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Abstract

Event cameras are bio-inspired vision sensors that out-

put pixel-level brightness changes instead of RGB values.

Thousands of convolutional neural networks have emerged

to process the frame-based images; however, there are few

networks designed explicitly for the event-based data, which

can fully take advantages of the asynchronous and high-

temporal resolution data. In this paper, we propose an in-

cremental broad learning system to learn the event-based

data in a flat network structure, which consists of feature n-

odes and enhancement nodes in one layer. The incremental

learning strategy is developed for fast adding new nodes in

a broad extension, yet it is almost impossible to add a filter

or layer in the CNNs without retraining from the beginning.

An SVD operation is coupled with the network extension to

prevent the redundancy of the network structure. In exper-

iments, our model outperforms the state of the arts, at the

same time, 15× faster than the CNNs in training. It makes

event cameras easier to be the nearly online training and

inference applications.

1. Introduction

Processing the frame-based images and videos domi-

nates computer vision for several decades, and the con-

cept ‘frame’ has rooted not only in computer vision re-

searchers but also the general public’s minds. With the

domination of the Convolutional Neural Networks (CNNs)

[9, 23, 36, 16, 17] in recent years, people are more con-

vinced that images and videos should exist in the convo-

lution operation and deep structure. However, rethinking

the frame-based images computer vision, it mainly faces

three challenges [25]. The first challenge is that absolute

pixel illumination is the main source of frame-based cam-

eras, but illumination is not an invariant property of a scene

[28]. Measuring luminance accurately is limited by the low

dynamic range of conventional cameras [35]. The second

challenge is that real-time operation implies a minimum of
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Figure 1. The motivation of this work. The deep learning method-

s are more applicable for the frame-based synchronous data, but

which kind of networks is better for the event-based asynchronous

data. In this paper, we propose using a broad learning system to

handle the event data in an incremental way.

24 images per second. However, biological retinas operate

at the temporal precision of 1 kHz [14]. It has been shown

that there is a loss of 75 percent of valuable information

leading to a poor separability between classes of objects [1]

for the low temporal rates cameras (30-60 Hz). The third

challenge is that the images measuring at unnatural frame-

rate results in an acquisition of huge amounts of redundant

data because most pixels do not change from one frame to

the next. The massive redundancy in frames will be further

added into the video compression.

In the meanwhile, neuromorphic cameras [2, 33, 40] are

becoming more and more widespread. These devices are

bio-inspired vision sensors that attempt to emulate the func-

tioning of biological retinas, namely event cameras, such as

the Asynchronous Time-based Image Sensor (ATIS) [33]

and Dynamic Vision System (DVS) [10], are fundamental-

ly different from traditional cameras that output a sequence

of frames at fixed intervals. The term ‘event’ refers to a

spike output that is characterized by a spatial location (x, y),
timestamp (t) and polarity of the brightness change (p),
shown in Fig. 1. Thus, the output of an event camera is a

stream of asynchronous spikes that are triggered by bright-

ness changes sensed by individual pixels. Several models

have been proposed to utilize the event-based vision sensors

for the object classification, e.g., CNNs [19], Hierarchical
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Figure 2. Overview of the proposed event-based incremental broad learning system. The network consists of feature node Z, enhancement

node & additional enhancement nodes H , and output nodes Y . First, the event-based data {ei} are computed by the peak-and-fire mapping

as input X , which then is mapped as Z. The enhancement node H is generated by the feature node and activation function. With the input

data X increase, the network extends in the broad dimension by adding more feature nodes and enhancement nodes. An SVD operation is

designed to decrease the redundancy during the network extension.

like models [12], and Deep Belief Networks (DBNs) [32].

Other methods start to explore the integration of dynamical

information in recognition task by using motion-direction

sensitive units [18] or dynamical networks (like Echo-state

networks) [24]. However, the above networks origin from

the frame-based methods, in which the event data is consid-

ered as a similar frame-based image in feature extracting,

and the networks are trained in the old fashion, which do

not take the advantages of bio-inspired event-based data.

In this paper, we design a broad learning network to deal

with the event-based data for the object classification. We

firstly use an asynchronous peak-and-fire mapping to depict

the event-based data. Then a basic broad learning system

(BLS) [7] is established in the form of a flat network, where

the event-based inputs are transferred as ‘feature nodes’ and

the structure is expanded as ‘enhancement nodes’. The out-

put layer is directly connected with the feature nodes and

enhancement nodes by the weights, which is shown in Fig.

2. The broad network provides an alternative way of learn-

ing in a go-broad way, which is different from the deep C-

NNs models. With the event-based input data continuous-

ly coming, the network becomes broad by adding feature

nodes, enhancement nodes, and additional enhancement n-

odes. In a traditional deep structure, if one needs adding

layers to describe more detailed features, the whole net-

work usually should be retrained from the beginning. It will

suffer from a time-consuming training process because of

a large number of connecting parameters in filters and be-

tween layers. However, our incremental BLS can be remod-

eled by the increment of nodes without the entire retraining.

As far as we know, we are the first to propose using the

incremental broad learning way to deal with the event-based

data. The key contributions of this paper are:

1. A BLS bridges the event-based data and the broad

learning, which successfully integrates the asynchronous

data into a flexible broad network.

2. An incremental learning strategy is easily extended

in feature nodes, enhancement nodes, and the input data,

which facilitates the BLS network extending from a basic

network to a large one.

2. Related work

Event-based feature & Object Classification. The ma-

jority of prior work on event-based object detection focused

on detecting and tracking stable features. The application

includes: simultaneous localization and mapping applica-

tions [20, 34], corner detectors [43, 30], edge and line ex-

traction [39], event-based flow [8]. [25] proposed a hier-

archical representation based on the definition of time sur-

face and clustering the time surfaces at each layer, while the

last layer sent its output to a classifier. The main limitation

of this method was high latency due to the increasing time

window needed to compute the time surfaces and the high

computational cost of the clustering algorithm. Then a com-

pact and fast representation of [25] was proposed in [42].

However, these methods focused on extracting the accurate

hand-designed feature from the event data, but the classi-

fiers or networks were not considered in a whole framework

with the asynchronous data.

Event-based networks. The networks used in event-

based data origin from training artificial neural networks



by reproducing or imitating the learning rules observed in

biological neural networks [15, 3, 41, 29], which was simi-

lar to what was done in frame-based computer vision, try to

optimize the weights of networks by minimizing a smooth

error function. The most commonly used architectures for

event-based cameras were Spiking Neural Networks (SNN)

[6, 37, 38, 44, 31]. However, it was difficult to train an SNN

with the gradient descent properly. To avoid this, [12] used

predefined Gabor filters as weights in the network. Others

proposed to train a CNN and then to convert the weights to

an SNN [6, 37]. [5] added the attention mechanism in an

event-based YOLO structure, namely YOLE, to solve the

event-based classification problem. Unfortunately, when

the network converted from the CNNs structure, the per-

formance was lower than conventional CNNs on frames.

Broad learning system. BLS originated from the func-

tional link neural network [21], which was a variant of the

higher-order neural network without hidden units. BLS was

developed by Chen and Liu [7], which was a fast and effi-

cient discriminative learning method. Without stacking the

layer-structure, the designed neural networks expanded the

neural nodes broadly and updated the weights of the neural

networks incrementally when additional nodes were needed

and when the input data were entering the neural networks

continuously. Therefore, the BLS structure was suitable for

modeling and learning in a time-variant environment.

3. Methodology

This section consists of four parts. First, we introduce a

peak-and-fire mapping, which converts the event-based data

to a feature map. Second, we input the mapped feature to

a broad learning network. Third, we propose extending the

basic BLS by incrementally adding more nodes in a broad

way. Finally, an SVD operation is introduced to decrease

the network redundancy in broad extension.

3.1. Peak-and-fire Mapping

Given an event-based sensor with pixel grid size M ∗N ,

a stream of events is denoted by a sequence

ei = [li, ti, pi]
T
, (1)

where ei is the ith event and consists of a location (li =
[xi, yi]

T ), time (ti) and polarity (pi), with pi ∈ {−1, 1},

where −1 and 1 represent OFF and ON events, respective-

ly. When an object (or the camera) moves, the pixels asyn-

chronously generate events which form a spatio-temporal

point cloud representing the objects spatial distribution and

dynamical behavior.

Peak-and-fire mechanism. Inspired by the SNN, we de-

sign a peak-and-fire mechanism to detect peaks of the event

array and fire the peaks as outputs. First, we identify and

localize the event peak as

Pei =

{ ∑

ej
exp(α ·Δt) if tj −Δincr ≤ ti, lj = li

0 otherwise
(2)

where Pei provides a dynamic temporal context for the

event ei. The exponential decay expands the activity of

passed events and records information about the history of

the activity. Δt = tj − ti. α is the decay parameter. Δincr

is defined as a time interval. Considering the polarity of

each event, we only sum the the event in the same polarity,

as pj = pi.
Because the structure of this point cloud contains infor-

mation about the object and its movement, we introduce cell

ck to keep track of the activity surrounding the pixel loca-

tion li, which is inspired by [25, 42]. The cell ck defines

an incoming event ei as the array of most recent events

in the {C = R ∗ R} square neighborhood centered at li,
ck(ei) = {ej : tj − Δincr ≤ ti, lj = (li + C)}. Then, a

peak in the cell is defined as

Pck =
1

|Nck |

∑

ei∈C

Pei , (3)

where Nck is the number of events in cell ck. A peak in a

cell is considered to be valid if its number is more than the

confidence threshold in the interval Δincr. The threshold

is defined as μt, where μt = Nck/size(ck) and size(ck)
is the size of the cell ck. if Nei > μt, the peak value in

a cell ck is fired as an output, where Nei is the number of

the events in li. It promises the output peak value is able to

eliminate the influence of noises.

Peak memory cell. When we use the peak-and-fire

mechanism in the incoming time interval Δincr, every in-

coming event ei need be iterated over all events in a past

cell. Looping through the entire ordered event stream is ex-

tremely expensive and inefficient. We define a shared mem-

ory cell Mc for every cell ck. The past events relevant for

ck are stored. The output of ck is defined as

Xt+Δincr
ck

=

{

P t
ck
(R, p) +Mci (Δincr) if ei ∈ ck

P t
ck
(R, p) otherwise

(4)

when a new event arrives in ck, we update Eq. (4) by on-

ly looping through Mck , which contains only the relevant

past events to compute the peak memory cell. After each

interval, the output is X = [Xc1 , . . . , XcK ]. Hence, we can

compute a robust feature representation without a signifi-

cant increase in memory requirements.

3.2. Broad learning system

To build our incremental learning framework, we start

with a traditional, i.e., non-incremental BLS for the ob-

ject classification task. Our model is based on the BLS



Algorithm 1: Peak-and-fire Mapping

Input: Events {ei}, Parameters: Δincr, R, α
Output: X
Initialize: Pei = 0, |Nck | = 0, and Mci = 0;

for i = 1; i ≤ I do
Pei ← event peak detection;

Pck ← cell peak detection;

μt ← calculate fire threshold;

Mci ← memory cell update;

end

Return X = [Xc1 , Xc2 , . . . , XcK ]

[7] to provide an effective and efficient learning framework

for classification and regression problems. Now let us re-

view the BLS mathematically, given the training dataset

{(X,Y )|X ∈ R
N×K , Y ∈ R

N×C} from C classes. Here,

X denotes the event data presentation in time interval Δincr

described in Sec. 3.1. In a BLS, the training samples are

first transformed into n random feature spaces by feature

mapping φi as

Zi
Δ
= φi(XWfi + βfi), i = 1, 2, . . . , n, (5)

where the weights Wfi and the bias term βfi are generated

randomly with the proper dimensions. Then we define the

feature space of training samples as Zn Δ
= [Z1, Z2, ..., Zn],

a collection of n groups of feature nodes. The outputs of

the jth group of enhancement nodes are defined by

Hj
Δ
= ξj

(

ZnWhj
+ βhj

)

, j = 1, 2, · · · ,m, (6)

where ξj is a nonlinear activation function. Whj
is the en-

hancement weights and βhj
is the bias term. In practice, j

and i of Zi can be selected differently depending upon the

complexity of the modeling tasks. Furthermore, φi and ξj
can be different functions. Without loss of generality, the

subscripts of the ith random mappings φi and the jth ran-

dom mappings ξj are omitted in this paper.

We denote the outputs of the enhancement layer by

Hm Δ
= [H1, H2, ..., Hm]. Therefore, the output Ŷ of a BLS

has the following form

Ŷ = [Z1, Z2, · · · , Zn, H1, H2, · · · , Hm]W

= [Zn, Hm]W

= AW,

(7)

where A = [Zn, Hm] denotes the transformation features,

and W is the output weight connecting the feature nodes

and enhancement nodes to the output layer. W should be

optimized by solving the following minimization as

min
W

‖Y −AW‖
2

2 + λ ‖W‖
2

2 , (8)

Figure 3. Overview of the proposed event-based incremental broad

learning system.

where λ is a small trade-off regularization parameter, the

first term denotes the training errors and the second term

controls the complexity of network structure and improve

the generality. Then by setting the derivation of Eq. (8), we

can get the solution of output weight as

W = (ATA+ λI)−1ATY. (9)

The calculation of weights W can always be achieved, as

the matrix (ATA + λI) is generally nonsingular. Specifi-

cally, we have

A+ = lim
λ→0

(ATA+ λI)−1AT . (10)

3.3. BLS Architecture

The BLS is constructed based on the flatted functional-

link networks. Fig. 3 shows the network structure. We first

map the inputs to construct a set of mapped features. We use

the input data X and project the data, using Eq. (5), to be-

come the ith mapped features, Zi, where Wfi is the random

weights. Zn is the concatenation of n groups of mapping

features. Similarly, the jth group of enhancement nodes

Hj is calculated by Eq. (6). Hm is the concatenation of m
groups of enhancement nodes. Hence, the broad model can

be represented as the Eq. (7). The weights W connect the

feature nodes and enhancement nodes with the output nodes

and can be computed through the ridge regression approxi-

mation A+ using Eq. (10). The pseudoinverse computation

is used here, which can also be replaced with an iterative

algorithm or a gradient descent approach if desired.

So far, a general framework of the BLS is presented.

Theoretically, the selection of functions for the feature map-

ping deserves attention. Functions φ(·) and ξ(·) have no ex-

plicit restrictions, which means that common choices such

as kernel mappings, nonlinear transformations, or convolu-

tional functions are acceptable. Specifically, if we use the

convolutional functions for the feature mapping, the BLS

network structure is very similar to that of classical CNN

structure except that the BLS network has additional con-



necting links between the convolutional layers and the out-

put layer.

3.4. Incremental Broad Learning System

When new input event-based data X coming, the basic

BLS network may not be good enough for learning. It may

be caused by the insufficient nodes. We propose an incre-

mental BLS to extend the network. Here we use two strate-

gies: the first one is adding additional enhancement nodes,

and the second one is adding feature nodes and correspond-

ing enhancement nodes.

Increment of additional enhancement nodes. First, we

detail the broad expansion method for adding additional en-

hancement nodes. Denote Am = [Zn|Hm] and Am+1 as

Am+1 = [Am|ξ(ZnWhm+1
+ βhm+1

)], (11)

where Whm+1
∈ R

nk×p, and βhm+1
∈ R

p. The connecting

weights and biases from mapped features to the addition-

al enhancement nodes are randomly generated. We could

deduce the pseudoinverse of the new matrix as

(Am+1)+ =

[

(Am)
+
−DBT

BT

]

, (12)

where D = (Am)+ξ(ZnWhm+1
+ βhm+1),

BT =

{

(G)
+

if G �= 0

(1 +DTD)
−1

BT (Am)
+

if G = 0
(13)

and G = ξ(ZnWhm+1
+βhm+1

)−AmD. The new updated

weights are

Wm+1 =

[

Wm −DBTY
BTY

]

. (14)

Notice that all the pseudoinverse of the involved matrix

are calculated by the regularization in Sec. 3.2. Specifically,

this algorithm only needs to compute the pseudoinverse of

the additional enhancement nodes instead of computations

of the entire (Am+1) and thus results in fast incremental

learning.

Increment of feature nodes and enhancement nodes.

Now let us come to the cases that the input data keep en-

tering. Denote Xa as the new inputs added into the net-

work, and denote Am
n as the n groups of feature nodes and

m groups of enhancement nodes of the initial network. The

respectively increment of feature nodes and enhancement

nodes are formulated as follows:

Ax = [φ(XaWf1 + βf1), . . . , φ(XaWfn + βfn)|
ξ(Zn

xWh1
+ βh1

), . . . , ξ(Zn
xWhm

+ βhm
)],

(15)

where Zn
x = φ(XaWf1 + βf1), . . . , φ(XaWfn + βfn) is

the group of the incremental feature nodes updated by Xa.

The detailed proving process is in supplementary materials

Algorithm 2: Event-based Incremental BLS Learning

Input: training samples X

Output: W

for i = 1; i ≤ n do
Random Wfi , βfi ;

Calculate Zi by Eq. (5);

end

for j = 1; j ≤ m do
Random Whj

, βhj
;

Calculate Hj by Eq. (6);

end

Set Am
n and calculate (Am

n )+ by Eq. (10);

while The training error threshold is not satisfied do

if additional enhancement nodes are added then
Random Whm+1

, βhm+1
;

Calculate Hm+1;

Update Am+1
n ;

Calculate (Am+1
n )+ and Wm+1

n by Eqs. (12, 14);

m = m+ 1;
end

else
New inputs are added as Xa;

Calculate Ax by Eq. (15);

Update xAm
n ;

Update (xAm
n )+ and xWm

n by Eqs. (16, 18);

end

end

The Wfi , βfi , βhj
are randomly generated during the ini-

tial of the network. Hence, we have the updating matrix
xAm

n = [Am
n AT

x ]
T . The associated pseudoinverse updat-

ing algorithm could be deduced as follows:

(xAm
n )+ = [(Am

n )+ −BDT |B], (16)

where DT = AT
xA

m+
n ,

BT =

{

(G)
+

if G �= 0

(1 +DTD)
−1

(Am
n )

+
D if G = 0

(17)

and G = AT
x −DTAm

n . Therefore the updated weights are

xWm
n = Wm

n + (Y T
a −AT

xW
m
n )B, (18)

where Ya is the respective labels of additional Xa. The in-

put nodes updating algorithm is shown in Alg. 2. Again, this

incremental learning saves time for only computing neces-

sary pseudoinverse. This particular scheme is perfect for

incremental learning for new incoming event-based data.

3.5. SVD Operation

After the broad expansion with added feature nodes, en-

hancement nodes and additional enhancement nodes, the

broad structure may have a risk of being redundant due to



H-First[12] HOTS[25] HATS[42] Gabor-SNN[42] EBLS Ours(full)

N-MNIST 0.712 0.808 0.991 0.837 0.981 0.983

N-Caltech101 0.054 0.210 0.642 0.196 0.647 0.668

MNIST-DVS 0.595 0.803 0.984 0.824 0.980 0.987

CIFAR10-DVS 0.077 0.271 0.524 0.245 0.547 0.563

N-CARS 0.561 0.624 0.902 0.789 0.899 0.931
Table 1. Comparison of classification accuracy on five datasets. The highest classification rates are marked as the bold face.

poor initialization or redundancy in structure. In our incre-

mental model, we use an SVD operation in three parts: fea-

ture nodes, enhancement nodes, and the broad expansion.

First, we apply SVD to feature nodes Zi, i = 1, . . . , n as

Zi = UZi
ΣP

Zi
V T
Zi

= UZi
· [ΣP

Zi
|ΣQ

Zi
] · [V P

Zi
|V Q

Zi
]

= UZi
ΣP

Zi
V P
Zi

T
+ UZi

ΣQ
Zi
V Q
Zi

T

= ZP
i + ZQ

i ,

(19)

where ΣP and ΣQ are divided by the order of singularities,

under the parameter εf . The idea is to compress Zi by the

principal portion, ZP
i . The equation between Zi and ZP

i

is derived as ZP
i V P

Zi
= ZiV

P
Zi

. Before each iteration of

SVD, we denote A0
n = [Z1, . . . , Zn], and the model weight

is denoted as W 0
n

Δ
= [W

{0,n}
Z1

| · · · |W
{0,n}
Zn

]T .

Similarly, the enhancement nodes Hm and the broad

network structure could be orthogonal decomposed by the

SVD operation with the threshold εh and ε. Generally, the

number of feature nodes, enhancement nodes, and the final

structure could be significantly reduced depending on the

threshold values εf , εh, and ε, respectively.

4. Experiments

4.1. Network settings

We introduce the configuration of the proposed model

in this section. For the feature mapping function φi(·), we

use a sparse autoencoder solved by ADMM [13]. For the

enhancement nodes, the sigmoid function ξi(·) is chosen.

The regularization parameter λ in Eq. (8) for ridge regres-

sion is set as 10−8. The network weight Wfi and the bias

βfi , for i = 1, . . . , n are drawn from the standard uniform

distributions on the interval [−1, 1]. The thresholds in SVD

operation are set as εf = εh = ε = 0.8. In the peak-and-

fire mapping, the cell’s length is R = 7 and the memory

cell’s length is also set as R. It makes the peak value easy

to calculate in the same size. α is set as 10−6 in Eq. (2).

4.2. Evaluations

Datasets. We validate our approach on five differen-

t datasets: four datasets generated by converting standard

frame-based datasets to events (namely, N-MNIST [11],

N-Caltech101 [11], MNIST-DVS [40] and CIFAR10-DVS

[27] datasets) and a novel dataset, recorded from real-world

scenes, N-CARS dataset [42]. N-MNIST, N-Caltech101,

MNIST-DVS, and CIFAR10-DVS are four publicly avail-

able datasets created by converting the popular frame-based

MNIST [9], Caltech101 [26] and CIFAR10 [22] to an event-

based representation. N-MNIST and N-Caltech101 were

obtained by displaying each sample image on an LCD mon-

itor, while an ATIS sensor was moving in front of it [11].

Similarly, the MNIST-DVS and CIFAR10-DVS datasets

were created by displaying a moving image on a monitor

and recorded with the ATIS camera [40]. N-Cars dataset

is split in 7940 car and 7482 background training samples,

and 4396 car and 4211 background testing samples. Every

sample duration is 100ms. MNIST-DVS contains 10,000

samples, generated at three different resolutions, scale4, s-

cale8, and scale16. We use 90% of the samples for training

and 10% for testing in scale 4. The duration of a presen-

tation around 2.3s. N-Caltech101 consists of 100 different

object classes and a background class. The duration is ap-

proximately 300ms. In our experiments, we use two-thirds

of the samples of each class for training and the rest for test-

ing. We find that the sample duration is not the same, but in

experiments, we use the Δincr = 100ms for all samples.

Baseline methods. We consider several published H-

First [12], HOTS [25], HATS [42], and SNN [31, 38]. For

H-First, we used the code provided by the authors online.

For HOTS [25] and HATS [42], we use the results reported

in [42]. They use a linear SVM for classification. Given that

no code is available for the SNN, we compared our results

with a two-layer SNN architecture using predefined Gabor

filters [4]. The result is reported in [42]. For a fair compar-

ison, we use our basic model, Event-based BLS (EBLS),

which means we do not use the incremental learning and

SVD operation in the EBLS model. Moreover, we add the

CNN models as our comparisons: LeNet5 [9] and AlexNet

[23]. In the experiments, we use our PFM output as an in-

put to the LeNet5 and AlexNet models, since there is no

frame-based data.

Results analysis. The results for the N-MNIST, N-

Caltech101, MNIST-DVS, CIFAR10-DVS, and N-CARS

datasets are given in Tab. 1. We report the results in terms

of classification accuracy in different datasets compared

with the ground truth. It is observed that our method has

the highest classification accuracy in all the datasets. Our



Node EBLS Ours (Full)

Num. Structure MTE Structure MTE

500 [100, 400] 5.63 [100,11000]→ 500 5.04

1000 [100, 900] 4.71 [100,11000]→1000 3.42

1500 [100,1400] 3.45 [100,11000]→1500 2.95

2000 [100,1900] 2.77 [100,11000]→2000 2.43

2500 [100,2400] 2.41 [100,11000]→2500 2.02

3000 [100,2900] 2.21 [100,11000]→3000 1.72

Table 2. Classification Minimal Test Error (MTE) (%) on the

MNIST-DAVIS dataset with different nodes settings. The left col-

umn is the total nodes number. EBLS has a fixed structure for the

one-shot test. Our full model uses the SVD operation to decrease

the enhancement nodes from 11000 to specifical numbers.

Cell length R = 3 R = 7 R = 11 R = 15
Accuracy 0.515 0.673 0.649 0.621

Table 3. Classification accuracy in different cell lengths on the N-

Caltech101 dataset.

Figure 4. (a) The results of incremental learning on the N-MNIST

dataset. The blue line denotes adding more training samples in

a fixed network. The yellow one denotes adding input samples

and enhancement nodes together. The grey one denotes adding

input samples, feature nodes, and enhancement nodes together;

(b) Classification accuracy of the increasing iterations of LeNet5

and AlexNet on MNIST-DAVIS dataset.

method achieves the large margin improvement in the more

challenging datasets: N-Caltech101, CIFAR10-DVS, and

N-CARS datasets. From the results, we can find that the

large datasets, such as the N-CARS dataset, are hard for

both the H-First and HOTS learning algorithms to converge

to good feature representation. As an event-based feature

extraction method, the HATS method performs a competi-

tive performance, because HATS method also implements

the spatio-temporal regularization. A linear SVM classifi-

er they used limits the discrimination of the model when

the class of objects and the data noise increase. However,

our method has an advantage in large datasets, it is easy to

broaden the network structure, and our SVD operation can

push the network to show a stronger discrimination ability

in orthogonal planes.

4.3. Model analysis

Incremental study. We test incremental broad learning

algorithms in our model. First, we test the increment of

the input samples (blue line in Fig. 4). Suppose the initial

network is trained under the first 10000 training samples in

the N-MNIST dataset. Then, the incremental algorithm is

applied to add dynamically 10000 input samples each time

until all the 60000 training samples are fed. The structure

of the tested network is set as 10 × 10 feature nodes and

5000 enhancement nodes. Second, we test the increment of

input samples and enhancement nodes together (yellow line

in Fig. 4). The network is initially set to have 10×10 feature

nodes and 5000 enhancement nodes. Then, the additional

enhancement nodes are increased dynamically at 250 each,

and the input samples are increased at 10000 each. Third,

we test the incremental of input samples, feature nodes, and

enhancement nodes together (grey line in Fig. 4). The initial

network is set as 10 × 6 feature nodes and 3000 enhance-

ment nodes. The feature nodes are dynamically increased

from 60 to 100 at the step of 10 in each update, the cor-

responding enhancement nodes for the additional features

are increased at 750 each, and the additional enhancement

nodes are increased at 1250 each. The input samples are

increased at 10000 each. The results of each update could

be checked in Fig. 4. It is observed that the dynamic incre-

ments on both feature nodes and enhancement nodes per-

form the best. It may be caused by the randomness nature

of the feature nodes and the enhancement nodes. This im-

plies that the dynamic update of the model using incremen-

tal learning could present a compatible result; meanwhile,

it provides the opportunities to adjust structure the system

to achieve better performance.

Parameter study. We also test the influence of the

length of cell R and the incremental time Δincr to the clas-

sification accuracy. The visualization of the PFM outputs X
according to different parameters are shown in Fig. 5. The

influence of R on the classification accuracy is shown in

Tab. 3. We find that when R is low, the neighboring infor-

mation could not be added. But when R is too large, large

events are computed repeatedly. We also find that there

are the best parameters R and Δincr for different dataset-

s. For easily applying in experiments, we use the R = 7
and Δincr = 100ms for all the datasets. Next, we run

experiments using SVD to simplify the structure after the

network extension. The experiments are tested in MNIST-

DAVIS dataset. The threshold εf = εh = 1 and ε = N are

set, which means that there is no simplification on feature

nodes and enhancement nodes generation, but only to keep

the first N important principle components in the final sim-

plified network, i.e., apply the SVD operation to A
{m,n}
F .

As shown in Tab. 2, N is selected as 500, 1000, 1500, 2000,

2500, and 3000. We could obviously observe that the net-



incr=50ms incr=100ms incr=200ms

R=3 R=7 R=11 R=15

incr=50ms incr=100ms incr=200ms

R=3 R=7 R=11 R=15

Figure 5. The influence of parameters ∆incr and R. The first row is the PFM output in R = 7 and different ∆incr , the second is the PFM

output in ∆incr = 100ms and different R.

works selected by the SVD improves the classification ac-

curacy more than 0.5%. The role of the SVD is similar to

the dropout rate in the CNNs. The redundant nodes could

be removed by the SVD operation.

Model ablation. We systematically investigate the con-

tribution of different components of our model by using d-

ifferent combinations of the components proposed in Sec.

3, including Peak Memory Cell (PMC, Sec. 3.1), Incremen-

tal strategy (Incr, Sec. 3.4), and SVD (Sec. 3.5). Tab. 4

shows the classification accuracy of model ablation results

on the N-CARS dataset. The baseline method EBLS uses

only PMC component. Compared to our full event-based

incremental BLS model, the performance of other models

decrease 1%-8% in accuracy rate. Surprisingly, the PMC

component plays a significant role in our model, its perfor-

mance drops from 89.9% (EBLS) to 83.4% (1#), meaning

that the regularization brought by the local cell memory of

Eq. (4) brings better accuracy. That is also certificated in the

HATS method [42]. Compared with the PMC component,

the SVD component usually makes sense when combining

with the Incr component. The SVD + Incr model (3#) im-

proves 4.3% compared with 1# model. If we only use the

Incr component without the SVD component (2#), the ac-

curacy decreases by 1.8% compared with 3# model.

Deep learning Vs Broad learning. Tab. 5 shows the

comparison between our methods and the CNNs models:

LeNet5 [9] and AlexNet [23]. The baseline method EBLS

and our full model are tested on a 3.40-GHz Intel i7-6700

CPU processor PC with MATLAB platform. CNNs models

are tested on the same processer with the Tensorflow frame-

work. For the LeNet5 model, we set batch size = 200,

learning rate = 1e − 3. For the AlexNet model, we set

batch size = 64, learning rate = 1e−4, dropout = 0.9.

We can observe that the accuracy of our models (EBLS

and full model) is higher than the CNNs model in the

MNIST-DAVIS dataset, at the same time, our model is 15×
and 30× faster than LeNet5 (step = 20000) and AlexNet

Our Models PMC Incr SVD Accuracy

1# - - - 0.834

2# - � - 0.859

3# - � � 0.877

4# � � - 0.907

EBLS � - - 0.899

Full � � � 0.931
Table 4. Classification accuracy of the model ablation on the N-

CARS dataset.

Methods LeNet5 AlexNet EBLS Full

Accuracy 0.952 0.981 0.977 0.987

Train time (s) 2816.1 6174.3 79.74 172.34

Test time (s) 2.61 6.55 1.74 1.53
Table 5. The time comparison of the CNNs models and our model

on the MNIST-DVS dataset.

(step = 1500) in training respectively, using less time in

test than both CNNs models.

5. Conclusion

In this work, we present an incremental Broad learning

system for event-based object classification. It validates

the idea that increasing the broad network by adding fea-

ture nodes and enhancement nodes is effective for the asyn-

chronous event-based data, providing an alternative way to

deal with the neuromorphic cameras. The proposed net-

work architecture makes efficient use of the peak informa-

tion in space and the memory information, extracting the

peak-and-fire mapping feature as feature nodes in the broad

network. The incremental learning integrated with an SVD

operation promises the network in a non-redundancy feature

space in both accuracy and efficiency.
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