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Abstract

Improving weight sparsity is a common strategy for pro-

ducing light-weight deep neural networks. However, prun-

ing models with residual learning is more challenging. In

this paper, we introduce a novel approach to address this

problem. Our method puts the ith filters of layers connected

by skip-connections into one regularization group. Ad-

ditionally, we define Variance-Aware Cross-Layer (VACL)

regularization which takes into account both the first and

second-order statistics of the connected layers to constrain

the variance within a group. Our approach can effectively

improve the structural sparsity of residual models. For

CIFAR10, the proposed method reduces a ResNet model

by up to 79.5% with no accuracy drop, and reduces a

ResNeXt model by up to 82% with < 1% accuracy drop.

For ImageNet, it yields a pruned ratio of up to 63.3% with

< 1% top-5 accuracy drop. Our experimental results show

that the proposed approach significantly outperforms other

state-of-the-art methods in terms of overall model size and

accuracy.

1. Introduction

Deep neural networks have shown great success in var-

ious applications. However, they are also well known for

their heavy computation and storage cost. Numerous ef-

forts have been made to tackle this problem [2, 3, 6, 8, 9,

11, 12, 19, 21, 22, 27, 31, 42, 34]. One popular strategy is

structural model pruning [2, 18, 26, 29, 32, 35]. It removes

groups of insignificant parameters from the original model

based on importance metrics so that the pruned model has

fewer parameters with negligible loss of accuracy.

Residual learning, initially introduced with ResNet mod-

els applied to various vision tasks [15], has now become

a standard component in the design of modern network

architectures such as ResNet-v2 [16], Wide ResNet [40],

ResNeXt [36], Inception-ResNet [33], Xception [4] and

MobileNet-v2 [31]. The key idea behind residual learning

is the use of skip-connections and element-wise addition as

shown in Fig. 1.a.
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Figure 1. Pruning residual layers (a) is a challenging task. b) Ap-

plying sparsity constraints individually to each layer leads to dif-

ferent sparsity structures and therefore more channels need to be

retained (colored blocks). c) Aligned sparsity between layers tied

by skip connections would help on effective pruning. In this case,

only two channels would remain after the pruning operation.

Pruning architectures with skip-connections and

element-wise additions has two main challenges. First,

pruning methods need to obtain sparsity patterns that

are aligned between layers connected by element-wise

additions (Fig. 1.c). The lack of alignment would lead to

layers with different sparsity structures and thus, would

reduce the pruning effect (see Fig. 1.b). Second, using

connected layers increases the number of parameters that

need to be zeroed simultaneously. As a consequence, the

variance of these parameters increases and it becomes

more difficult to set them all to zero. Existing solutions to

the first problem include pruning only layers that are not

connected by skip-connections [29], applying the sparsity

constraints only to the identity path [26] or using mixed

block connectivity to avoid redundant computation due to

the misalignment among the connected layers [25]. For

the second problem, a straightforward solution consists in

directly minimizing the variance of the weights within the

group. However, a variance minimization constraint would

encourage the value of the weights to be closer rather than

the difference in magnitude to be smaller.

In this work, we propose Variance-Aware Cross-Layer

(VACL) regularization to address these problems. VACL

consists of two main components: a cross-layer grouping

to enforce channel aligned sparsity across connected lay-



ers (see Fig 1.c), as well as a novel regularizer to mini-

mize the differences of the magnitudes among parameters

within a group. Our experimental results show that the pro-

posed method can effectively prune residual models. For

CIFAR-10, it can reduce ResNet110 model size by 79.5%
with slightly better accuracy, and ResNeXt-29-8-64 model

size by 82% with < 1% accuracy drop. For ImageNet, it

achieves a 63.3% pruned ratio with 1.61% top-1 and 0.94%
top-5 accuracy drop for ResNet50. As demonstrated in

our experiments, the proposed approach significantly out-

performs other state-of-the-art methods in terms of overall

model size and accuracy.

2. Related Work

Model Pruning: Parameter pruning has a long his-

tory in the development of light-weight neural networks.

One of the earliest successes is the optimal brain surgeon

approach [14]. Optimal brain surgeon analyzes the im-

portance of each parameter in a pre-trained model, keeps

only the necessary parameters, and adjusts them to approx-

imate the original accuracy. Nowadays, sparsity promot-

ing constraints are commonly used to generate sparse mod-

els [13, 32, 26, 35]. These constraints can push many pa-

rameters towards zero, so that these parameters no longer

have an observable impact on the final accuracy, and can

thus be removed. Model pruning can be applied in a struc-

tural or non-structural manner. Non-structural methods re-

move individual parameters, which results in sparse con-

volutional filters that cannot take advantage of fast dense

matrix multiplication [13]. In contrast, structural meth-

ods [35, 28] remove parameters in units of filter or layers. In

this case, a pruned model can take advantage of dense ma-

trix computation just as the original model does. L1 norm

regularization is commonly used to enforce individual pa-

rameter sparsity, and Group Lasso [39] is normally used to

enforce structural parameter sparsity[32].

Structural Model Pruning: Li et al. propose a method

to evaluate the importance of each filter and removes filters

that do not have a significant impact on accuracy [26]. He

[18] introduced an iterative inference time pruning method.

For each layer, it selects and prunes non-representative

channels from the model, and then reconstructs the accu-

racy with remaining channels. Luo et al. [29] measured

a filter’s importance according to the next layer’s statistics

and then removed unimportant ones. Gao et al. [10] pro-

posed a dynamic channel pruning method, which keeps the

original model architecture and dynamically skips the com-

putation for unimportant channels.

Structural Sparsity Regularization: Based on the

Group Lasso regularization proposed by Yuan [39], vari-

ous sparsity regularizations have been investigated to im-

prove the structured sparsity. In the work of Structured

Sparsity Learning (SSL) [35], weight groups in different

scales were defined to enforce structured sparsity. It learns

a compact model architecture by adjusting filter shapes, fil-

ter numbers, or model depth. Alvarez and Salzmann [2]

used group sparsity regularization to automatically learn the

number of neurons during training to obtained a compact

model. Similarly, Scardapane [32] introduced Sparse Group

Lasso, which is a combination of L1 and Group Lasso. It

improves structural weight sparsity at the group level, as

well as individual weight sparsity within a group. Wen et

al. [35] developed a structured sparsity learning method

to adjust filter shapes, layer channel numbers, and model

depth to obtain the pruned model structure. MorphNet

[11] uses Group Lasso to preserve network topology while

learning the model structure. Lebedev [24] made use of

group-sparsity regularization and group-wise brain damage

to speedup convolutional layers. In this paper, we propose

VACL as an extension of Group Lasso. Our method first

enforces aligned sparsity across multiple connected layers,

and then encourage parameter similarity to improve channel

pruning efficiency.

3. VACL Regularization

In this section we introduce our novel regularizer to im-

prove the structural sparsity of residual layers. To this end,

we first introduce the grouping approach namely Cross-

Layer grouping, and then the proposed Variance-Aware

penalty.

3.1. Cross-Layer Grouping

Given N training input-output pairs (xj , yj), we can for-

mulate the cost function to train a deep neural network as:

L(X,W) =

N
∑

j=1

E(yj , f(xj ,W)) + λR(W), (1)

where f represents a generic deep neural network and W

all the parameters of such a network, E(·, ·) is a prediction

(supervised) loss, such as cross-entropy for classification,

R(·) is a regularization penalty term acting on the network

parameters and λ is the strength of the regularizer. Exam-

ples or penalty terms are the L2 norm encouraging small

magnitude weights or the L1 norm (lasso) which encour-

ages parameter sparsity.

Group Lasso is an extension of the lasso penalty com-

monly used to encourage groups of parameters to become

zero (non-zero) simultaneously [2]. In the particular case of

a deep neural network, a common approach is to consider

each neuron as a group of parameters. Given W the set of

weights divided into Q groups (e.g., number of neurons in

the network), the Group Lasso penalty is defined as:

Rgl(W) =

Q
∑

i=1

√
pi · ||Wi||2, (2)



Figure 2. Proposed Cross-Layer grouping for element-wise connected layers.

where pi is the size of the i-th group. The constrained

region for the Group Lasso over two groups of weights

W1 = {w1} and W2 = {w2, w3} is shown in Fig. 3.b.

As can be seen, for weights within the same group (w2 and

w3), the L2 norm penalty treats every direction equally and

does not induce sparsity. In contrast, the L1 norm penalty

enforces sparsity between groups of weights (W1 and W2).

Group Lasso has been widely applied to prune neu-

ral networks taking advantage of the network structure

and producing models suitable for dense matrix multipli-

cations [35, 2]. However, Group Lasso efficiency to prune

neurons drops in networks using residual connections (i.e.,

skip-connections and element-wise additions). In those

cases, Group Lasso produces sparsity patterns in the con-

nected layers that are not aligned and therefore, correspond-

ing neurons cannot be effectively removed after the addition

operation (see Fig. 1). To solve that problem, we propose

Cross-Layer grouping as an extension of Group Lasso. Our

proposal considers all the layers interacting (connected) in

skip-connections and aggregates in a single group whose

parameters from neurons indexed by the same index, as

shown in Fig. 2. In Cross-Layer grouping, a group of

weights is defined as:

Wi = ∪wli (3)

where l ∈ [1, L] represents the l-th layer in a set of layers

that are element-wise connected, i ∈ [1,M ] is the number

of neurons in each of these layers and wli the set of pa-

rameters of the i-th neuron in the l-th layer. As we will

demonstrate in our experiments, using this novel defini-

tion of groups, structural sparsity constraints such as Group

Lasso can be effectively applied to enforce group level spar-

sity in residual networks, so that the ith filters of all layers

in L could be either significant, or redundant.

3.2. Variance-Aware Regularization

In the previous section we have defined our approach to

group weights within connected layers to subsequently ap-

ply sparsity regularizers such as Group Lasso. In the Group

Lasso formulation, groups are equally penalized due to the

weighting accordingly to their size
√
pi. Within each group,

weights (parameters) are pushed towards zero with the same

strength independently of their magnitude. Therefore, it is

possible that most weights within a group are very small,

but some are very large, which results in the entire group not

being removed, and thus inefficient sparsity results. This is

particularly relevant when the size of the groups increases

and when the parameters within a group come from dif-

ferent layers, hence different learning pace. To address

this problem, we propose variance-regularization, a penalty

term that constraints the variance among the weights in each

group.

A straightforward method to reduce the variance of the

weights within a group is to directly minimize the variance

of the weights:

Var(Wi) = ||Wi −Wi · ||2
2
. (4)

The constrained region for this penalty is shown in Fig. 3.c.

As shown, this term encourages the value of the weights to

be closer rather than their magnitude ( |w2| be close to |w3|
in the example). Therefore, we propose a variant aiming to

reduce the variance of the absolute values of the weights in

the group. More precisely, our Variance-Aware penalty is
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Figure 3. Feasible sets for different penalties for the case of three (groups of) variables. a) L1 norm; b) Group-Lasso; c) Group-Lasso with

Variance; and d) Our proposal to minimize the differences of the magnitudes among parameters within a group as defined in Eq. 5 (Ours).

defined as:

rvar(Wi) = |||Wi| − |Wi| · ||2. (5)

The contours and constrained region for this penalty are

shown in Fig. 3.d. As shown, as our approach constraints

the absolute value of the weights, each contour has four

sharp corners in the two diagonal directions. In each of

these directions, the penalty has minimum weight magni-

tude variance.

3.3. Variance-Aware Cross-Layer Regularization

In this section, we combine the Variance-Aware penalty

with the Cross-Layer grouping described above. This let us

define our Variance-Aware Cross-Layer (VACL) regulariza-

tion as:

Rvacl(Wg) =
∑

g∈G

M
∑

i=1

√

p
g
i

[

||W g
i ||2 + |||W g

i | − |W g
i | · ||2

]

,

(6)

where Wg is the set of weights that can be grouped using

Cross-Layer grouping; W
g
i refers to the weights of the ith

filter in g−th group, and p
g
i is the number of weights in W

g
i .

This novel regularization term encourages the magnitude of

weights within a group to be close to each other.

In practice, a deep neural network consists of layers that

are element-wise connected and other layers that are not.

We define the regularization over all the weights as the com-

bination of a Variance-Aware Cross-Layer term for the first

type and a group sparsity term for the rest of layers. That is,

the cost function to train a network becomes,

L(X,W) =

N
∑

j=1

E(yj , f(xj ,W))+λ(Rgl(Ws)+Rvacl(Wg)),

(7)

where Wg is again those weights corresponding to layers

that are connected through skip connections and, Ws refers

the weights from the rest of layers, and W = Wg ∪ Ws.

3.4. Model Pruning Algorithm

We adopt the pruning pipeline proposed by Han [13]. We

first train a sparse model using a sparsity promoting regu-

larization such as the proposed VACL, and then prune the

model at the filter level. Subsequently, we fine-tune the

model with an optional L2 regularization. If the resulting

model (after fine-tuning) does not meet the expected trade-

off between accuracy and model size, we repeat the first two

steps. We call the first two steps one train-prune stage.

To prune the model, we make use of a filter importance

criterion defined as:

Ili =
|wli|

∑

i |wli|
, (8)

where |wli| is the l1 norm of the i-th filter in the l-th layer.

Given this criterion and a threshold τ , we decide whether a

filter is kept or removed,

wli =

{

wli, if Ili ≥ τ .

removed , otherwise.
(9)

4. Experiments

In this section, we demonstrate the benefits of our

Variance-Aware Cross-Layer (VACL) regularization on im-



Figure 4. Grouping of element-wise connected layers for a

ResNet-110 on CIFAR10.

age classification on the popular datasets CIFAR10, CI-

FAR100 [23] and ImageNet ILSVRC-2012 [7]. CIFAR10

and CIFAR100 contain 50,000 training images and 10,000

test images of 10 and 100 different classes, respectively.

The images are of size 32×32. ILSVRC-2012 subset of Im-

ageNet consists of 1000 categories, with 1.2 million training

images and 50,000 validation images. In this case, we use

the standard pre-processing where images are resized to a

resolution of 224× 224. All our experiments are conducted

on a NVIDIA DGX-1 using Tensorflow[1] and Keras [5].

In the following sections, we first provide a set of abla-

tion studies to more thoroughly analyze the influence of the

proposed regularization technique compared to its counter-

parts, then, we provide comparison to state-of-the-art meth-

ods. In a third experiment, we show experimental results

on using the pruned models to train networks from scratch

and finally, we analyze the ability to transfer across domains

of the resulting models. As baseline models we consider

the models reported in [15] and [36]. When comparing to

state-of-the-art pruning methods, we choose those works

whose reported results have: i) a pruned ratio (percentage

of weights removed) higher than 10%; and ii) a top-1 accu-

racy drop lower than 10%.

In our experiments, we obtain regularization weight λ by

grid search at the initial training stage, and we set pruning

threshold τ as 0.0001.

4.1. Parameter sensitivity and ablation studies

Comparison to other sparsity regularizers. The goal

of the first experiment is to compare the behavior of dif-

ferent sparsity regularization strategies. Specifically, we

compare L1, Group Lasso, Cross-Layer Group Lasso, and

VACL for training a ResNet-110 architecture on CIFAR10.

A ResNet-110 model comprises three element-wise con-

nected groups of layers as shown in Fig. 4. We use this

Figure 5. Parameter sensitivity for ResNet-110 on CIFAR-10.

Model size as a function of the pruning threshold τ for different

sparsity promoting penalties. All these models have a similar ac-

curacy in the initial training stage of ≃ 0.91%.

grouping for Cross-Layer Group Lasso and VACL. The

value of λ for each strategy is set using grid search so as to

achieve a top-1 accuracy of around 91%. We also analyze

the sensitivity of each regularizer to the pruning threshold,

τ . Fig. 5 summarizes this analysis.

In Fig. 5, we can observe that using the proposed VACL

leads to more compact models, especially when compared

to lasso and Group Lasso. As shown, the lasso penalty is

not able to effectively reduce many filters in these layers

as it only operates at the parameter level. In contrast, our

proposal method quickly starts reducing the number of pa-

rameters as the threshold increases. As expected, for a large

value of τ , all filters are removed and therefore the model is

completely pruned.

Fig. 6 shows a comparison of the sparsity results for the

third group of element-wise connected layers (layer group

L3 in Fig. 4). This grouping comprises 19 element-wise

connected layers (rows), each with 64 filters (columns). The

importance of each filter is represented using the normal-

ized ||·||1. As shown, Group Lasso (Fig. 6.b) achieves better

structural sparsity than L1 (Fig. 6.a). That is, using Group

Lasso, we obtain a larger number of unimportant columns

(the same filter in all the layers is unimportant). Results

are even better when using Cross-layer Group-Lasso (see

Fig. 6.c) where we can observe a better alignment in the ver-

tical direction. Furthermore, comparing Cross-Layer Group

Lasso to VACL (Fig. 6.c and Fig. 6.d) we can observe that

filters within a layer have lower variance which leads to

a better pruning efficiency and, more importantly, reduces

the sensitivity of the algorithm to the pruning threshold as

shown in Fig. 5. From these results, we can conclude that

using the proposed VACL regularization term leads to more

compact models when compared to other sparsity promot-

ing regularizers.

Sensitivity to regularization strength. We now focus
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Figure 6. Heatmaps of filter importance for L1, Group Lasso,

Cross-Layer Group Lasso (CLGL) and the proposed Variance-

Aware Cross-Layer (VACL) penalties. Importance of a filter is

measured by the normalized L1 norm of the filter (see text for de-

tails). In each plot, x-axis represents the filter index in a layer, and

the y-axis represents the layer index within the group of element-

wise connected layers.

on analyzing the effect of the proposed regularizer on the

accuracy and the model size. To this end, we make use of

ResNet-50 and ResNet-101 on ImageNet, and measure the

impact of varying λ ∈ [1e − 6, 8e − 6] in Eq. 7. Each data

point is obtained by training a model, pruning it, and fine-

tuning it with a L2 regularization with λ = 1e−4. Fig. 7

shows the summary of results for this analysis. As λ in-

creases, the pruned ratio increases significantly while the

top-1 accuracy drops at a slower rate. Beyond a certain

value of λ, the top-1/top-5 accuracy starts dropping at a

much higher rate.

Stability comparison over multiple trials. In the last

ablation analysis, our goal is to analyze the stability of the

results for models trained using the proposed VACL com-

pared to other sparsity promoting penalties. For this exper-

iment, we make use of a ResNet-110 model and a ResNet-

101 model on CIFAR10 and ImageNet respectively. Specif-

ically, we repeat the same experiment 5 times using the

same parameters as for previous experiments and report the

variation in model size over the trials. As in previous ex-

periments, all models are trained to achieve a similar top-1

accuracy 91%. Table 1 shows a summary of results for this

experiment.

(a) (b)

Figure 7. Parameter sensitivity for Resnet-50/101 on ImageNet.

(a) Model size as a function of λ, the regularization strength. (b)

Accuracy (top-1 and top-5) as a function of the model size.

# params (in M)

CIFAR-10 ImageNet

GL 0.53± 0.17 23.27± 0.52

CLGL 0.68± 0.03 22.10± 0.64

VACL-GL (ours) 0.60± 0.01 22.08± 0.12

Table 1. The proposed VACL regularization improves the stability

of weight sparsity over multiple runs. mean ± std. dev. of 5 runs

As shown in Table 1, using a Cross-Layer weight group-

ing penalty reduces significantly the average model size (µ)

when compared to group-lasso. In addition, the reduction in

both average model size and deviations is even better if the

proposed VACL penalty is used. From these results, we can

conclude that the proposed VACL penalty not only produces

more compact models compared to other penalties, but also

improves the stability of the results in terms of model size.

Sensitivity to train-prune iterations. We also investi-

gate the effect of applying VACL regularizaton over mul-

tiple train-prune iterations. To this end, we make use of a

ResNet-110 model on CIFAR10. We train the model over

multiple train-prune stages varying the type of regulariza-

tion during training (L1 and VACL) with a fine-tune pro-

cess with no regularization after each stage. As a baseline,

we consider the model trained for 5 stages using L1 norm as

regularization. We compared the performance of that base-

line model to the performance of applying VACL during the

third and after the fifth stage. Table 3 shows the summary

of these results. As shown, after the 2nd stage, the accu-

racy of the baseline starts to fluctuate with an insignificant

improvement on the pruning ratio over consecutive itera-

tions. In contrast, if we apply VACL to the element-wise

connected layers after the 2nd iteration, the model size is

reduced from 0.54M to 0.42M with a 0.34% improvement

in accuracy. This improvement is even larger if we apply

VACL at the 5th iteration. In this case, the model size can

be reduced from 0.48M to 0.4M with a 0.32% improvement

in accuracy. From these results, we can conclude that our

proposed VACL regularization method is effective to im-

proving sparsity to models that have been already trained

and pruned leading to better accuracy and a significant re-

duction in model size.



L# Method Baseline Error (%) Pruned Error (%) Error Inc (%) Params # Pruned(%)

56 Soft Filter [17] 6.97 6.65±0.31 -0.32 0.51M 40%

56 VACL-GL (λ = 1e−5) 6.97 6.66 -0.31 0.30M 65.7%

56 Li-ScratchB[37] 6.97 6.91±0.14 -0.06 0.73M 13.7%

56 Li[26] 6.97 6.90 -0.07 0.73M 13.7%

110 Soft Filter [17] 6.43 6.14±0.21 -0.29 1.19M 30%

110 VACL-GL (λ = 8e−6) 6.43 6.35 -0.08 0.36M 79.5%

110 Li-ScratchB[37] 6.43 6.40±0.25 -0.03 1.16M 32.4%

110 Li[26] 6.43 6.70 0.27 1.16M 32.4%

Table 2. ResNet on CIFAR-10, comparison to existing approaches. [Error Increase %] denotes the absolute error increase, and a negative

value indicates an improved model accuracy; [Pruned %] denotes the reduction of model parameters.

Train-prune Acc. (%) / # Params (M)

iteration L1 VACL

1 0.9251 / 0.607 –

2 0.9298 / 0.542 –

3 0.9268 / 0.519 0.9332 / 0.424

4 0.9307 / 0.488 –

5 0.9309 / 0.482 0.9341 / 0.401

Table 3. ResNet-110 on CIFAR10, sensitivity to train-prune it-

erations. We iterate over train-prune stages and analyze the per-

formance of the models after each step. Applying our VACL ap-

proach at any stage leads to more compact models with slight ac-

curacy improvement.

4.2. Comparison to existing approaches

We now compare our results to those provided by exist-

ing methods on CIFAR and ImageNet.

CIFAR. We evaluate our VACL-GL regularization on

ResNet-50, ResNet-110 and ResNetXt on CIFAR datasets.

For ResNet, all models are trained for 200 epochs with

the initial learning rate is 0.001, divided by 10 at 80, 120,

150 epochs, and divided by 2 at 180 epochs. Other hyper-

parameters are the same as in [15]. ResNet models are

trained using VACL-GL for 7 train-prune stages and then,

fine-tuned with no regularization. ResNeXt models are

trained for 300 epochs, with the initial learning rate set to

0.1, and divided by 10 at 100, 180 and 250 epochs. The rest

of parameters are the same as in [36]. In this case, the model

is trained using VACL-GL for a single train-prune stage and

then, fine-tuned with L2 regularization (λ = 1e−4).

We compare our results to those reported by Li’s

method [26][37] and by Soft Filter [17] for ResNet in

Table 2 and those reported by Zhang’s method [18] for

ResNetXt in Table 4. As shown, ResNet models trained us-

ing the proposed method achieve up to 0.31% accuracy im-

provement with a pruning ratio up to 65.7%-79.5% when

compared to the baseline. Moreover, our results signifi-

cantly outperform existing methods in terms of the pruned

ratio for a better or comparable accuracy. For ResNeXt

models, the proposed method outperforms the pruning ra-

tio of Zhang’s method by achieving > 80% pruned ratio,

with less than 1.0% accuracy drop.

ImageNet. Results on the ImageNet dataset are shown

in Table 5. ResNet50/110 are trained for 150 epochs

with initial learning rate = 0.128, divided by 10 at 45,

90, 125 epochs. Other hyper-parameters are the same as

in [15]. Each experiment follows the same train-prune-

finetune workflow: train a sparse model, prune it, and fine-

tune it with L2 regularization with λl2 = 1e−4.

As the results show, compared to other state-of-the-art

method, the proposed method achieves significantly higher

pruned ratio, with better or comparable accuracy. For

ResNet50, VACL-GL achieves 63.3% pruned ratio with

< 2% top-1 accuracy drop; and for ResNet110, VACL-

GL achieves 48.1% pruned ratio with < 1% top-1 accuracy

drop compared with baseline models.

4.3. Comparison to training a pruned model from
random initialization

In this experiment, we analyze the need of training an

over-parameterized model with sparsity constraints. To

this end, we compare the performance of a model trained

and pruned using our VACL and pruning strategy (see

Sect. 3) to the accuracy of the same architecture trained

from scratch using a random initialization. We make use

of the ResNet50/101 pruned models obtained in the previ-

ous experiment and compared those results (see Table 5) to

the accuracy achieved by training them from scratch using

random initialization. In addition, we also compare our re-

sults to those obtained by training pruned models from ran-

dom initialization using state-of-the-art methods [37]. Ta-

ble 6 summarizes the results for this experiment. As shown,

models trained from random initialization achieve a compa-

rable accuracy to those trained using VACL and fine-tuning.

The maximum absolute difference is 0.16%, which falls

into the reasonable range of randomness among different

runs. This result indicates that the proposed regularization

and the train-prune pipeline could also be used to define the

number of neurons in each layer of the network of a given

architecture. In addition, as shown, our method achieve a

significantly better trade-off between accuracy and model

size when compared to state-of-the-art methods.

4.4. Transferring pruned models to other domains

Finally, we evaluate whether a model trained using

VACL-GL regularization generalizes to other vision tasks.



Dataset Network Method Baseline Error (%) Pruned Error (%) Error Inc (%) Params # Pruned%

CIFAR10 29-8-64 VACL-GL (λ = 3e−6) 3.65 4.61 0.96 6.1M 82%

CIFAR10 29-8-64 Zhang’s method[41] 3.65 4.09 0.44 9.1M 73%

CIFAR100 29-8-64 VACL-GL (λ = 2e−6) 17.77 19.76 1.99 12.1M 65%

Table 4. ResNeXt on CIFAR-10 and CIFAR-100, comparison to existing approaches. [Error Increase %] denotes the absolute error

increase, and a negative value indicates an improved model accuracy; [Pruned %] denotes the reduction of model parameters.

L# Method Top-1

error

baseline

(%)

Top-1

error

pruned

(%)

Top-1

error

increase

(%)

Top-5

error

baseline

(%)

Top-5

error

pruned

(%)

Top-5

error

increase

(%)

Param# Pruned%

50 VACL-GL (λ = 3.7e−6) 22.85 24.53 1.68 6.71 7.27 0.56 9.4M 63.3%

50 Soft Filter[17] 22.85 25.39 2.54 6.71 7.94 1.23 17.9M 30%

50 Sparse Structure Selection-32[20] 22.85 25.82 2.97 6.71 8.09 1.38 18.6M –

50 NISP[38] 22.85 27.33 4.48 – – – 11.2M 56.2%

50 ThiNet70[29] 22.85 27.96 5.11 6.71 9.33 2.62 16.9M 30%

50 Sparse Structure Selection-26[20] 22.85 28.18 5.33 6.71 9.21 2.62 15.6M –

50 ThiNet50[29] 22.85 28.99 6.14 6.71 9.98 3.27 12.4M 50%

101 Soft Filter[17] 21.75 22.49 0.74 6.05 6.29 0.14 31.3M 30%

101 VACL-GL (λ = 2e−6) 21.75 22.81 1.06 6.05 6.39 0.34 21.9M 50.9%

Table 5. ResNet on ImageNet, comparison to existing approaches. [Error Increase %] denotes the absolute error increase, and a negative

value indicates an improved model accuracy; [Pruned %] denotes the reduction of model parameters.

L# Method Top-1

error

baseline

(%)

Top-1

error

pruned

(%)

Top-1

error

increase

(%)

Top-5

error

baseline

(%)

Top-5

error

pruned

(%)

Top-5

error

increase

(%)

Param# Pruned%

50 VACL-GL (λ = 3.7e−6) 22.85 24.46 1.61 6.71 7.65 0.94 9.4M 63.3%

50 ThiNet70 [37] 22.85 24.88 2.03 – – – 17.9M 30%

50 ThiNet50 [37] 22.85 26.10 3.25 – – – 12.8M 50%

101 VACL-GL (λ = 2e−6) 21.75 22.65 0.90 6.05 6.36 0.31 21.9M 50.9%

Table 6. ResNet on ImageNet, comparison to training a pruned model form random initialization. Baselines models are taken from

Table 5. Our results indicate that training the pruned model from scratch achieves a competitive accuracy when compared to the original

train-prune-fine-tune process. Compared to existing approaches, our method leads to more compact models with less accuracy drop.

Model # parameters Test accuracy

ResNet50 from Keras 25.6M 73.2%

VACL-GL pruned ResNet50 - Large 9.4M 72.1%

VACL-GL pruned ResNet50 - Small 6.1M 70.1%

ThiNet-GAP 7.8M 70.2%

Table 7. Indoor-67 dataset for scene recognition [30]. Compar-

isons of fine-tuning a pruned model to state-of-the-art methods.

To this end, we use the ResNet50 results on ImageNet,

freeze its weights, and train only the final layer on the

Indoor-67 dataset for scene recognition [30]. For training,

we use the same image augmentations (horizontal flip, ran-

dom zoom, translations, and channel shifts), with a learning

rate of 0.04 decayed by a factor of 4 every 10 epochs, over

40 epochs. We compare our results to those obtained with

a model pretrained on ImageNet whose final layer was fine-

tuned on the Indoor-67 dataset, and to the variants proposed

in [29]. Table 7 shows the summary of these results. As

shown, the model trained with the proposed VACL-GL reg-

ularization compares favorably to existing approaches both

in terms of model size and test accuracy.

5. Conclusion

In this paper, we propose Variance-Aware Cross-Layer

regularization (VACL) for pruning deep networks that have

skip-connections and element-wise operations. Our ap-

proach first extends the grouping of neurons across layers

to enforce aligned sparsity, and then takes into account both

the first and second order statistics to constrain the variance

of weights within a group. As a result we obtain a signif-

icant improvement compared to other sparsity promoting

regularization techniques. We demonstrate the effectiveness

of our approach for training ResNet and ResNeXt models

on CIFAR, and ImageNet. Our experimental results out-

perform other state-of-the-art pruning methods. In addition,

our experiments demonstrate that models trained using the

proposed VACL also generalize well and can be used in a

transfer learning setting for Indoor scene recognition.
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