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Abstract

The increasing industrial demands to deploy deep neu-

ral networks on resource constrained mobile device moti-

vates recent researches of efficient structure for deep learn-

ing. One popular approach is to densify network connec-

tivity by sharing feature maps between layers. A side effect

of this approach is that the volume of the feature maps and

the convolution computation will exponentially blow up. In

this work, we propose a novel structure, named Multi-Layer

Feature Federation Network (MuffNet), to address this is-

sue. The MuffNet is a densely connected network but con-

sumes much less memory and computation at inference. The

key idea of the MuffNet is to elaborately split the feature

maps of one layer to different groups. Each feature map

group is then shared only once with the other layer. In

this way we maintain the network computation within bud-

get while keeping the topology density of the network. On

the theoretical side, we show that under the same compu-

tational budget, MuffNet is a better universal approximator

for functions containing high frequency components. We

validate the superiority of MuffNet on popular image clas-

sification and object detection benchmark datasets. The ex-

tensive experiments show that MuffNet is more efficient es-

pecially for small models under 45 MFLOPs.

1. Introduction

Deep convolutional neural networks have achieved great

success in various challenging tasks including image clas-

sification [10, 52], object detection [46, 9], speech recog-

nition [7] and video analysis [40]. Blessed by the internet

scale data, it is possible to train very deep networks with ter-

abytes of training data on highly optimized hardware such

as Graphics Processing Unit (GPU) and Tensor Processing
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Figure 1. MuffNet structure. Layers are pair-wise densely con-

nected. Channels are split into groups and each channel group is

connected to one other layer via convolution or identity mapping.

Unit (TPU). Powered by modern GPU clusters, training a

50 layer Residual Network [10] can be done in a few min-

utes [19, 6, 63].

Although larger and deeper models keep refreshing the

state-of-the-art performance, they require huge memory

space to store the model parameters and powerful hardware

to do inference. For example, the VGGNet (vgg-vd-19) [52]

has over 528 million parameters. When the input image size

is 224×224, its takes 20 GFLOPs (Floating Point Opera-

tions) to do inference. The model size of ResNet-50 [10] is

98 MB and its inference cost is 4 GFLOPs per image. The

DenseNet-121 [16] achieves better accuracy at the cost of

3 GFLOPs. It is difficult to deploy these popular deep mod-

els on resource constrained mobile device such as smart-

phones or in the scenario where low latency is enforced such

as auto-pilot. The expense of hosting deep neural network

is another non-negligible cost to consider in a large-scale

industrial deployment. A moderate modern GPU could cost

a few hundred dollars with power consumption over 150
Watt. Therefore, it is urgent to develop efficient deep neural

network models for mobile device with compact model size



and less computation.

Recent researches of developing efficient deep neural

networks could be categorized into five directions, namely,

weight pruning [27, 25], low-rank approximation [48, 41],

quantization [23, 66, 58], efficient structure [13, 65] and

network architecture search [45, 51]. In this work, we con-

cern about the structural efficiency of densely connected

network. It was observed that reusing feature maps from

low level layers will improve the network accuracy [16].

However, dense network topology will result in computa-

tional explosion. This could be alleviated by sparsifying

the network topology [67, 14] but the model accuracy af-

ter sparsification is usually degraded at the same time. In

this work, we try to keep the dense topology of the network

while maintaining the computational cost within a small

budget. To this end, we innovate a network structure named

MUlti-layer Feature Federation Network (MuffNet). In the

MuffNet, the output channels of each convolutional layer

are split into non-overlapped groups. The input channels

are concatenated from channel groups of multiple previous

layers. Each output channel is served as the input of a higher

layer only once. The topology is illustrated in Figure 5. In

this way, we guarantee that the computational cost will not

blow up by the dense connection.

Comparing to previous works that sparsify network links

between layers, the MuffNet does not compromise the link

density for computational efficiency. We argue that our so-

lution has theoretical advantages. We study the approxi-

mation ability of network in the frequency domain. It is

proved in [39] that a deep convolutional network behaves

like a low-pass filter. The MuffNet ensembles convolutional

sub-networks of all depths such that both low and high fre-

quencies could pass through the structure. This makes the

MuffNet a better universal functional approximator under

the given computational budget. From this viewpoint, the

link-sparsification approach does not improve the network

spectrum in proportion since it only ensembles a few sub-

networks of the selected depths.

Based on the above observation, we conduct extensive

numerical experiments to find the optimal configurations of

the MuffNet at 40, 140, and 300 MFLOPs. We find that

the optimal feature map sharing pattern of the MuffNet ex-

hibits three stages. In the low-level stage, it is better to share

feature maps uniformly. In the mid-level stage, an exponen-

tially decayed sharing ratio is preferred. In high-level stage,

no feature map sharing is the best choice. Please check Sec-

tion 3 for more details.

The remainder of this work is organized as following. In

Section 2, we review related works of recent development

in efficient deep learning. Section 3 introduces the proposed

multi-layer feature federation structure. Theoretical analy-

sis of the MuffNet is presented in Section 4. We describe

our experiment settings and report numerical results in Sec-

tion 5. Section 6 encloses this work.

2. Related Work

In this section, we briefly review recent advances in effi-

cient deep neural network researches.

The research of neural network acceleration dates back

to 1989 when LeCun et al. proposed to prune unimportant

neurons according to the Hessian matrix [62]. Since then

various sparsification methods are proposed to prune the

weight tensors of the convolution kernel [27, 25]. However,

the sparse convolution is difficult to be accelerated on mod-

ern hardware [33] which limits its practical value. A more

efficient strategy is to enforce the structured sparsity in the

network [15, 21, 24, 38, 59, 2, 4, 12, 29, 30, 68]. Figurnov

et al. [37] show that the spatial redundancy of the network

is also considerable and we do not need to do convolutions

pixel-by-pixel. Ren et al. [36] further discover that block-

wise sparse convolution is a more efficient way to reduce

the spatial redundancy. Another way to reduce the compu-

tation is to approximate the weight tensors by their low-rank

decompositions [48, 34, 41, 61, 53]. Vadim Lebedev et al.

[56] propose to use the CP-decomposition followed by fine-

tuning to compensate the accuracy loss caused by low-rank

approximation.

Lots of recent researches develop data-dependent meth-

ods to find novel efficient network structure. The Net-

work Architecture Search (NAS) searches network struc-

tures with high accuracy [50, 3, 18, 45, 51, 42]. Some NAS

systems consider the resource constraints and the network

accuracy simultaneously during the search [8, 60, 57, 55,

44]. Courbariaux et al. [35] compress networks to binary

weights. It is later discovered that the ternary weight net-

work is more accurate while nearly as efficient as binary

ones [23, 66, 58]. The LQ-Net [64] uses learned dictio-

nary to quantize networks for better accuracy. An ADMM

solver is developed in [22] for general quantized network

optimization.

In addition, the efficiency of the network could be im-

proved by more efficient network structure. A popular ap-

proach is to replace full convolution with sequence of depth

separable convolution, point-wise convolution and/or group

convolution. In SqueezeNet [17] the dense convolution is

replaced by the cost-efficient 1×1 and 3×3 filters to com-

press the model with fewer parameters. MobileNet [13] di-

rectly adopts depth separable convolutions instead of 3×3

convolutions. MobileNetV2 [49] proposes inverted resid-

uals to capture more spatial information and linear bottle-

necks to maintain the representational power. ShuffleNet

[65, 65] shuffles channels after the depth separable convo-

lution so that the information will propagate through chan-

nels. IGCV [53] eliminates the redundancy in convolution

kernels by interleaved group convolutions. X-Net [43] ran-

domly connects channels to form sparse convolution. The



innovation of DenseNet shows that a more accurate model

is achievable by connecting layers densely. To alleviate

the computational cost of dense links, SparseNet [67] and

Log-DenseNet [14] propose to connect layers in a sparse

pattern. The CondenseNet [5] uses learned group convolu-

tions on dense links to reduce the convolution computation.

Comparing to SparseNet and Log-DenseNet, the MuffNet

has a dense topology. The data-dependent structure search

methods could be combined with MuffNet for better accu-

racy. Therefore, this work is complementary to those data-

dependent methods.

Computational Metric The FLOP is widely adopted in

previous works to measure the computational cost of con-

volutional neural network. Some works find that smaller

FLOP does not imply faster inference [60, 1] since the hard-

ware implementation various from device to device. In this

work we suggest to use FLOP due to three reasons: 1)

In most cases FLOP is positively related to the final per-

formance on hardware; 2) The hardware-dependent met-

rics cannot be fairly compared across different types of de-

vices; 3) Testing network performance on hardware usu-

ally requires engineering efforts not affordable to everyone.

Therefore, using FLOP is a more meaningful way to com-

pare performance among different methods on different de-

vices.

3. Multi-Layer Feature Federation

In this section, we first introduce the feedforward infer-

ence process of the MuffNet. Then we describe the convo-

lutional blocks we used in each layer. Finally, we give the

complete network implementation.

3.1. Feedforward Inference

Considering a MuffNet of L layers of feature maps. Each

feature map layer except the first layer is obtained by a con-

volutional block such as a combination of group convolu-

tion and channel shuffling. We will describe the details of

the convolutional block in the next subsection. The MuffNet

splits the output channels of each layer into non-overlapped

groups. The output channel groups from different layers are

then re-grouped as the input of the consecutive layers.

For sake of clarity, it is better to introduce a matrix M
to parameterize the splitting and re-grouping scheme. For

an L-layer MuffNet, M is an L × L up-triangular matrix.

The first layer is the input feature maps of the network and

the last layer is the output feature maps of the network. The

input layer has
∑L

j=1 M1,j channels and the output layer

has
∑L

i=1 Mi,L channels. Without causing confusion we

index the output channel groups by their group size Mi,j .

For any j > i, the channel group Mi,j is served as part

of the input feature maps of the convolutional block gen-

erating the j-th feature map layer. Again, without caus-

ing confusion we index the convolutional blocks by their

output layers. The diagonal element Mi,i is the number

of channels generated by the i-th convolutional block and

is fed into the (i + 1)-th convolutional block. For the i-
th convolutional block, its input feature maps are aggre-

gated from {M1,i−1,M2,i−1, · · · ,Mi−1,i−1} groups and

its output channels are split into L − i + 1 groups of size

{Mi,i,Mi,i+1, · · · ,Mi,L}.

Figure 2 demonstrates the step-by-step feedforward in-

ference of a MuffNet parameterized by an M matrix. The

network has four feature map layers generated by three con-

volutional blocks. The first layer is the input feature map

layer with M1,1 channels. In Figure 2(a), the convolutional

block ConvUnit2 is activated to convolute M1,1 and gen-

erates M2,2:4. Please note that M2,1 = 0 since M is up-

triangular. In Figure 2(b), the M2,2:4 are assigned to the

corresponding layers for later re-grouping. In Figure 2(c),

ConvUnit3 is activated. The input of ConvUnit3 is M2,2.

The convolution output is split into two channel groups of

size M3,3 and M3,4. In Figure 2(d), similarly M3,4 is moved

to the fourth layer. ConvUnit4 is then activated. We re-

group M2,3 and M3,3 as input of ConvUnit4. The output of

ConvUnit4 is M4,4. Finally, we group {M2,4,M3,4,M4,4}
as the output of the network.

3.2. Convolutional Block

The implementation of the convolutional block in

MuffNet is flexible. Inspired by the previous researches

[17, 13], we adopt the implementation described in Figure

3 for a good balance between computational cost and model

accuracy.

The MuffNet uses three types of convolutional blocks.

When the input and output layer are of the same shape, we

use normal block in Figure 3(a) or normal block with resid-

ual link (residual block) in Figure 3(b). If the input and

output layer have different height and width, we use the re-

duction block in Figure 3(c). Following the convention, we

always downsample the feature map size by factor 2.

Structure FLOPs Given Mi,j , we could derive its FLOPs

as following. Suppose the feature map size of the input

layer is si×si and that of the output layer is sj×sj . Define

mi as the number of input channels and mj as the number

of output channels. For the normal block and the residual

block,

FLOPi = s2i (m
2
i + 9mi +mimj) .

For the reduction block,

FLOPi = s2i (
1

2
m2

i +
1

2
mimjj)+

s2j (
75

2
m2

i +
53

2
mimj + 13m2

j ) .
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Figure 2. Feedforward inference of MuffNet parameterized by M matrix.
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Figure 3. (a)-(c): Convolutional Blocks. (d): MuffNet structure

diagram. mi: number of input channels. mj : number of output

channels.

The total FLOPs of the structure parameterized by M is

FLOP(M) =
L−1∑

i=1

FLOPi .

3.3. MuffNet: Put Everything Together

We now present the complete design of the MuffNet.

The network diagram is given in Figure 3(d). Following

the common practice, we assume the input image size is

224×224. The MuffNet in Figure 3(d) consists of three

stages where we downsample the feature map to 28×28

(low-level stage), 14×14 (mid-level stage) and 7×7 (high-

level stage) respectively. Within each stage, all layers are

pairwise connected. There is no cross-stage shortcut links.

We use reduction block to downsample the feature maps be-

tween two stages.

The MuffNet Figure 3(d) has 53 layers in total. We stack

3,7,3 normal blocks (with or without residual link) in the

three stages respectively. In the first two layers we use 3×3

convolution and max-pooling with stride 2 to fast downsam-

ple the feature map to 56×56. After the last normal block,

we expand the channels to 1024 via 1×1 convolution. The

final output of the network is generated by a global average

pooling and then a fully connected layer.

If the image size is under 56×56, we only need two

downsampling layers. In this case the strides of the first

3×3 convolution and the first reduction block in Figure 3(d)

are changed to 1. The max-pooling layer is removed too.

The feature map sharing parameter matrix M could be

specified manually. We define the following three patterns

as we find them effective in practice:

Average sharing The output channels are split evenly.

That is Mi,j1 = Mi,j2 for j1, j2 ≥ i.

Linear sharing The number of shared channels is decayed

linearly according the level distance. That is Mi,j =
O(1/(j − i+ 1)).

Geometric sharing The number of shared channels is de-

cayed exponentially according the level distance. That

is Mi,j = O(1/2j−i+1).



For comparison purpose, we define the dense sharing to

imitate the feature map sharing pattern of DenseNet. In

dense sharing, the input channels are the concatenation of

outputs of all previous layers.

4. Theoretical Analysis

In this section, we will show that by multi-layer feature

federation, the network is more capable in fitting high fre-

quency components under the same computational budget.

Therefore, the learning capacity and efficiency of the net-

work is improved.

Suppose that we have a plain feedforward convolutional

network of L layers with ReLU activation. Each layer has

mi channels. The input image size is s0 × s0 with only

one channel. Following the notation in [39], let Nf denote

the number of linear regions split by the network activation

patterns. The frequency vector is denoted as ω. Denote the

Fourier function of the network as f̂(ω). By Theorem 1 in

[39], the magnitude of the frequency ω is bounded by the

following lemma.

Lemma 1 (Theorem 1 in [39]). With probability almost

one,

|f̂(ω)| ≤ cNf

L∏

i=1

mi‖ω‖−L−1 (1)

where c is a universal constant.

To bound Nf , we refer to the following lemma.

Lemma 2 (Theorem 1 in [32]). Nf is upper bounded by

Nf ≤ c(
L∏

i=1

mi)
(s2

0
) .

Combining Lemma 1 and Lemma 2, we get the following

key corollary.

Corollary 3. |f̂(ω)| ≤ c(
∏L

i=1 mi)
(s2

0
+1)‖ω‖−L−1.

Corollary 3 reveals several important information. The

term ‖ω‖−L−1 indicates an exponential decaying in high

frequency components along the network depth. The or-

der of frequency magnitude controlled by the layer width

is polynomial. As the computational cost is on order of

O(
∑

i mimi+1), it is better to distribute the computation

uniformly to all layers so that |f̂(ω)| is maximized. This

coincides with common practice: when we downsample the

feature map, we usually double the number of channels.

Next, we would like to show that by federating feature

maps of multiple depths, we can improve the dynamic of

the network under a given computational budget. For sake

of simplicity, we only consider layers in one stage. We set

10
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Figure 4. Spectrum of the networks.

Mi,j = a. From input image to the first feature map layer,

we use a full convolution with kernel size 3. The FLOPs

from the input image to the first layer is 9s20aL. Counting

from the second row and the second column, the sub-matrix

M2:L,2:L has (L− 1)2/2+ (L− 1) non-zero elements. The

total FLOPs is then

FLOP1 =9as20L+ 3s20

L∑

i=2

(
i−1∑

k=1

a)(
L∑

k=i

a)

=9as20L+ 3a2s20

L∑

i=2

(i− 1)(L+ 1− i)

=9as20L+ a2s20L(L− 1)(L+ 1)/2 .

The corresponding frequency distribution upper bound is

|f̂1(ω)| ≤
L∑

i=1

ca(i)(s
2

0
+1)‖ω‖−i−1 .

Now consider a plain feedforward network with layer

width m. The FLOPS is

FLOPS2 = 9s20m+ s20(2m
2 + 9m)(L− 1) .

To compare two structures under the same budget

FLOPS1 = FLOPS2, we set

m =(−9L+
√
∆)/(4 (L− 1))

∆ �81L2 − 72aL+ 72aL2 + 4a2L− 4a2L2

− 4a2L3 + 4a2L4 .

The frequency distribution is

|f̂2(ω)| ≤cmL(s2
0
+1)‖ω‖−L−1 .

To visualize spectrums of the two structures, we set c =
1, s0 = 1, a = 32, L = 4 and then plot the upper bounds of



the frequency distribution |f̂1(ω)| and |f̂2(ω)| in Figure 4.

The x-axis is the frequency ω. The y-axis is the magnitude

upper bound |f̂(ω)|. The spectrum of the MuffNet f̂1(ω)
is the red line curve. The spectrum of the plain feedforward

network f̂2 is the blue curve. The blue line has a larger

magnitude at low frequency. After ω ≥ 104, the blue line

decays below the red line. Figure 4 shows that the spectrum

of the MuffNet is more uniformly distributed therefore is a

better universal approximator for high frequency functions.

5. Experiments

We first describe our experiment settings on CIFAR [20],

ImageNet [47] and MS COCO [26]. Then we conduct ab-

lation study on ImageNet to find the best MuffNet struc-

ture. We focus on models around 40 MFLOPs in the ab-

lation study for quick experiments. After fixing the best

MuffNet structure, we generalize the structure to models of

140 MFLOPs and 300 MFLOPs.

5.1. Dataset and Training Settings

CIFAR Following the standard data augmentation

scheme, we zero-pad each CIFAR image with 4 pixels

and then randomly crop to 32×32. After cropping the

image is randomly flipped horizontally. We use SGD with

momentum 0.9, weight decay 10−4, batch size 128. The

initial learning rate is 0.1. The learning rate is decayed to

zero following cosine function. We terminate training at

300 epochs.

ImageNet We use the same data augmentation scheme

as InceptionV3 [54] for training. In testing stage we

first rescale images to 256×256 and then center-crop to

224×224. In the ablation studies, we set the initial learn-

ing rate to 0.4. In the final benchmark, we set the initial

learning rate to 0.5. For all experiments we use SGD with

momentum 0.9, weight decay 4 × 10−4, batch size 1024.

For other training/evaluation settings we follow [11].

MS COCO We adopt SSD [28] as the detection frame-

work and use the public domain gluon-cv code with de-

fault settings for training . We use COCO train+val for

training and COCO minival for evaluation. All backbone

models are pre-trained on ImageNet and then finetuned on

detection dataset. We report mAP (mean Average Preci-

sion, COCO challenge metrics) against number of parame-

ters and FLOPs.

5.2. Ablation Study

We search for the optimal feature map sharing patterns of

three stages in the MuffNet, that is, average sharing, linear

sharing and geometric sharing for low-level, mid-level and

high-level stages.

Sharing Pattern Param FLOPs ACC

none+none+none 1.38 M 42 M 59.69%

geometric+none+none 1.38 M 42 M 59.77%

average+none+none 1.38 M 42 M 59.79%

linear+none+none 1.38 M 42 M 59.75%

dense+none+none 1.38 M 42 M 59.71%

Table 1. Low-level Stage Sharing Patterns Comparison

Sharing Pattern Param FLOPs ACC

none+none+none 1.38 M 42 M 59.69%

none+geometric+none 1.38 M 42 M 60.34%

none+average+none 1.38 M 42 M 59.89%

none+linear+none 1.38 M 42 M 60.13%

none+dense+none 1.38 M 42 M 59.76%

Table 2. Mid-level Stage Sharing Patterns Comparison

According to Figure 3(d), we design three groups of ab-

lation experiments. We compare different feature map shar-

ing patterns in 28×28, 14×14 and 7×7 stages. When we

compare sharing patterns in one stage, we always use nor-

mal block with residual link in the other two stages. In the

following experiments, we keep the FLOPs of each stage to

be the same.

Low-level Stage Table 1 summarizes the top-1 accuracies

of different feature map sharing patterns in low-level stage

(28×28 stage). In the first column, we denote ’none’ if we

use the conventional residual blocks without feature map

sharing in a stage. The ’dense’ denotes the feature map shar-

ing pattern used in DenseNet. ’linear+dense+none’ means

we use linear sharing in the low-level stage, dense sharing in

the mid-level stage, and no sharing in the high-level stage.

We find that in low-level stage, it is better to share feature

maps rather than no sharing. Different feature map sharing

patterns are comparable in accuracy. The average feature

map sharing is slightly better.

Mid-level Stage Table 2 summarizes the top-1 accuracies

of different feature map sharing patterns in mid-level stage

(14×14 stage). Since we stack more blocks in this stage,

the sharing pattern has significant impact. Similar to the

low-level stage, conventional feedforward structure without

feature map sharing is the worst choice. The best pattern

is the geometric sharing, about 0.2% better than the rest.

Linear sharing is also better than average sharing. This in-

dicates that in the mid-level stage, we should enhance the

information sharing between consecutive layers.

High-level Stage Table 3 summarizes the top-1 accura-

cies of different feature map sharing patterns in high-level

stage (7×7 stage). In this stage, the conventional residual



Sharing Pattern Param FLOPs ACC

none+none+none 1.38 M 42 M 59.69%

none+none+geometric 1.38 M 42 M 58.93%

none+none+average 1.38 M 42 M 58.95%

none+none+linear 1.38 M 42 M 58.87%

none+none+dense 1.38 M 42 M 58.56%

Table 3. High-level Stage Sharing Patterns Comparison

Sharing Pattern FLOPs ACC

none+none+none 42 M 59.69%

geometric+geometric+none 42 M 60.39%

geometric+average+none 42 M 60.31%

average+geometric+none 42 M 60.60%

average+average+none 42 M 60.30%

linear+linear+none 42 M 59.94%

linear+geometric+none 42 M 60.32%

linear+average+none 42 M 60.10%

geometric+linear+none 42 M 60.31%

average+linear+none 42 M 60.52%

Table 4. High-level Stage Sharing Patterns Comparison (Combi-

nation)

blocks without sharing is at least 0.7% better in top-1 accu-

racy. This shows that in high-level stage feature map shar-

ing is discouraged.

Combination of low-level and mid-level stages In the

above three ablation studies, we find that it is better not

to share feature maps in high-level stages. In Table 4, we

fix the high-level stage sharing pattern to be ’none’ and

we test the combinations of feature map sharing patterns

of the low-level and mid-level stages. Since we choose the

right pattern in the high-level stage, the overall accuracy

in this experiment is better than above ones. In the above

experiments, we find that the low-level stage prefers av-

erage sharing and mid-level stage prefers geometric shar-

ing. In Table 4 we observe the same trend again. The

’average+geometric+none’ achieves the best top-1 accuracy

60.6%. The ’average+linear+none’ is the second best, about

0.08% falls behind.

Based on the above experiments, we propose our

MuffNet configuration as following. The low-level stage

consists of 3 normal blocks with average feature map shar-

ing. The mid-stage consists of 7 normal blocks with geo-

metric feature map sharing. The high-level stage consists

of 3 residual blocks without feature map sharing, followed

by fully connected layer. The M matrix of this structure

is visualized in Figure 5. In the figure, each colored block

represents a group of feature map channels parametrized by

Mi,j . The top-left is M0,0 and the right-bottom is M15,15.

The y-axis indices the source layer whose output channels
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Figure 5. MuffNet M matrix visualization

Model FLOPs CIFAR10 CIFAR100

MuffNet 0.5 41 M 93.44% 71.83%

ShuffleNetV2 0.5 40 M 93.25% 71.42%

MobileNet 0.25 41 M 92.78% 71.29%

MobileNetV2 0.35 45 M 93.12% 71.34%

ResNet20 41 M 91.25% -

MuffNet 1.0 174 M 94.82% 76.23%

ShuffleNetV2 1.0 174 M 94.60% 76.05%

MobileNet 0.5 156 M 93.94% 73.94%

MobileNetV2 0.75 175 M 94.71% 75.88%

ResNet56 126 M 93.93% -

ResNet110 253 M 93.57% -

DenseNet40 206 M 94.06% 75.58%

MuffNet 1.5 373 M 95.46% 77.65%

ShuffleNetV2 1.5 370 M 95.16% 77.32%

MobileNet 0.75 345 M 94.55% 75.90%

MobileNet 1.0 612 M 94.54% 76.47%

MobileNetV2 1.0 298 M 95.21% 77.44%

DenseNet BC 100 288 M 95.49% 77.73%

Table 5. Top-1 Accuracy on CIFAR-10 and CIFAR-100

are split and the x-axis indices the target layer who takes the

corresponding feature map group as input. For details about

channel configuration, please check appendix.

5.3. Image Classification Benchmark

We compare MuffNet with popular baseline models on

CIFAR-10, CIFAR-100 and ImageNet at 40 , 140 and

300 MFLOPS. The landmark budgets of FLOPs are selected

as the same in [31] for fair comparison.

CIFAR We summarize top-1 accuracies on CIFAR-10

and CIFAR-100 in Table 5. Since the original papers of



Model Param FLOPs Acc

MuffNet 0.5 1.4 M 42 M 62.1%

ShuffleNetV2 0.5 1.4 M 41 M 60.3%

ShuffleNet 0.5 (G=3) - 38 M 56.8%

MobileNet 0.25 0.5 M 41 M 50.6%

MobileNetV2 0.35 - 50 M 60.3%

IGCV2 0.25 0.5 M 46 M 54.9%

MuffNet 1.0 2.3 M 146 M 69.9%

ShuffleNetV2 1.0 2.3 M 146 M 69.4%

ShuffleNet 1.0(G=3) - 140 M 67.4%

MobileNet 0.5 1.3 M 149 M 63.7%

MobileNetV2 0.75 2.7 M 190 M 69.6%

IGCV2 0.5 1.3 M 156 M 65.5%

IGCV3-D(0.7) 2.8 M 210 M 68.5%

MuffNet 1.5 3.4 M 300 M 73.1%

ShuffleNetV2 1.5 3.5 M 299 M 72.6%

ShuffleNet 1.5(G=3) 3.4 M 292 M 71.5%

MobileNet 0.75 2.6 M 325 M 68.4%

MobileNet 1.0 4.2 M 569 M 70.6%

MobileNetV2 1.0 3.4 M 300 M 72.0%

CondenseNet(G=C=8) 2.9 M 274 M 71.0%

IGCV2-1.0 4.1 M 564 M 70.7%

IGCV3-D 3.5 M 318 M 72.2%

Table 6. Top-1 Accuracy on ImageNet

ShuffleNet and MobileNet did not report their performance

on CIFAR, we report our replicated results. For fairness in

the experiments we remove the first 3×3 convolution in the

ShuffleNetV2, change the stride of the first reduction block

to 1 and remove the max-pooling layer.

The proposed MuffNet outperforms baseline methods at

40 and 140 MFLOPs on both CIFAR-10 and CIFAR-100.

At 300 MFLOPs, DenseNet achieves the best top-1 accu-

racy on both datasets. We notice that at 300 MFLOPs, the

accuracies of different models are very close to each other.

Since the image size of CIFAR is only 32×32, the overall

gain of MuffNet is around 0.2%.

ImangeNet We summarize top-1 accuracies on ImageNet

in Table 6. For easy comparison, we provide the scat-

ter plot of top-1 accuracies of MuffNet, ShuffleNet and

MobileNet in Figure 6. At 40 MFLOPs, the MuffNet-0.5

achieves 62.1% top-1 accuracy. This number is 1.8% bet-

ter than the second best model ShuffleNetV2-0.5. Com-

paring to ShuffleNetV1-0.5, IGCV2-0.25 and other models,

MuffNet outperforms them by a margin of 5%. This shows

that the MuffNet is highly efficient for light-weight mod-

els. At 140 MFLOPs, MuffNet-1.0 achieves 69.9% top-1

accuracy. This number is 0.5% better than the second best

model ShuffleNetV2-1.0 and 2.2% better than ShuffleNet-

1.0 (G=3). When comparing to IGCV3-D (0.7), MuffNet

Figure 6. Top-1 accuracy v.s. FLOPs

Model Param FLOPs mAP

MuffNet 3.4 M 300 M 22.0%

ShuffleNetV2 3.5 M 299 M 21.8%

MobileNetV2 3.4 M 300 M 21.9%

MobileNet 4.2 M 569 M 21.7%

Table 7. mAP on MS COCO. SSD512 as backbone.

is 1.1% better with 1/4 less FLOPs. At 300 MFLOPs,

MuffNet-1.5 is still the best model at this scale, slightly bet-

ter than ShuffleNetV2-1.5 (+0.5%). However, the number

of parameters of MuffNet is smaller than ShuffleNetV2-1.5

which means that MuffNet is more memory efficient.

5.4. Object Detection Benchmark

We report the mAP of MuffNet, ShuffleNet and Mo-

bileNet on MS COCO dataset in Table 7. We use SSD512

as backbone for all models. Again, in the detection task

MuffNet is superior than baseline methods at 300 MFLOPs.

MuffNet achieves 22.0% mAP, 0.1% better than the sec-

ond best model MobileNetV2 and 0.2% better than Shuf-

fleNetV2. Comparing to MobileNet, MuffNet is 0.3% bet-

ter while its computational cost is only half of MobileNet.

6. Conclusion

We propose a novel multi-layer feature federation struc-

ture, MuffNet, for mobile deep learning. MuffNet is a

densely connected network with budgeted memory and

computation. By ensembling convolutional sub-networks

of different depths, the MuffNet allow both low and high

frequencies pass through the network, resulting in a bet-

ter universal approximator. MuffNet achieves the state-

of-the-art performance in image classification and object

detection benchmarks, especially for small models under

45 MFLOPs.
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