensitivity to structures. The results

turn out that our algorithm can improve the performance of

all the three kinds of networks, especially for those with

smaller capacity (Resnet32 and MobileNetV2).

4.3.2 ImageNet

The results of ImageNet are summarized in the last two

rows of Table 1. Our algorithm shows certain advantages

on this large-scale dataset, although the performance gain

is relatively not that significant, which is +0.36/0.37% for

Resnet18 and +0.51/0.16% for Resnet50. We believe there

are two major causes: (i) AIT works partly by reducing

overfitting. As a regularization term in Equation 3, AiLoss

is label-free and penalizes the estimates. Therefore, net-

works trained with AiLoss are less likely to memorize the

labels and thus obtain better generalization ability [27]. (ii)

However, for large-scale datasets like ImageNet, overfitting

is not the major issue, so the effect of AiLoss is slightly

degraded.

We further conduct the following two experiments to

verify the above thoughts.

Firstly, following [27], we evaluate the memorization of

labels by a label corruption experiment. Three CIFAR-100

training sets are generated according to an open-source im-

plementation [26], where 20%, 50% and 80% of the labels

are substituted with random noise separately. The labels of

the test set are kept intact for fair evaluation. As presented

in Table 3, AIT outperform the baseline in all settings. The

results illustrate that AiLoss can reduce the memorization of

labels and prevent the model from overfitting the corrupted

labels.

Label Corruption Baseline AIT

20% 62.20 64.68

50% 52.10 55.11

80% 26.73 28.08

Table 3. Results on CIFAR-100 using Resnet32 with corrupted la-

bels.

Data Baseline AIT Improvement

10% 46.57/71.07 48.01/72.24 +1.44/1.17

30% 61.72/83.43 62.73/84.45 +1.01/1.02

50% 66.26/86.82 66.78/87.36 +0.52/0.54

Table 4. Results of Resnet18 trained with part data of ImageNet.

Secondly, we conduct a comparative experiment of dif-

ferent training set sizes to study the correlation between

AIT and overfitting. 10%, 30% and 50% of the original

ImageNet training set are randomly sampled to generate

three training datasets respectively, and the test set remains

unchanged. We summarize the results in Table 4. With

the training data increasing, the overfitting phenomenon is

gradually reduced, and the performance improvement of

AIT is also decreasing. Therefore, this confirms our previ-

ous conjecture that AIT performs better on tasks suffering

from overfitting.

4.3.3 Extension to more networks

Following DML, we train two networks together to evaluate

the performance of multi-AIT. Noting that we set λ = 3 for

multi-AIT. From the results in Table 2, we can draw two

observations:

First, multi-AIT achieves better performance than both

DML and AIT in classification. As shown in the first three

rows, multi-AIT surpasses DML on both networks and also

outperforms AIT. Multi-AIT can help networks learn inter-

network augmentation invariant, and thus promotes the gen-

eralization ability to a greater extent. However, comparing

with AIT, multi-AIT consumes more computing resource

due to the multi-network structure, while AIT achieves a



Aug
original random crop grayscale random color

Baseline AIT Baseline AIT Baseline AIT Baseline AIT

rh 63.77 67.42 51.50 55.09 42.51 45.17 59.40 63.06

rp 69.83 71.48 68.33 70.67 44.94 47.39 65.07 66.79

rg 65.25 66.31 54.55 54.89 54.96 59.58 62.10 64.16

rc 64.15 65.81 52.51 55.25 46.39 53.75 63.47 65.58

rpg 69.91 71.44 69.20 70.04 58.66 63.42 66.27 68.68

rpc 69.26 69.35 68.27 68.10 48.71 53.08 68.56 69.16

rgc 64.38 63.91 51.07 52.16 56.36 61.05 64.04 63.56

rpgc 69.61 68.87 69.03 67.82 60.27 64.32 68.11 68.68

rp,rg - 71.39 - 70.03 - 61.93 - 67.97

rp,rc - 70.58 - 69.40 - 54.65 - 70.03

rg,rc - 66.57 - 53.75 - 60.66 - 66.16

Table 5. Experiments on the augmentation transfer ability of networks. The networks are evaluated on four test sets, including original,

random crop, grayscale and random color. Here Aug means augmentation method.

satisfying tradeoff between computing overhead and perfor-

mance.

Second, multi-AIT performs better than DML in the

teacher-student training manner[5]. We train two net-

works with different capacity together, with the larger

one as teacher and smaller as student. Different from

Distillation[5], both teacher and student network are train-

able and trained from scratch. In DML, two networks learn

collaboratively and teach each other throughout the training

process. Multi-AIT further introduces inter-network aug-

mentation invariant, promoting the student networks to ob-

tain better generalization ability. Results in the last three

rows indicate that student networks trained by multi-AIT

outperform those trained by DML.

4.4. Augmentation Transfer

In order to verify whether our algorithm improves the

augmentation transfer ability of networks, we conduct ex-

tensive experiments on CIFAR100 using Resnet32.

Four categories of random augmentations are utilized in

the training process:

(i) Random horizontal flip (rh): Randomly flipping the

sample horizontally with a probability of 0.5.

(ii) Random crop (rp): Applying zero padding 4 pixels

on each side and then randomly cropping out a 32 × 32
patch from the padded sample.

(iii) Random grayscale (rg): Randomly convert the sam-

ple to grayscale with a probability of 0.1.

(iiii) Random color jittering (rc): Randomly change the

brightness, contrast and saturation of the sample with a max

bias of 0.1.

The combination of different augmentation methods is

denoted as rpg (random crop and random grayscale), rpc

(random crop and random color), etc. We also try apply-

ing different augmentations for each variant. For example,

‘rp,rg’ means applying random crop to one variant and ran-

dom grayscale to the other. Moreover, it is worth noting that

as a basic augmentation method, random horizontal flip is

applied in all the experiments.

In the test phase, we generate three augmented test sets

from the original one using random crop, grayscale, and

random color jittering respectively. The test sets are kept

intact once generated.

The three observations obtained from the results in Ta-

ble 5 are as follows:

First, AiLoss can improve the augmentation transfer

ability of networks. The results in the first four rows show

that AIT achieves better performance than baseline on both

original test set and augmented test sets. Networks trained

with AiLoss can efficiently transfer to a test set with aug-

mentations not used during training, and accomplish a com-

parable accuracy to the network trained with that augmen-

tation.

Second, a proper combination of augmentations is im-

portant and piling up augmentations is a rather efficient

way to improve augmentation transfer ability. As shown

in the middle four rows, networks perform better on aug-

mented test sets with the number of augmentations increas-

ing, while the results on the original test set decrease as a

trade-off between augmentation transfer ability and accu-

racy. The best performance on original test set is achieved

by ‘rpg’ rather than ‘rpgc’, emphasizing the importance of

proper augmentation combination. Moreover, AIT achieves

more balanced results among the four test sets, indicating a

better augmentation transfer ability.

Last, using different augmentations for each variant is

also an efficient way to obtain both accuracy and augmen-

tation transfer ability. Compared with the first three rows

in the middle, the last three achieve better results in most

instances, especially when random color jittering is applied

during training.



4.5. Intra-augmentation Variation

(a) KL divergence of predictions

(b) Euclidean distance of features

Figure 5. KL divergence of predictions and Euclidean distance of

features between different test sets. ‘ori,rp’ means comparison be-

tween original test set and random crop test set, and other param-

eters on the X axis is analogous.

We compare the KL divergence of predictions and Eu-

clidean distance of features between different test sets to

study the intra-augmentation variation. Two Resnet32 mod-

els are trained on CIFAR-100 with only random horizontal

flip and random crop augmentations. Conventional training

strategy and AIT are applied to train them respectively. And

the four test sets for comparison are the ones mentioned in

Section 4.4.

As shown in Figure 5, variation of both features and pre-

dictions between test sets is significantly reduced in AIT.

Although the Euclidean distance of features is not specif-

ically optimized during training, AiLoss can help the net-

work learn features that are invariant to augmentations.

In order to further study the effect of AiLoss on features,

we visualize the feature distributions of baseline model and

AIT model respectively. We select 14 samples from the test

set of CIFAR-100, and for each sample 16 variants are gen-

erated by applying random crop and random color jittering

augmentations to them. From the results in Figure 6, we can

draw two observations:

First, AiLoss can reduce intra-augmentation variation

significantly. Under the supervision of AiLoss, features of

variants generated from the identical sample are clustered

together and there are apparent gaps between different sam-

ples. The feature distribution of baseline shows that Soft-

max Loss can also reduce intra-augmentation variation to a

certain extent, while AiLoss further enhances the effect and

obtains better feature distributions.

Second, AiLoss can optimize the decision boundary be-

tween classes. Features of AIT are more discriminative than

those of baseline, and the margin between different classes

is also larger.

Above all, AiLoss shows powerful capability to mini-

mize intra-augmentation variation and thus can help net-

works learn features that are invariant to augmentations.

(a) Baseline

(b) AIT

Figure 6. tSNE Visualization of feature distributions from two

Resnet32 models trained w/ and w/o AiLoss on CIFAR-100. The

circles with the same color represent the features of variants gen-

erated from the identical sample.

5. Conclusions

In this work, we propose to improve the augmentation

transfer ability of neural networks by learning augmenta-

tion invariant. We firstly design a novel AiLoss to minimize

intra-augmentation variation. Based on AiLoss, a simple

yet efficient training strategy AIT is proposed to assist net-

works in learning augmentation invariant. Extensive exper-

iments on several classification benchmarks have convinc-

ingly demonstrated the effectiveness of our approach to im-

prove the augmentation transfer ability and generalization

ability of networks. Further extending AIT to multiple net-

works, we propose multi-AIT to learn inter-network aug-

mentation invariant. Experiments indicate that multi-AIT

can further improve performance and is promising to train

small student networks.
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