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Abstract

In this paper, SeeNet with the high-order attribute fea-

tures (SeeNet-HAF) is proposed to solve the challenging

zero-shot learning (ZSL) task. The high-order attribute

features aims to discover a more elaborate, discriminative

high-order semantic vector for each class and can distill

the correlation between the class attributes embedding into

modeling. SeeNet-HAF consists of two branches. The up-

per stream is capable of dynamically localizing some dis-

criminative object region, and then the high-order attribute

supervision is incorporated to characterize the relationship

between the class attributes. Meanwhile, the bottom stream

discovers complementary object regions by erasing its dis-

covered regions from the feature maps. In addition, we pro-

pose a fast hyperparameter search strategy. It takes both the

breadth and precision of the search into account. Exper-

iments on four standard benchmark datasets demonstrate

the superiority of the SeeNet-HAF framework.

1. Introduction

The zero-shot learning (ZSL) task, which was first pro-

posed in [40, 32] as a popular problem, is currently regain-

ing widespread attention [2, 55, 4]. In contrast to supervised

classification tasks, where the label set of the test images is

the same as that of the training images, the label sets of the

training and test images are disjoint with each other in ZSL,

e.g., given images of zebras and tigers for training, while the

test images are of giraffes. To make ZSL possible, the de-

scriptions w.r.t. the training/test classes should be collected,

where it is desirable that some common information (con-

cepts), such as attributes [15], are extracted and served as

the bridge for connecting the training and test classes. Other

widely used descriptions include word2vector [48] and sen-

tences [44]. Among these descriptions, attribute is the most

widely used one. In this paper, we leverage attribute de-

scriptions for evaluation.

By further projecting these descriptions onto the seman-

tic space, we can obtain the semantic vector of each class,

and then the semantic vectors serve as the prototype for sub-

sequent classification on test images. A typical scenario

for ZSL is thus focusing on establishing the correlation be-

tween the training/test class images and the correspond-

ing semantic vectors. To learn this image-semantic map-

ping (embedding), existing works generally design a com-

plex optimization objective equipped with various regular-

izations. This series of representative methods are based on

matrix optimization [28, 58, 36, 62, 61, 45, 29, 42]. More-

over, motivated by the success of convolutional neural net-

work (CNN) models [21] on the ImageNet [30] classifica-

tion task, some recent approaches have turned to CNN mod-

els to find solutions for ZSL. Li et al. [34] proposed adopt-

ing Zoom-Net [18] for discovering the global object bound-

ing box, and other CNN-based methods [38, 34, 13, 17, 59]

also take the global images as input. In addition, some

specific network regularizations, such as semantically con-

sistent regularization [38], are incorporated into the CNN

training phase.

Most ZSL methods learn a projection function from a

visual feature space to a semantic embedding space using

a training set. Such processes can be divided into three

groups: (1) learning a projection function from a visual fea-

ture space to a semantic space by a regression or ranking

method [31, 4, 48, 17, 26]; (2) choosing the reverse projec-

tion direction, such as from the semantic space to the vi-

sual feature space [47, 28]; and (3) learning an intermediate

space onto which both the visual feature and the semantic

space are projected [62, 10].

For the first type of approach, semantic output code

(SOC) classifier [40] searches the nearest class embedding

vector after mapping the image features into the semantic

space. Attribute label embedding (ALE) [3] introduces a

function that measures the compatibility between an image

and a label embedding. Deep visual semantic embedding

(DeViSE) [17] presents a deep visual-semantic embedding

model trained to identify visual objects, where the semantic

information can be exploited to achieve reasonable predic-

tions. Structured joint embedding (SJE) [4] learns a com-

patibility function such that matching embeddings are as-



signed a higher score than mismatching embeddings. Em-

barrassingly simple ZSL (ESZSL) [45] uses a square loss

with L2 regularization to learn the bilinear form on the vi-

sual features and the class attributes. Bucher et al. [9] op-

timizes a metric discriminating capacity and accuracy at-

tribute prediction, both of which associate two types of

sub-task constraints. Semantic auto-encoder (SAE) [29]

presents a semantic auto linear encoder to regularize the

model by enforcing the reconstruction from the image fea-

ture space into the semantic space.

For the second type of approach, zero-shot learning

through cross-modal transfer (CMT) [48] uses a neural net-

work with two hidden layers to learn a non-linear projection

from the image feature space to the word2vec space. Latent

embedding method (LatEm) [53] extends the learning of a

single bilinear map to a collection of maps with the selec-

tion by introducing a latent variable for the current image-

class pair. Ba et al. [6] use text features to predict the output

weights of both the convolutional and fully connected lay-

ers. Deep embedding model (DEM) [59] regard the visual

space as the embedding space instead of embedding into a

semantic space. Changpinyo et al. [11] utilize the cluster-

ing structure in the semantic embedding space by imposing

a structural constraint.

For the final type of approach, ZSL via semantic similar-

ity embedding (SSE) [62] views each source or target data

as a mixture of observed class proportions and assumes that

the mixture patterns from the same unseen class should be

similar. Joint latent similarity embedding (JLSE) [61] de-

velop a joint discriminative learning framework based on

dictionary learning to jointly learn the model parameters in

both the source and target domains. Synthesized classifiers

(SYNC) [10] aligns the semantic space to the model space

and introduces a set of “phantom” object classes that live in

both spaces. In our previous work [56], we propose an at-

tentive region embedding network to adapt it into ZSL task.

Although most of current work is capable of transferring

the model from the seen classes to the unseen classes ac-

cording to the given class attribute semantic space, there is

no practical guarantee that the dimension correlations of the

class attributes can be effectively captured with current opti-

mization techniques. In this paper, we propose a new archi-

tecture for the ZSL problems by integrating the high-order

feature attributes, which can distill the correlations between

the classes attributes embedding into modeling. Specif-

ically, as shown in Figure 1, we propose an end-to-end

ZSL framework with the high-order attribute features (ZSL-

HAF), which is designed based on user-defined attributes.

ZSL-HAF aims to discover a more elaborate, diverse and

discriminative high-order semantic vector for each class un-

der the framework of the self-erasing network (SeeNet).

The construction of the high-order semantic vector is sim-

ple yet effective. Specifically, given an input semantic vec-

tor x ∈ RC×1 (quantized from attributes), we first calculate

the high-order correlation matrix as M = x×x
T ∈ RC×C ;

then, Gaussian random projection (GRP) is leveraged to

project M onto the high-order attribute space (Figure 2).

It explicitly captures the pairwise correlations between the

embedding dimensions and represent their high-order di-

mension correlations. Finally, We propose a fast hyperpa-

rameter search strategy. It takes both the breadth and preci-

sion of the search into account.

2. Related Works

Zero-shot Learning. The direct attribute prediction

(DAP) model, a seminal work for ZSL, was proposed by

Lampert et al. [32]. In DAP, the probabilistic attribute clas-

sifiers are first learned for each attribute, and then the pos-

teriors of the test classes are calculated for a given image.

The final class is obtained by maximizing the posterior es-

timation. Meanwhile, a multi-class classifier is trained on

seen classes for indirect attribute prediction (IAP) [32]. Ac-

cording to the scores of these seen classes, the attribute pos-

teriors are determined. Both DAP and IAP ignore the cor-

relations between different attributes, and a random forest

approach was further introduced by [24].

For latent attribute learning, only several linear transfor-

mation methods exist, including joint learning of semantic

and latent attributes (JSLA) [41], LDF [34] and latent at-

tribute dictionary (LAD) learning [25], all of which are ob-

tained by directly/indirectly regulating the inter-class and

intra-class distances, and they are first-order attribute meth-

ods.

Generalized ZSL. If images from both seen and unseen

classes are considered during the testing phase, ZSL be-

comes generalized ZSL (GZSL), as first proposed by [46].

Then, a new split for the training and test data for GZSL

was proposed by [55]. Following the new split, samples

from both seen and unseen classes are utilized to conduct

GZSL evaluation [64, 27]. Many work [23, 33] focus on

taking advantage of generative adversarial network to assist

in completing GZSL tasks.

Adversarial Erasing Learning. Adversarial erasing

aims to discover irregular object locations, and it was first

proposed in [52] for semantic segmentation tasks and has

been successfully applied to related fields, such as object

detection [60]. Motivated by the ability of adversarial eras-

ing learning for discovering irregular objects, we adopt ad-

versarial erasing to leverage ZSL, which is the first attempt

to use erasing learning for ZSL.

3. Proposed Approach

We are given a set of source classes CS =
{l1, l2, · · · , ls} and N labelled source samples D =
{(Ii, yi)}

N
i=1 for training, where Ii is the i-th training im-
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Figure 1: Overview of the proposed SeeNet-HAF approach. SeeNet consists of two branches after a shared backbone network

(e.g. resnet101). The structure of the lower branch is a convolutional network with the size 1 × 1 followed by a maximum

pooling layer, and the upper branch is similar to that of the bottom one, except a C-ReLU la yer which is inserted in front.

The outputs of both branches are projected onto the space spanned by the high-order attributes.

age and yi(yi ∈ CS) is its label. Given a new test image Ij ,

the goal of ZSL is to assign it to an unseen class label from

CU = {ls+1, · · · , ls+u}. Note that the label sets from the

training (seen) classes and the test (unseen) classes are dis-

joint from each other, i.e., CS ∩ CU = φ. Each class label

y (both seen/unseen classes) is associated with a predefined

semantic vector ϕ(y).

3.1. Self-Erasing Network Embedding

Self-erasing network (SeeNet) [22] is an extension of

class activation maps (CAM) [63], where fully connected

layers can aggregate the features of the last convolu-

tional layer for localization purposes. SeeNet contains two

branches: One branch dynamically localizes some discrim-

inative object region; the other branch discovers comple-

mentary object regions by erasing its discovered regions

from the feature maps, which can assist the ZSL tasks; thus,

we embed SeeNet for ZSL tasks, which is an end-to-end

network framework (SeeNet-ZSL).

SeeNet (as shown in Figure 1) consists of two branches

after a shared backbone network (e.g., ResNet101). The

structure of the lower branch is a convolutional network

with a size of 1× 1 followed by a maximum pooling layer,

and the upper branch is similar to that of the bottom one,

except for a C-ReLU layer that is inserted in front.

We consider a fully convolutional network (FCN) and

denote the last convolutional feature maps as SK×H×H ,

where H × H is the spatial size and K is the number of

channels. Given the feature map S, we add a convolu-

tional layer of C channels with the kernel size of 1 × 1,

stride 1 on top of the feature maps S. We aggregate

the feature map S with C groups of weights to obtain C
weighted feature maps Wk,c called the localization map

Lc, c = 0, 1, · · · , C − 1, which can be computed as

Lc =
K−1
∑

k=0

Sk ·Wk,c, (1)

where Sk is the k-th channel of a feature map with a size of

H × H . The above localization can be implemented by a

convolutional layer with a kernel size of 1× 1 (see conv1×1

unit of Figure 1).

As shown in the red block diagram in Figure 1, we in-

troduce the erase operation to learn to highlight the atten-

tion map, where the C-ReLU [22] function merges a binary

mask with the ReLU function. C-ReLU is defined as

C-ReLU(x) = max(x, 0) · θδ(x), (2)

where θδ(x) is a binary mask: θδ(x) = 1 if x ≥ δ, and

θδ(x) = −1 otherwise. In our work, we set a parameter δk
for each channel Sk (k = 0, 1, · · · ,K − 1) of the feature

map.



3.2. Extraction of High-order Attribute Features

Most previous works on learning latent attributes in ZSL

focus on the class attribute itself or its linear/non-linear

transformation, such as the form of two-layer neural net-

work.

However, in many vision tasks, the relationship between

the class attributes carries the relevant information, which is

helpful for ZSL. We use the outer product to encode the re-

lations between the class attributes as (predefined semantic

vector as ϕ(y))

Ly = vec
(

ϕ(y) · ϕ(y)T
)

. (3)

Each element in the matrix ϕ(y) · ϕ(y)T will constitute ev-

idence for exactly one type of shift and detect the coinci-

dences [35], acting as AND-gates (Figure 2).

For faster processing times and smaller model sizes, we

need an efficient way to remove the unimportant attribute

relations. Random projections show appealing properties

of preserving the distance quite well. The projection onto a

random lower-dimensional subspace yields comparable re-

sults to PCA but with less computational expense [8]. The

original d-dimensional data use a random r×d matrix WRP

whose rows have unit lengths.With the projection matrix

WRP , the input is mapped onto r dimensions of subspace

with a time complexity of O(rdn). GRP [1] projects the

original input X onto the reduced subspace with the random

matrix, whose components are selected from the Gaussian

distribution N(0, 1/r).

n× 1

×

1× n

=

n× n

vec

n2 × 1

...
GRP

m

cat

m+ n

Figure 2: Merge of the high-order and original class at-

tributes: the outer product of the class attribute is vector-

ized by row and then project into a reduced space to obtain

a compact high-order representation.

3.3. SeeNet with High-order Attribute Features
(SeeNet-HAF)

After the class activation map in both of the branches

(conv1×1 in Figure 1), we add 5 × 5 max pooling layers

(the green square in Figure 1), and then we project them

into the new class attribute semantic space.

Our ZSL model aims to learn the relation between the

visual feature space and the semantic space. Formally,

F (Ii;W ) = φ(Ii)
TWϕ(y) (4)

where W is a linear projection matrix to learn in a fully

connected layer and φ(Ii) is the deep learning representa-

tion of the image Ii. It is similar to the classification score

in traditional object recognition tasks, where the sum of the

cross-entropy loss of two branches can be used as the com-

patibility loss function.

At the test stage, an unseen image Iu can be assigned to

the most matched class y∗ ∈ CU

y∗ = argmax
l∈CU

φ(Iu)
TWϕ(l) (5)

Discussion. Learning of high-order feature was shown

to yield good results in a variety of recognition and classi-

fication tasks [43]. Joint recurrent learning of context and

correlation [51] is proven to improve attribute recognition

given some sized training data with bad quality images. An

alternative interpretation for why the inclusion of higher-

order features works well is, that they are better at represent-

ing real-valued data. The learning of higher-order features

amounts to learning on a basis-expansion of the feature in-

puts [43]. The hierarchy and exclusion graphs [14] allows

encoding of flexible relations between labels, especially in

the case of the overlap and subsumption of the labels. The

raw classification attributes is important and noisy, but there

is few work to handle it. In our work, the low-dimensional

pre-projections of the class attributes can be defined natu-

rally to reflect the correlations between the attributes.

4. Experiments

4.1. Datasets and settings

Datasets. We select two fine-grained (CUB and SUN)

and two coarse-grained datasets (AWA2 and aPY).

CUB (Caltech-UCSD Birds-200-2011) is a medium-

scale dataset with respect to the number of classes and im-

ages. We follow the class split of CUB with 150 training

(50 validation classes) and 50 test classes. SUN contains

14340 images from 717 types of scenes annotated with 102

attributes, where 645 classes (65 classes for validation) are

chosen for training and 72 classes are chosen for testing.

AwA2 contains 37,322 images of the same 50 classes of

animals for training (13 classes for validation) and another

10 classes for testing, which is an extension of AwA1 .

Finally, aPY contains 32 classes with 64-dimensional at-

tribute vectors, including 20 Pascal classes for training and

12 Yahoo classes for testing.

Implementation details. We conduct the experiments

under two types of ZSL settings, including the standard

splitting (SS) and the proposed splitting (PS). In addition,



we also provide the results in the generalized ZSL, where

the test samples may come from either the training classes

or test classes.

For aPY, we crop the images from bounding boxes be-

cause there are multiple objects in each image. Our im-

age embedding vectors correspond to the 2048-dimensional

top-layer pooling units of the ResNet-101 network. We

use the original ResNet-101 that is pre-trained on ImageNet

with 1000 classes. Most of the previous ZSL methods adopt

fixed pre-trained features, but we believe that it is inappro-

priate to regulate the image representation with fixed image

features. In general, an end-to-end framework will lead to

better performance [59]. We initialize the final fully con-

nected linear layer with the attribute matrix and fix them

during the training process.

SGD is used to optimize our model with a minibatch

size of 64. An initial learning rate is randomly taken from

the real range [0.0001, 0.01]. For our SGD algorithm, we

use the cyclic learning rate strategy, where the starting cy-

cle is set to 10 epochs and then multiplied by a factor 2
(Tmul = 2). Other training parameters, such as the dropout

rate, momentum and weight decay, are set to 0.4, 0.9 and

0.0005, respectively. For the threshold used in the erase net-

work, we set the threshold δ to ξ times the maximum value

of each channel of the attention map input to the C-ReLU

layer, where ξ is taken from the range [0.001, 0.1]. For

the extraction of high-order features, we set the reduced di-

mension to γ times the dimension of the original attributes,

where γ is a float number chosen from {0.3, 4}.

4.2. Fast hyperparameter search

Random search [7] is able to find models that are as good

as those found by the grid search but with less computa-

tional cost. For each configuration, the training of deep

learning on large-scale datasets is the main computational

bottleneck: several days are often required to obtain rea-

sonable results.

The cyclic learning rate [37] can help us achieve better

performance and a faster convergence rate than the constant

learning rate within few epochs. In the following, we use

the cyclic learning rate strategy to search for a best param-

eter for the ZSL problems, which simulates a new restart of

SGD after Ti epochs are implemented. During Ti epochs,

the learning value is varying from its maximum to minimum

(e.g., 0). Formally, the learning rate with a cosine annealing

is computed as

α =
αmax

2

(

1 + cos

(

Tcur

Ti

π

))

, (6)

where αmax is the max learning rate, and Tcur is accumu-

lating epochs from the last restart. Note that each batch has

its own learning rate since Tcur is updated during each batch

Figure 3: Cycling learning rate and const learning rate

iteration. Meanwhile, we increase Ti by a factor of Tmul at

every restart.

Given a large group of candidate parameters (e.g., 100)

randomly chosen from a user-defined range, we run one

epoch for each candidate parameter. According to the per-

formance on the validation dataset, we select the top ten

parameter configurations and run ten epochs to choose the

best parameter configuration from these ten groups. Finally,

we report the final results by running another 30 epochs on

the test dataset.

Figure 4 presents a comparison in terms of the accuracy

in the first ten epochs for the constant learning rate and

the cyclic learning rate with different configurations. The

length and multiplier of the cycle vary from {2, 10} and

{1, 1.1, 1.5, 2}, respectively. After three epochs, the con-

stant learning rate begins to catch up with the cyclic learning

rate. However, at the 6th epoch, the cyclic learning rate sur-

passes the constant learning rate. In practice, the increasing

period may slow the decay speed of the learning rate. As

shown in Figure 4, we can obtain the best performance with

the cycle multipliers 2 and 1.5. Our proposed algorithm

achieves the highest accuracy in the case of cycle len = 10
and cycle mul = 2, which verifies that it is a good empiri-

cal setting in the deep learning [37].

Table 1 presents the experimental results, from which,

we can conclude that the cycling learning rate (SeeNet-

HAF) achieves better performance than the constant learn-

ing rate (SeeNet-HAF∗) on multiple dataset splits. For ex-

ample, SeeNet-HAF obtains 72.2% on CUB-PS, which has

improved SeeNet-HAF∗ up to 5%. In other cases, SeeNet-

HAF model performs slightly worse than SeeNet-HAF∗ on

both of AWA2-PS and aPY-PS, which shows that using a

simple constant learning rate on these datasets is enough to

search a good model.

In summary, our search strategy takes both the breadth

and precision of the search into account. It gradually nar-



Figure 4: Comparisons between the step learning rate and

the cycling learning rate where the initial learning rate is

0.001 with the settings of different cycle lengths and the

cycle multipliers

rows the scope of the search and improves the precision of

the search during the search process.

74:ground 75:water 70:jungle 68:plains

Figure 5: Class attributes activation map of AWA2 dataset

(numbering the class attributes from zero): the maps high-

lights the object regions related to the class attributes, e.g.

ground, water, jungle and plains.

4.3. Comparisons with benchmarks

To demonstrate the effectiveness of our SeeNet-HAF and

SeeNet-ZSL, we compare them with dozens of existing ZSL

methods in Tables 1 and 2, among which the results of 13

methods are the baselines reported in [55].

Comparisons in conventional ZSL. In the conven-

tional ZSL setting, we follow the experiment and evaluation

protocol as in [55] and report the results on four benchmarks

for both the standard split (SS) and the proposed split (PS).

The first 13 baselines are from [55], and the next two are

taken from [13, 5]. We obtain our results following identi-

cal settings for the fairness of comparisons. As shown, our

SeeNet-ZSL and SeeNet-HAF algorithms outperform other

Table 1: Zero-shot learning results on SUN,CUB,AWA2

and aPY. SS = Standard Split, PS = Proposed Split. The

best result is marked in red and the second best in blue.

Method
SUN CUB AWA2 aPY

SS PS SS PS SS PS SS PS

DAP [31] 38.9 39.9 37.5 40.0 58.7 46.1 35.2 33.8

IAP [31] 17.4 19.4 27.1 24.0 46.9 35.9 22.4 36.6

CONSE [39] 44.2 38.8 36.7 34.3 67.9 44.5 25.9 26.9

CMT [48] 41.9 39.9 37.3 34.6 66.3 37.9 26.9 28.0

SSE [62] 54.5 51.5 43.7 43.9 67.5 61.0 31.1 34.0

LATEM [53] 56.9 55.3 49.4 49.3 68.7 55.8 34.5 35.2

ALE [3] 59.1 58.1 53.2 54.9 80.3 62.5 30.9 39.7

DEVISE [17] 57.5 56.5 53.2 52.0 68.6 59.7 35.4 39.8

SJE [4] 57.1 53.7 55.3 53.9 69.5 61.9 32.0 32.9

ESZSL [45] 57.3 54.5 55.1 53.9 75.6 58.6 34.4 38.3

SYNC [10] 59.1 56.3 54.1 55.6 71.2 46.6 39.7 23.9

SAE [29] 42.4 40.3 33.4 33.3 80.7 54.1 8.3 8.3

GFZSL [50] 62.9 60.6 53.0 49.3 79.3 63.8 51.3 38.4

PSR [5] — 61.4 — 56 — 63.8 — 38.4

SP-AEN [13] — 59.2 — 55.4 — 58.5 — 24.1

QFSL− [29] 58.9 56.2 58.5 58.8 72.6 63.5 — —

DEM [59] — 40.3 — 51.7 — 67.1 — 35.0

LDF [34] — — 67.1 — 83.4 — — —

RN [57] — — — 55.6 — 64.2 — —

UDA [28] — — 39.5 — — — — —

TMV [19] 61.4 — 51.2 — — — — —

SMS [20] 60.5 — 59.2 — — — — —

QFSL [49] 61.7 58.3 69.7 72.1 84.8 79.7 — —

AREN [56] 61.7 60.6 70.7 71.8 86.7 67.9 44.1 39.2

SeeNet-ZSL 61.5 60.1 70.8 73.5 81.5 64.4 43.2 37.2

SeeNet-HAF∗ 59.8 58.5 66.1 67.2 82.7 67.9 44.9 38.7

SeeNet-HAF 63.5 62.5 68.4 72.2 87.1 67.2 45.7 38.3

∗: SeeNet-HAF with the common learning rate strategy.

state-of-the-art algorithms on most datasets. For example,

SeeNet-ZSL outperforms SYNC by 16.7% on the SS split

of the CUB dataset (CUB-SS), where SYNC achieves the

best result among the compared methods. In addition, in

the PS split of the CUB dataset (CUB-PS), SeeNet-ZSL sur-

passes the PSR algorithm by 17.3%. On the AWA2 dataset,

SeeNet-HAF exceeds the best results by 6.4% and 3.4% for

SS and PS, respectively. In CUB and SUN datasets, our

inductive methods are on par with and even overpass the

leading transductive methods such as QFSL. These results

demonstrate that for image recognition in a complex back-

ground, the extraction of a irregular segmentation discrimi-

nating region is very beneficial for migrating from the train-

ing classes to the test ones.

When exploring the effects of the high-order class at-

tributes, we find that the simple off-line-extracted high-

order attributes help further improve our algorithm by 2%

in most cases. With an exception, we achieve an approx-

imately 6% increase on the SS split of the AWA2 dataset

when comparing SeeNet-HAF with SeeNet-ZSL. We also

observe that there is a slight performance decrease on the

CUB dataset, which may be attributed to the images in CUB

containing a single object and simple background, and there

may be no such interaction between the class attributes.

From the above analysis, we verify the validity of the high-

order attributes for ZSL problems.

Comparisons in generalized ZSL. The training accu-



Table 2: Generalized Zero-Shot Learning on Proposed Split (PS) measures including the training accuracy, test accuracy and

harmonic mean. CS means the Calibrated Stacking approach. The best number is marked in bold.

Method
SUN CUB AWA2 aPY

tr te H tr te H tr te H tr te H

DAP [31] 4.2 25.1 7.2 1.7 67.9 3.3 0.0 84.7 0.0 4.8 78.3 9.0

IAP [31] 1.0 37.8 1.8 0.2 72.8 0.4 0.9 87.6 1.8 5.7 65.6 10.4

CONSE [39] 6.8 39.9 11.6 1.6 72.2 3.1 0.5 90.6 1.0 0.0 91.2 0.0

CMT [48] 8.1 21.8 11.8 7.2 49.8 12.6 0.5 90.0 1.0 1.4 85.2 2.8

SSE [62] 2.1 36.4 4.0 8.5 46.9 14.4 8.1 82.5 14.8 0.2 78.9 0.4

LATEM [53] 14.7 28.8 19.5 15.2 57.3 24.0 11.5 77.3 20.0 0.1 73.0 0.2

ALE [3] 21.8 33.1 26.3 23.7 62.8 34.4 14.0 81.8 23.9 4.6 73.7 8.7

DEVISE [17] 16.9 27.4 20.9 23.8 53.0 32.8 17.1 74.7 27.8 4.9 76.9 9.2

SJE [4] 14.7 30.5 19.8 23.5 59.2 33.6 8.0 73.9 14.4 3.7 55.7 6.9

ESZSL [45] 11.0 27.9 15.8 12.6 63.8 21.0 5.9 77.8 11.0 2.4 70.1 4.6

SYNC [10] 7.9 43.3 13.4 11.5 70.9 19.8 10.0 90.5 18.0 7.4 66.3 13.3

SAE [29] 8.8 18.0 11.8 7.8 54.0 13.6 1.1 82.2 2.2 0.4 80.9 0.9

GFZSL [50] 0.0 39.6 0.0 0.0 45.7 0.0 2.5 80.1 4.8 0.0 83.3 0.0

PSR [5] 20.8 37.2 26.7 24.6 54.3 33.9 20.7 73.8 32.3 13.5 51.4 21.4

SP-AEN [13] — — 24.9 — — 34.7 — — 23.3 — — 13.7

DEM [59] 20.5 34.3 25.6 19.6 57.9 29.2 30.5 86.4 45.1 11.1 75.1 19.4

RN [57] — — — 38.1 61.4 47.0 30.0 93.4 45.3 — — —

QFSL [29] 30.9 18.5 23.1 33.3 48.1 39.4 52.1 72.8 60.7 — — —

f-CLSWGAN [54] 42.6 36.6 39.4 43.7 57.7 49.7 57.9 61.4 59.6 — — —

cycle-CLSWGAN [16] 49.4 33.6 40.0 45.7 61.0 52.3 59.6 63.4 59.8 — —- —

cycle-(U)WGAN [16] 47.2 33.8 39.4 47.9 59.3 53.0 59.6 63.4 59.8 — — —

AREN [56] 40.3 32.3 35.9 63.2 69.0 66.0 54.7 79.1 64.7 30.0 47.9 36.9

SeeNet-ZSL + CS 33.1 40.7 36.5 72.5 64.7 68.4 81.6 52.5 63.9 51.0 27.0 35.4

SeeNet-HAF + CS 33.8 46.4 39.1 67.9 62.9 65.3 82.0 55.6 66.3 55.0 26.5 35.7

74:ground 75:water 70:jungle 68:plains 85:HOF-0 86:HOF-1 87:HOF-2 88:HOF-3

Figure 6: First-order and high-order class attribute activation maps of the AWA2 dataset: the class attribute before and after

85 is the first-order and the high-order class attributes, respectively. We can see that the higher-order and first-order attributes

complement each other. The high-order attributes also can guide the convolution map to find the discriminant region where

the first-order attribute may ignore.

racy, test accuracy and their harmonic mean [55] is taken

as the evaluation criterion for the model comparisons under

GZSL settings.

We observe that the output in the training and test classes

is not comparable. When the output from the training

classes dominates, the classification performance of the

training classes is higher than that of the test classes, and

vice versa. We argue that the performance of the training

classes is not necessarily better than one of the test classes,

which can be found in Chao’s work [12].

We follow the settings of the generalized ZSL problem

[55] to report the results with the trained model on the PS

split of four datasets. We find that the classification per-

formance is biased in the training and test classes for the

listed algorithms. The reason for this phenomenon is that

no instances from the test classes are observed during the



Figure 7: Average attribute activation map of SeeNet-HAF on the AWA2 dataset: the images in the upper row and the lower

row is the original ones and its attention maps. We can see that our approach is able to discover the irregular segmentation

discriminative region of the object.

training process; thus, the outputs of the training and test

classes are independent of each other and not comparable

during the testing stage.

With the calibration stacking (CS) strategy [12], we can

well overcome the bias of the mode outputs on the training

and test classes. We observe that the harmonic accuracy of

our algorithms is greatly improved. On the CUB dataset, the

harmonic accuracy increases from 44.8% to 68.4%. As an-

other example, the harmonic accuracy of SeeNet-HAF has

been greatly improved from 6.7% to 66.3%. Of course, with

this strategy, the harmonic accuracy of our algorithm is far

greater than the other algorithms listed in the table. Due to

the unavailability of codes for some compared methods and

space limitation, we only conducted CS on SeeNet-ZSL and

SeeNet-HAF.

4.4. Attention of the SeeNet-HAF algorithm

The 1 × 1 convolutional layer generates maps with d
channels, where d is the dimension of the class attributes.

We sample some images from the AWA2 dataset and visu-

alize the attention map related to some attributes to obtain

a class attributes activation map (Figure 5). It is surpris-

ing in the ZSL problem that our SeeNet-HAF can relate the

semantic objects of the image to the corresponding class at-

tributes. For example, in Figure 5, the ground where the

tiger and the dog stand and the plains where the antelopes

and sheep live are marked as deeper red (attention regions).

However, before training, we do not associate the position

of the specific attribute of the image with the class attribute.

We only use the text attribute to describe whether there is

such an attribute in the image or how likely it possesses such

an attribute. Our algorithm is able to accurately mark the lo-

cations of the class attributes in the image, which will aid

us in deeply understanding how our ZSL algorithm works.

To investigate how the high-order attribute activates the

feature map, we show the comparison of the feature activa-

tion map of the first-order and high-order attributes on two

images in Figure 6. As shown, the high-order features fo-

cus on different parts of the image, and these parts may be

ignored by the first-order features. To some extent, higher-

order features complement and enhance the effects of the

first-order features.

Finally, we weight the feature maps corresponding to the

class attributes to obtain the average activation map of the

class attributes, as shown in Figure 7, where the weights

of the class attributes are softmax values [63] of the class

attributes matrix. As shown, SeeNet-HAF can accurately

find the discriminating area of the target. For example, for

the rhinoceros (the 5th picture in the image), we identify

whether an animal is a rhinoceros or not through its mouth

rather than the body; thus, the colour of the head of the

rhinoceros appears deeper than the body in Figure 7. The

rightmost picture in the image shows that an adult is holding

a horse on which a little girl is riding. SeeNet-HAF deepens

the colour of the first half of the horse rather than the little

girl or the adult because the class of the image is labelled as

a horse.

5. Conclusions

In this paper, an adversarial erasing embedding network

guided by high-order attributes (SeeNet-HAF) is proposed

to solve the challenging ZSL/GZSL task. The high-order at-

tribute features can distill the correlations between the class

attributes embedding into modeling, which is simple yet ef-

fective to compute. To the best of our knowledge, this work

is the first to seriously consider the high-order features for

the predefined class attributes. SeeNet-HAF consists of two

branches. The upper stream is capable of erasing some ini-

tially discovered regions, and then the high-order attributes

followed by Gaussian random projection is incorporated

to represent the relationship between the class attributes.

Meanwhile, the bottom stream is trained by using the cur-

rent background regions to train the same attribute. We pro-

pose a fast hyperparameter search strategy. It takes both the

breadth and precision of the search into account. A class

attribute activation map is proposed to visually show the

relationship between the class attribute features and atten-

tion map. Experiments on four standard benchmark datasets

demonstrate the superiority of the SeeNet-HAF framework.
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