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Abstract

Recent machine learning methods use increasingly large

deep neural networks to achieve state of the art results in

various tasks. The gains in performance come at the cost

of a substantial increase in computation and storage re-

quirements. This makes real-time implementations on lim-

ited resources hardware a challenging task. One popu-

lar approach to address this challenge is to perform low-

bit precision computations via neural network quantization.

However, aggressive quantization generally entails a severe

penalty in terms of accuracy, and often requires retraining

of the network, or resorting to higher bit precision quanti-

zation. In this paper, we formalize the linear quantization

task as a Minimum Mean Squared Error (MMSE) problem

for both weights and activations, allowing low-bit precision

inference without the need for full network retraining. We

propose the analysis and the optimization of constrained

MSE problems for performant hardware aware quantiza-

tion. The proposed approach allows 4 bits integer (INT4)

quantization for deployment of pretrained models on limited

hardware resources. Multiple experiments on various net-

work architectures show that the suggested method yields

state of the art results with minimal loss of tasks accuracy.

1. Introduction

Neural networks (NNs) proved to be extremely effective

in solving a broad variety of problems in computer vi-

sion, speech recognition and natural language processing

[22, 14, 36]. Deep learning methods are usually evaluated

only according to their accuracy over a given task. This cri-

terion leads to the development of architectures with con-

stantly increasing computational complexity and memory

requirements. Thus, performing inference on low power

System on a Chip (SoCs) used in smartphones or IoT de-

vices is a significant challenge, due to the limited available

memory and computational resources.

Several approaches have been proposed in order to make

deep NNs less resource demanding. Network pruning of

redundant and non-informative weights allows significant

reduction of the network size [12, 11]. Matrix factoriza-

tion via low-rank approximation exploits the redundancy

property of the NN parameters in order to increase speed

up [7]. Distillation of NNs aims to transfer the knowledge

contained in a pretrained large network to a compressed

model via adapted training process [15]. Also, new ar-

chitectures (i.e.[19, 16, 17]) with more efficient operations

such as point/depth-wise or grouped convolutions allow the

reduction of the model size, compared to existing over-

parameterized architectures.

Another popular direction, which we focus on in this pa-

per, is the quantization of NN. Quantization methods at-

tempt to reduce the precision of the NN parameters and/or

activations from single precision (32 bit floating point, or

FP32) to lower bit representations. Several benefits of low-

bit precision can be exploited by deep learning accelera-

tors. The storage requirement for a low-bit precision model

can be diminished substantially, as well as the power con-

sumption. Similarly, the memory bandwidth requirements

can be significantly reduced. Since the multiply accumu-

late (MAC) operations are performed on low-bit processing

engines, the computational complexity can be reduced as

well. Perhaps the most important benefit of low bit repre-

sentation is the saving of chip area. For instance, 8 bits in-

teger (INT8) operations can save up to 30x energy and up to

116x area compared to FP32 operations [6], allowing signif-

icantly better computational throughput. However, low-bit

precision inference often causes loss of the task accuracy,

which is usually compensated with the help of heavy full

retraining, mixed precision or non-uniform quantization

Trained quantization is a powerful but time-consuming ap-

proach, challenging to implement. It requires access to the

full training dataset which might not always be available

either due to privacy reasons, or if an off-the-shelf pre-

trained model is used. In this paper we address the post-

training quantization problem for weights and/or activa-

tions of a pretrained FP32 NN on highly constrained hard-

ware, wherein complete retraining, non-uniform quantiza-

tion or mixed precision calculations cannot be tolerated. To

the best of our knowledge, this is the first time INT4 only



deployment of a pretrained NN via efficient linear quanti-

zation is performed with minimal loss of accuracy and data

requirement. We propose a simple yet efficient optimiza-

tion framework to find the optimal quantization parameters

in the MMSE sense at each layer separately. The proposed

MMSE reconstruction gives better accuracy than other ex-

isting MSE based optimization methods. NN parameters

are quantized in a kernel-wise fashion that does not violate

the linearity of the dot product operations, enabling efficient

deployment on any common deep learning hardware. We

identify key layers that are most sensitive to quantization

errors, and provide an adaptive quantization scheme that

makes use of multiple low precision tensors. Finally, we

propose a refinement procedure for the scaling factors of

the quantized tensors, which is performed on a small un-

labelled calibration set. In a similar manner, the NN ac-

tivations quantization coefficients are obtained offline via

MMSE criterion. More sensitive activations are better ap-

proximated according to their reconstruction residual. The

main contributions of this paper can be summarized as fol-

lows:

• We propose a hardware compliant low-bit precision

linear quantization framework, for fast deployment of

pretrained models on low power accelerators.

• We analyze the non-convexity of the constrained

MMSE quantization problem and consequently pro-

pose optimal optimization that outperforms uniform

and existing MMSE based quantizations. The quanti-

zation parameters are further differentiably refined for

better performance.

• We explore the MMSE quantization process and en-

lighten the need for precise quantization of some lay-

ers. In contrast to training methods that widen all of

the model’s layers for improved accuracy, we widen

only few detected key layers in order to keep the com-

pression ratio low.

Extensive experiments on ImageNet demonstrate that our

INT4 linear quantization method for both weights and ac-

tivations, performs inference with only 3% top-1 and 1.7%
top-5 mean accuracy degradation, as compared to the FP32

models, reaching state-of-art results. The above degrada-

tion can be further reduced according to the complexity-

accuracy trade-off inherent to the proposed method. The

remainder of the paper is organized as follows. Section

2 reviews related works. In section 3, after analyzing the

MMSE quantization challenges, we develop our MMSE

based quantization for accurate approximation of original

models. In this section we also provide experimental re-

sults to demonstrate the usefulness of the steps in the pro-

posed quantization pipeline. At the end of the section, we

describe the modification of the presented algorithm com-

ponents for the problem of activation quantization. Finally,

quantization results from our experiments on several popu-

lar NNs are presented in Section 4.

2. Related Work

Neural network acceleration received increasing attention in

the deep learning community, where the need for accurate

yet fast and efficient frameworks is crucial for real-world

applications. A powerful approach is quantization of NNs

to low-bit representation. There are two main quantization

scenarios. The first one is the full training of a given model

to a desired lower bit precision. With this approach, the

weights, the activations and even the gradients can be quan-

tized to very low precision, enabling potentially fast training

and inference [38]. The major problem with the training

approach above arises from the discritness of the parame-

ters, wherein the backpropagation approach is not well de-

fined. The ”straight-through estimator” [3] has been used

in [4, 32, 5] in order to estimate the gradient of a stochastic

neuron. [4] proposed to use stochastic quantization of the

weights via random rounding, in order to inject regularizing

noise to the training process. [35] suggests to approximate

solution using variational Bayes method where the weights

can be restricted to discrete values assuming Gaussian dis-

tribution. Instead of seeking for appropriate derivatives,

[33] assumed smooth approximation of parameters with de-

fined gradients. Non-uniform quantization of NN parame-

ters has been proposed in [10] where the parameters are ap-

proximated using k-means algorithm. [24] proposed a high

order quantization scheme of weights where the approxima-

tion residual is further processed allowing better refinement

of full precision input. Estimation of the quantization pa-

rameters by solving constrained optimization problem has

been proposed for binary [32] and ternary weights [23].

We focus on the second quantization scenario that targets

direct quantization of a pretrained FP32 network to a lower

bit-depth precision without full training. INT8 quantiza-

tion of parameters has been proven to be relatively robust

to quantization noise even with simple uniform quantiza-

tion of weights [20]. [18] proposed L2 error minimization

of weights via alternating optimization in order to obtain a

generalizing ability during the training. Nevertheless, INT8

quantization of the network activations is more challenging

because of real time constraints. Nvidia proposed TensorRT

[29], a quantization framework that searches for saturation

threshold of the activations, based on the Kullback-Leibler

divergence measure between the quantized activations and

their full precision counterpart. Recently, [2] proposed to

approximate activations, as if they were sampled from a

known distribution in order to obtain, under some assump-

tions, analytically optimal threshold in the L2 sense. How-

ever, quantization of full precision weights and activations



to less than 8-bits usually causes significant loss of accu-

racy, a problem that has not been solved yet. In order to

overcome such degradation in performance, quantization

frameworks resort to retraining procedures, mixed preci-

sion solutions or non-uniform quantization. These solutions

make fast and easy deployment of quantized NNs impossi-

ble, especially on highly constrained HW such as mobiles

or IoT devices.

3. Proposed MMSE Quantization Method

Conversion of a full precision NN into its fixed point ver-

sion introduces quantization noise (error) into the network.

Since significant noise may deteriorate the model perfor-

mance, in the absence of training capabilities, efforts should

be invested in minimizing the noise power, in order to

approximate the original model as accurately as possible.

Minimization of the noise power of weights and of activa-

tions via MSE optimization is a natural criterion for quan-

tization quality, even though no direct relationship can be

easily established between the noise of the output and the

model accuracy. In the following, we investigate how quan-

tization affects the NN output, and propose optimal solution

to the quantization problem, via MSE optimization with

fixed precision constraints.

3.1. Quantization Process

Consider an L-layer NN architecture defined by

{Wl, Xl}
L
l=1

with Wl and Xl being the lth layer weight and

input tensors respectively. Each weight is defined according

to the set Wl = {Wlk}
kl

k=1
, where Wlk ∈ R

cl×wkl×hkl

denotes the kth kernel (neuron), with cl, wkl, hkl being

the number of channels, the kernel’s width and height,

respectively. Similarly, Xl ∈ R
cl×wl×hl represent the

layer activations (feature maps), with cl, wl, hl being the

number of channels, width and height of the layer input,

respectively.

In our setting we constrain a tensor T ∈ R
c×w×h to be

approximated linearly as a quantized tensor T̃ ∈ Z
c×w×h
p

coupled with a scaling factor α ∈ R such that T ≈ T̂ = αT̃ .

Here p denotes the desired integer bit precision, and Zp

the corresponding quantization range. Linear approxima-

tions are particularly appealing from hardware perspective,

wherein the tensor multiplication unit can handle low pre-

cision tensors only. In this setting, the tensor multiplication

is approximated as

T3 = T1T2 ≈ (α1T̃1)(α2T̃2) = (α1α2)(T̃1T̃2) = α3T̃3.
(1)

A popular uniform quantization scheme is given by

T̂ = α

[

T − δ

α

]

Zp

+ δ

δ = min
i
(Ti)

α =
maxi(Ti)− δ

2p − 1

(2)

where [T ]Zp
= min(max(⌊T ⌉,min(Zp)),max(Zp)) de-

notes the rounding operator ⌊·⌉, followed by saturation to

the Zp domain. The quantization offset δ can be of major

importance for non symmetric distributions (e.g ReLU [9]

activations), where unsigned representations Zp = Z
+
p ∈

{0, . . . , 2p − 1} allow an additional discrete level of repre-

sentation. However, the use of offset obviously increases

the computational complexity of tensor multiplications. In

the case quantization offset is not allowed, we assume

δ = 0, α = maxi(|Ti|)/(2
p−1 − 1) and the signed range

Zp ∈ {−2p−1, . . . , 2p−1 − 1}.

Unless stated otherwise the results presented are obtained

with signed quantization (no offset). Even though many

quantization methods do not quantize the first and last layer

of the model [12, 38, 32], unless stated otherwise here we

quantize all the network parameters and activations (includ-

ing the network input).

3.2. Mean Squared Error Analysis of Quantization

The relation between the full precision tensor weights W
and activations X and their respective approximations Ŵ
and X̂ can be obtained as follows

Ŷ = Ŵ X̂ = (W + nW )(X + nX)

= WX +WnX + nWX + nWnX

≈ WX +WnX + nWX = Y +WnX + nWX,

(3)

where nW , nX denote the quantization noise of the weights

and activations respectively and where the approximation

is obtained by neglecting second order noise term. Let us

consider the case where the NN is composed of linear layers

only. In such setting the NN output Y is defined as

Y = WL(WL−1...(W1X1)) = WLXL. (4)

For ease of notation we will omit the mean factor of the

MSE. Defining e2L, the MSE between the original model

output and the quantized model output, we obtain in expec-



tation that

E(e
2
L) = E ‖Y − Ŷ ‖2F = E ‖WLXL − ŴLX̂L‖

2
F

= E ‖WLnXL
+ nWL

XL‖
2
F

= E ‖WLnXL
‖2F + 2E trace(nT

XL
WT

L XLnWL
)

+ E ‖nWL
XL‖

2
F

≈ E ‖WLnXL
‖2F + E ‖nWL

XL‖
2
F

≤ E ‖nWL
‖2F E ‖XL‖

2
F + E ‖WL‖

2
F E ‖nXL

‖2F

= E ‖nWL
‖2F E ‖XL‖

2
F + E ‖WL‖

2
F E(e

2
L−1),

(5)

where the approximation is obtained by assuming zero

mean noise [31] and where ‖ · ‖F denotes the Frobenius

norm. The inequality is obtained using Cauchy Schwarz in-

equality and by assuming the weights and the activations

quantization noise are statistically independent, as well as

the activations and the weights noise. We obtain here a re-

cursive expression of the network output MSE. It is obvious

that first layers may have significant impact on the output

quality because of the recursion factor. Also, special at-

tention should be given to the minimization of the weights

noise which is coupled with possibly unbounded activations

(ReLU). In real configurations, the non linear functions that

play major role in the discriminative power of deep net-

works are much harder to model and analyze. Nevertheless,

the analysis presented above is supported empirically in our

non-linear experiments, wherein the first layers always im-

pact model accuracy the most, in contrast to the analysis of

[25]. Also, in our setting the approximation quality of the

weights has much more influence on the performance than

the activations, in contrast to the analysis of [38].

3.3. Kernel-Wise Quantization

In the low precision set up, such as 4 bit, global quanti-

zation where all the quantized kernels are coupled with a

single scaling factor, such that Ŵl = {αlW̃lk}k, can lead

to poor performance, due to the high variance of all the ac-

cumulated kernel elements. This problem does not arise in

the INT8 deployment setting that is robust enough even un-

der global quantization [29, 20]. Applying different scaling

factors to different buckets (partitions) of contiguous val-

ues allows better approximation of the original tensor [1].

However, the quantization framework should preserve the

linearity of the dot product, so that for every two vectors

x, y ∈ R
n we get

〈x, y〉 ≈ 〈αx̃, βỹ〉 =

n
∑

i

αβx̃iỹi = αβ〈x̃, ỹ〉Zp
. (6)

Maintaining the linearity is not so popular because of its re-

strictiveness and sub-optimality. For example, with the effi-

cient group-wise [1, 28], channel-wise or pixel-wise quan-

tization settings [8], the dot product must be split into sev-

eral dot products to be accumulated together, such that

Architecture Original Global Kernel-wise

Alexnet [22] 56.624% 0.694% 46.796%

VGG16bn [34] 73.476% 3.034% 65.23%

Inception v3 [37] 76.226% 0.106% 12.564%

Resnet18 [13] 69.644% 1.83% 44.082%

Resnet50 [13] 76.012% 0.172% 62.242%

Resnet101 [13] 77.314% 0.148% 64.434%

SqueezeNet [19] 58.0% 1.528% 29.908%

DenseNet [17] 74.472% 0.58% 57.072%
Table 1. Top1 accuracy using INT4 uniform quantization of

weights (FP32 activations) with global scaling factor [29, 20] for

all kernels and the proposed kernel-wise approach on the Ima-

geNet validation set. Global quantization simply collapses.

〈x, y〉 ≈ β
∑J

j αj〈x̃
j , ỹj〉Zp

. Such procedures cannot be

efficiently implemented on deep learning accelerators with

dedicated matrix multiplication units such as in systolic ar-

rays [21]. The only viable bucketing approach is the ker-

nel wise approach where each kernel is coupled to its own

scaling factor such that Ŵl = {αlkW̃lk}k. Such setting

maintains the dot product linearity at the kernel level and

allows efficient tensors multiplication in low precision ac-

celerators. Each discrete feature map is then multiplied with

its corresponding floating point scaling factor. Thus, with-

out violating the dot product linearity and with negligible

storage addition (as the number of kernels), a significant im-

provement in performance can be obtained as summarized

in Table 1. In this experiment, all convolutional layers are

quantized kernel-wise, while all the fully connected layers

are globally quantized. Also, we only allow global quanti-

zation of activations since every possible partitioning yields

separation of the dot product induced by the convolutions.

3.4. Minimum MSE Quantization

We aim at finding optimal approximation T̂ of a given ten-

sor T ∈ R
c×w×h by solving the constrained MSE problem

as follows
min
α,T̃

‖T − αT̃‖2F .

s.t α ∈ R, T̃ ∈ Z
c×w×h
p

(7)

For any arbitrary precision p this optimization problem does

not have an analytical solution. Assuming optimal α 
= 0 is

given, and denoting Ti the ith element of the tensor T , we

remain with a one constraint optimization problem where

we can rewrite eq. (7) objective as

‖T − αT̃‖2F =
∑

i

(Ti − αT̃i)
2 = α2

∑

i

(
Ti

α
− T̃i)

2. (8)

Thus, the optimal quantization is uniform and the quantized

values are given according to T̃i =
[

Ti/α
]

Zp
∀i, where the

scaling factor α also defines saturation of the the tensor val-

ues. Typical MSE as a function of α is shown in Figure 1.



Figure 1. MSE as a function of the scaling factor α averaged for

all the Alexnet convolutional kernels (Mean). Typical kernel MSE

is presented in red (Conv) and zoomed to show the non-convexity

of the function.

Architecture Uniform Altern. Golden OMSE

Alexnet 46.796% 40.962% 46.070% 46.892%

VGG16bn 65.23% 55.936% 62.250% 65.414%

Inception v3 12.564% 4.368% 7.408% 22.028%

Resnet18 44.082% 52.646% 52.398% 56.688%

Resnet50 62.242% 60.186% 63.178% 67.356%

Resnet101 64.434% 56.282% 63.052% 65.066%

SqueezeNet 29.908% 24.040% 34.036% 32.262%

DenseNet 57.072% 45.668% 50.058% 59.012%
Table 2. Top1 accuracy for INT4 quantized weights and FP32 ac-

tivations using kernel-wise uniform quantization [29, 20], Alter-

nating optimization (Altern.)[18], Golden Section search (Golden)

and the proposed optimal MSE (OMSE) quantization.

Several methods for finding optimal α can be considered.

Alternating optimization [18], even on one half of the do-

main, is not robust due to the non-convexity of the quantiza-

tion optimization (8) where small ripples make convex op-

timization methods fail (Figure 1). Golden Section Search

gives fast and better results because of the low resolution

optimization at the early stage of the algorithm, that avoids

attraction to bad local minima, but fails to reach optimum.

In this work, we propose to use one dimensional exact line-

search, that can be implemented very efficiently over the

grid defined by the tensor range (few hundred points) us-

ing parallel computation. This approach allows optimal so-

lution (up to the grid density) of the non-convex MMSE

quantization problem. A comparison of different quantiza-

tion methods is presented in Table 2 where we show the

importance of optimal MSE solution.

3.5. Multiple Tensor Quantizations

Some layers can be harder to approximate than others, and

have larger impact on the model accuracy loss, as shown in

(5). In order to better reconstruct those layers, some works

use mixed precision [25], where some layers use more bits

for representation. Due to power and chip area considera-

tions, low power devices generally do not allow mixed pre-

cision inference, because of the constrained low precision

engines. We therefore propose to better approximate key

layers by using multiple low precision quantized tensors.

We use the term key layers to describe quantized layers with

high MSE, or MSE bigger than some threshold τ . In con-

trary to other training methods where kernels are blindly

added over all the network layers [26, 30], our approach al-

lows minimal computational overhead. We formalize this

setting as follows. Given n integers {pi}
n
i=1 denoting the

desired precision of the quantized tensors and a given tensor

T , we want to find the n scalars {αi}
n
i=1 and the quantized

tensors {T̃ i}ni=1 that best approximate the original tensor in

the L2 sense, such that

min,
αi,T̃ i

‖T −
n
∑

i=1

αiT̃ i‖2F

s.t αi ∈ R, T̃
i ∈ Z

c×w×h
pi

(9)

From the computational perspective, the proposed frame-

work approximates a given kernel with quantized filter bank

for better approximation. Thus, for a given tensor X ap-

proximated as X ≈ X̂ = βX̃ we have

TX ≈

n
∑

i=1

αiT̃ iX ≈
n
∑

i=1

αiβ(T̃ iX̃). (10)

Here we opt for a nested optimization approach, where the

solution is obtained iteratively until convergence. Then, the

optimization can be written in the nested form as

min
α1,T̃ 1

{ min
α2,T̃ 2

...{min{
αn,T̃n

‖T −
n
∑

i=1

αiT̃
i‖2F }}} (11)

Alternating optimization is used until convergence, while at

each iteration the quantized tensor and its scaling factor are

obtained using the MSE quantization mapping suggested in

Section 3.4. The proposed quantization approach for layers

with high MSE is summarized in Algorithm 1. In the algo-

rithm below, input T refers to one convolutional kernel of a

given key layer.

Algorithm 1 Alternating Optimization for Multiple Quan-

tization of high MSE layer

Input: Tensor T , desired precision {pi}
n
i=1 and quantiza-

tion mapping φ.

Output: {αi}
n
i=1 and {T̃i}

n
i=1

1: while convergence rate > ǫ do

2: for j ∈ [1, ..., n] do

3: (αj , T̃
j) = φ(T −

∑n
i=1,i �=j αiT̃

i, pj)
4: end for

5: end while



For the special dual case where n = 2, optimum can be

obtained efficiently by resorting to dual line search. Since

each element in T̃ 1 can only have discrete values in Zp1
,

one can evaluate T̃ 2 for all the few 2p1 allowed quantized

values and later select the integer value giving minimum of

the objective. Assuming α1, α2 are given via grid search,

we want to find ∀j

min
T̃ 1

j
,T̃ 2

j

(Tj − α1T̃
1
j − α2T̃

2
j )

2

⇐⇒ min
t̃∈Zp1

min
T̃ 2

j

(Tj − α1t̃− α2T̃
2
j )

2

⇐⇒ min
t̃∈Zp1

(

Tj − α1t̃− α2

[

Tj − α1t̃

α2

]

Zp2

)2

(12)

Because of its high computational cost, this method should

be reserved to small tensors only (convolutional kernels).

As in Section 3.4 the proposed dual line search procedure

is preferred to the alternating approach due to the high non-

convexity of the optimization problem (9). In our experi-

ments, dual line-search approach improves the MSE by 5x

in average over the tested dual layers.

Layers with high MSE that are approximated using mul-

tiple quantized tensors obviously require more parameters

and computations, so a trade-off between accuracy and per-

formance can be established. Defining speedup is not trivial

since it is highly dependent on the hardware design. Mod-

ern GPUs can double the TOPS performance at INT4 preci-

sion, since multiple small low precision matrix multiplica-

tions can be performed in a distributed fashion. In order to

measure the increase in storage and computations we define

the compression ratio for analysis of the framework. The

compression ratio 0 < CR ≤ 1 is defined as the ratio of

the quantized model (weights and scaling factors) size to

the FP32 model size. In this work, difficult layers in the

INT4 setting are approximated with the dual method only

(n = 2). Performance of the proposed algorithm as well

as the corresponding compression ratios are summarized in

Table 3.

3.6. Scaling Factors Refinement

One issue with the quantization method proposed above

is the rigidity of the quantization mapping performed ax-

iomatically according to a given metric. In order to tackle

this problem without the need for full retraining and with-

out requiring gradients of non differentiable functions, we

propose a post quantization adjustment of the scaling fac-

tors of the quantized NN weights. Given calibration data

(unlabeled), we refine the scaling factors to better approx-

imate the full precision model. We seek to optimize the

(re)scaling factor γ defined as T̂ (γ) = γαT̃ , with T̃ be-

ing the tensor quantized axiomatically. Consequently, the

Architecture Original OMSE Dual CR

Alexnet 56.624% 46.892% 54.408% 0.1256

VGG16bn 73.476% 65.414% 66.932% 0.125

Inception v3 76.226% 22.028% 51.642% 0.1263

Resnet18 69.644% 56.688% 64.034% 0.1318

Resnet50 76.012% 67.356% 70.060% 0.1261

Resnet101 77.314% 65.066% 71.492% 0.1261

SqueezeNet 58.0% 32.262% 53.466% 0.1493

DenseNet 74.472% 59.012% 64.400% 0.1432
Table 3. Top1 accuracy using INT4 optimal MSE quantization

of weights (FP32 activations) and INT4 dual MSE (Dual) for

τ = 8 · 10−5. The last column defines the compression ratio

(CR) induced by the dual method. CR of regular (non-dual) INT4

linear quantization is ∼ 0.125.

Architecture Dual OMSE+Opt. Dual+Opt.

Alexnet 54.408% 53.306% 55.226 %

VGG16bn 66.932% 72.294% 72.576%

Inception v3 51.642% 73.656% 74.790%

Resnet18 64.034% 67.120% 68.806%

Resnet50 70.060% 74.672% 74.976%

Resnet101 71.492% 76.226% 76.402%

SqueezeNet 53.466% 54.514% 56.248%

DenseNet 64.400% 71.730% 73.600%
Table 4. Top1 accuracy using FP32 activations and INT4 dual

MSE quantization of weights (Dual) and dual MSE + refined scal-

ing factors (Dual+Opt.) with τ = 8 · 10−5. As ablation study we

present the refinement of the OMSE method without dual quan-

tization (OMSE+Opt). The calibration set contains five hundred

images from the ImageNet validation set and 25 epochs.

saturation threshold α is approximated for optimal recon-

struction separately, using L2 metric. The rescaling factor

γ is optimized afterwards in a data driven way such that

T̂ (γ) = γ

(

α

[

T

α

]

Zp

)

. (13)

Assuming f(X, {Wl}l) is the NN mapping function, we

seek to minimize the regression (MSE) problem

min
γl={γlk}lk

M
∑

i

‖f(Xi, {Wl}l)− f(Xi, {Ŵl(γl)}l)‖
2
F ,

(14)

where M is the size of the calibration set. The advantage

of this approach is that the number of optimized values is

small and equal to the number of convolutional kernels. At

contrary to training methods, this approach is fully differen-

tiable avoiding sub-gradient definitions [3]. Thus, the op-

timization can be conducted very efficiently using popular

stochastic gradient descent methods on a small calibration

set as in [29]. Also, only a few optimization steps are re-

quired for both fast deployment and better generalization.

Results of the refinement procedure, and its influence on



Architecture Original Baseline [20] KLD [29] OMSE Dual (CR) ACIQ∗ [2] OMSE∗ Dual∗

Alexnet 56.624% 38.616% 46.002% 48.908% 54.552% (0.195) - 49.122% 54.994%

Alexnet (offset) 56.624% 51.774% 53.198% 53.286% 55.522% (0.195) 52.304% 53.998% 55.508%

VGG16bn 73.476% 33.276% 59.026% 62.168% 68.120% (0.127) - 67.726% 68.334%

VGG16bn (offset) 73.476% 58.832% 65.558% 67.198% 71.478% (0.127) 67.716% 71.260% 71.260%

Inception v3 76.226% 4.042 % 32.516 % 40.916% 66.176% (0.154) - 43.184% 68.608%

Inception v3 (offset) 76.226% 57.516 % 67.640% 67.964% 73.060% (0.151) 59.826% 69.528% 74.486%

Resnet18 69.644% 48.37% 59.002% 61.268% 66.522% (0.150) - 63.744% 66.628%

Resnet18 (offset) 69.644% 63.106% 64.952% 64.992% 68.380% (0.148) 65.694% 67.508% 68.316%

Resnet50 76.012% 40.786% 60.326% 64.878% 70.368% (0.129) - 66.562% 70.202%

Resnet50 (offset) 76.012% 65.338% 69.160% 71.274% 73.252% (0.126) 71.362% 73.392% 73.392%

Resnet101 77.314% 36.494% 59.002% 65.316% 70.770% (0.129) - 65.350% 70.806%

Resnet101 (offset) 77.314% 65.552% 69.746% 72.750% 74.266% (0.126) 69.544% 74.332% 74.332%

SqueezeNet 58.0% 3.282% 12.220% 18.630% 52.382% (0.216) - 20.448% 52.430%

SqueezeNet (offset) 58.0% 24.97% 37.080% 39.820% 56.150% (0.203) - 42.026% 56.284%

DenseNet 74.472% 47.808% 64.990% 65.032% 67.952% (0.132) - 67.558% 68.048%

DenseNet (offset) 74.472% 67.676% 69.640% 70.118% 72.282% (0.132) - 72.304% 72.310%

Table 5. Top1 accuracy using INT4 MSE quantization of activations, INT8 weights uniformly quantized and dual MSE (τ = 8 · 10−5)

compared with several methods. The baseline is defined as in [20] with clipping to the mean maximum and minimum range of the

calibration set. KLD denotes the saturation technique based on Kullback-Leibler divergence metric proposed in [29]. In ACIQ framework

[2] the first layer of the models is not quantized and unsigned representation is used. ACIQ results are taken from the paper. We provide

similar to ACIQ experiment with our methods (OMSE∗ and Dual∗) wherein we do not quantize the input layer (if first layer is the only key

layer, OMSE∗ and Dual∗ yield same results). The calibration set is composed of 250 images for all the proposed methods.

accuracy improvement are presented in Table 4. These ex-

periments show that the refinement procedure can improve

the accuracy by up to 23%. We also provide ablation study

to demonstrate the usefulness of the refinement stage in low

compression ratio tasks where no dual layers are allowed.

3.7. Activations Quantization

In contrast to weights quantization, the activations quanti-

zation should be performed for each image on the fly. Obvi-

ously, optimal scaling factors of activations cannot be com-

puted for every image. Thus, the quantization parameters

are generally approximated using relatively small calibra-

tion set [29, 2] where saturating the activation values to a

given threshold helps in improving accuracy. The saturation

problem is usually solved by approximating the activations

distribution [29, 2]. These methods are less sensitive to out-

liers with potential important impact on the underlying dot

product. Here, we follow the same MSE minimization ap-

proach, wherein the parameters are obtained as described in

Section 3.4. Thereby, given a small calibration set (few hun-

dred data samples) we collect activations at different layers

of the network, and seek for optimal saturation factor. Given

Xl ∈ R
d,cl,wl,hl the lth layer activations with d the size of

the calibration set, we solve

min
β1

‖Xl − β1

[

Xl

β1

]

Zp

‖2F . (15)

For key layers, optimal approximation using multiple quan-

tizations as described in Section 3.5 suffers from strong

overfitting. In order to approximate better, and to gener-

Figure 2. Mean and standard deviation of the set of scaling factors

of the weights (α), the activations (β) on the calibration set (not

dual) and the refined factors (γ), all normalized by the maximum

value of the tensor they approximate.

alize at the same time, we obtain the optimal parameters by

quantizing the residual from the first approximation, such

that for a given activation X we have

X ≈ X̂ = β1X̃1 + β2X̃2

= β1

[

X

β1

]

Zp

+ β2

[

X − β1X̃1

β2

]

Zp

.
(16)

We obtain β1 from eq.(15), followed by obtaining β2 from

eq.(16). This procedure is similar to the alternating ap-

proach described in Algorithm 1 with one iteration only.

Similar to the network weight compression ratio, we define

the activations compression ratio as the ratio between the

size of all the compressed activations and the size of all the

original activations.

Table 5 presents the comparison of the variants of the pro-



Architecture Original KLD [29] Our Our+offset CR(W,A) % Dual

Alexnet 56.624% 79.056% 35.590% 59.326% 53.632% 77.244% 54.476% 77.846% (0.125,0.195) 25%

VGG16bn 73.476% 91.536% 41.530% 66.008% 67.492% 88.016% 70.658% 90.136% (0.125,0.127) 6.25%

Resnet18 69.644% 88.982% 31.934% 55.510% 65.456% 86.630% 67.416% 87.716% (0.126,0.148) 23.80%

Resnet50 76.012% 92.934% 46.190% 70.162% 69.370% 89.204% 72.602% 90.852% (0.126,0.129) 3.70%

Resnet101 77.314% 93.556% 49.948% 73.034% 69.700% 89.686% 73.602% 91.526% (0.126,0.128) 1.90%

Inception v3 76.226% 92.984% 1.84% 4.848% 64.572% 85.852% 71.606% 90.470% (0.126,0.154) 11.57%

SqueezeNet 58.184% 80.514% 8.224% 19.348% 50.722% 74.634% 55.358% 78.482% (0.149,0.216) 68%

DenseNet 74.472% 91.974% 44.05% 68.52% 66.832% 87.518% 71.558% 90.532% (0.143,0.132) 2.47%

SSD300 77.43% 47.38% 73.94% 75.77% (0.125,0.126) 2.85%

Table 6. Performance of the proposed framework for INT4 weights and activations obtained using τ = 8·10−5. Compression ratios of both

the weights and the activations and the percentage of dual layers are provided in the last two columns, respectively. The mean top-1 decay

is of 6.7% and 3% for the regular and offset (unsigned) versions, respectively. Similarly, mean top-5 decay is of 4% and 1.7% respectively.

We present in the last row the quantization of the SSD object detector [27], with mAP performance on PASCAL VOC2007 dataset.

posed activation quantization method with several existing

methods. The line-search method iterates over 50 samples

only, compared to more than thousand for other methods

[29, 20]. Statistics of thresholding factors for different mod-

els are presented in Figure 2 where we can observe the se-

vere saturation induced by the MMSE metric.

4. Experiments

We evaluate the proposed framework on several popu-

lar architectures in order to demonstrate its robustness to

aggressive quantization. We also evaluate quantization

of non over-parameterized models such as SqueezeNet or

DenseNet that are much more sensitive to quantization and

are usually not analyzed in the NN quantization literature.

We consider different INT4 quantization scenarios such as

unsigned (with offset) and signed representations, and we

present the accuracy-compression ratio trade-off analysis.

The framework has been implemented using the Pytorch li-

brary with its pretrained models. The MSE grid search iter-

ates over 500 sampling points for the weights and 50 for the

activations. The scaling factors refinement stage requires

25 epochs over 500 randomly sampled images from the val-

idation set. The calibration set used for the quantization of

activations is comprised of 250 images. All the layers are

quantized, including the network input. Also, it is impor-

tant to notice that there is currently no existing framework

for linear INT4 only quantization of weights and activations

for comparison in the inference setting. TensorRT [29] is

currently the best known framework for post-training quan-

tization and it sets a baseline for our method. The summary

of the accuracy loss and the compression ratios is presented

in Table 6, where we show the proposed method achieves

a new state-of-the-art performance in post-training quanti-

zation by a large margin. In Table 7 we show how mod-

ification of the MSE threshold τ influences the accuracy-

compression ratio trade-off.

Architecture Original Our CR(W,A) Our

+offset

Alexnet 56.624%

49.570% (0.125,0.178) 52.274%

54.186% (0.127,0.206) 54.936%

54.720% (0.130,0.245) 56.068%

Resnet50 76.012%

69.472% (0.126,0.129) 72.530%

73.078% (0.137,0.156) 74.826%

74.336% (0.154,0.203) 75.198%

Inception v3 76.226%

61.856% (0.126,0.146) 71.662%

74.036% (0.150,0.215) 75.354%

74.766% (0.186,0.238) 75.870%

DenseNet 74.472%

65.526% (0.126,0.132) 70.730%

70.716% (0.155,0.154) 73.114%

73.382% (0.226,0.241) 74.116%

Table 7. Trade-off analysis of the proposed method without and

with offset for three thresholding values τ = {10, 2, 0.9} · 10−5.

The compression ratio refers to the method without offset.

5. Conclusion

In this paper we introduced an efficient and accurate MSE-

based low-bit precision quantization framework for neural

networks. We analyze the MMSE quantization problem and

propose optimal quantization for minimal loss of accuracy.

The hardware-aware partitioning of the network parame-

ters, and the refinement of high MSE layers using quantized

filter banks, enables improved performance while remain-

ing compliant with modern low power hardware. Given a

small calibration set, we further refine the quantization scal-

ing factors for better approximation of the original model.

We also provide a framework for the quantization of the

network activations, wherein we propose a method of resid-

ual quantization for improved approximation of the most

sensitive layers. The proposed approach can be adjusted to

any desired precision for constrained hardware deployment,

according to the inherent compression-complexity trade-off

of the method. The framework allows fast and efficient de-

ployment of pretrained models, producing a new state-of-

the-art INT4 inference quantization results.
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