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Abstract

We propose a new approach to Generative Adversarial

Networks (GANs) to achieve an improved performance with

additional robustness to its so-called and well recognized

mode collapse. We first proceed by mapping the desired data

onto a frame-based space for a sparse representation to lift

any limitation of small support features prior to learning

the structure. To that end we start by dividing an image

into multiple patches and modifying the role of the gen-

erative network from producing an entire image, at once,

to creating a sparse representation vector for each image

patch. We synthesize an entire image by multiplying gener-

ated sparse representations to a pre-trained dictionary and

assembling the resulting patches. This approach restricts

the output of the generator to a particular structure, ob-

tained by imposing a Union of Subspaces (UoS) model to

the original training data, leading to more realistic images,

while maintaining a desired diversity. To further regular-

ize GANs in generating high-quality images and to avoid

the notorious mode-collapse problem, we introduce a third

player in GANs, called reconstructor. This player utilizes an

auto-encoding scheme to ensure that first, the input-output

relation in the generator is injective and second each real

image corresponds to some input noise. We present a number

of experiments, where the proposed algorithm shows a re-

markably higher inception score compared to the equivalent

conventional GANs.

1. Introduction 1

In recent years, Generative Adversarial Networks (GANs)

[25, 15, 33] showed impressive results in various im-

age generation problems, such as image super-resolution

[16, 5, 27], dialogue generation [17], and image translation

[36, 30, 18, 14]. As an implicit method of probability den-

sity estimation, GANs commonly consist of two main units:

A generator function that synthesizes various images from

different realizations of an input noise vector, and a discrim-

inator function which examines the quality of the produced

images by the generator. The generator and discriminator are

usually differentiable-functions based on deep convolutional

networks. In GANs, the input noise vector is transformed by

the generator to produce a ”fake” image. The discriminator

function receives either a fake sample from the generator or

an ”original” sample from the data set and decides on its

genuineness. The two functions are successively trained in

a min-max optimization framework [9], where the weights

of the generator network are gradually adapted to generate

more realistic images, in order to fool the discriminator.

The research area of GANs still takes its first steps toward

full growth. Due to the complex structure of real-world im-

ages, the images generated by GANs widely lack details and

do not usually look completely realistic. Images are known

to follow complicated probability distributions, and estimat-

ing these distributions at the full image scale is generally a

difficult task. Mode collapse, a well-known phenomenon in

1This work was supported by the U.S. Army Research Office under

Grant W911NF-18-10209.



GANs, where highly similar images are frequently generated

from different inputs is widely attributed to the problem of

complexity of the image distributions (small support events).

To alleviate the above-mentioned issues, we propose a novel

generator model which learns the structure of images in

smaller scales and uses the learned structures to synthesize

full-scale images. To this end, we adopt dictionary learn-

ing and sparse representation [21], as an effective method

to learn and leverage the structure of data. Parsimonious

data representation by learning overcomplete dictionaries

has shown promising results in a variety of problems such

as image denoising [8, 12], image restoration [29], audio

processing [10], and image classification [32]. The learned

dictionaries constitute a frame, whose atoms are employed

to linearly represent data vectors with their corresponding

sparse vectors of coefficients [28]. (This effectively lifts the

singular support [24]).

We hence propose a novel generator network which gen-

erates a sparse vector of coefficients for each image patch

instead of generating the entire image. Full-size output im-

ages are assembled by tiling the image patches, produced

by multiplying the generated sparse coefficient vectors to a

pre-trained dictionary. This approach avoids the complexi-

ties with the conventional method of generating the entire

image in one step. Instead, it affords a multi-stage solution,

where at the first stage, simpler structures at the scale of

image patches are generated, and a full-size image is assem-

bled at the final stage. Incorporating sparse representations

also limits the search space of the produced images to a

linear combination of a set of dictionary atoms, tailored for

representing real-world images, enhancing the procedure

of generating realistic images. To further regularize with

respect to the mode collapse problem, we also introduce a

third player to GANs that we call the reconstructor. The re-

constructor has two goals. First, it makes sure that different

inputs of the generator result in dissimilar outputs i.e., the

generator is an injective map. Second, it guarantees that the

real images in the dataset can also be synthesized from some

input noise i.e., the range space of the generator includes

the entire set of real images. These goals are obtained by

treating the generator network as a ”decoder” from a latent

input space and simultaneously training an ”encoder” net-

work, which reversely computes the input of the generator

from its output. The encoder function as a regularizer to the

generator network is minimized successively along with the

generator and the discriminator losses. Existence of such

an auto-encoder scheme guarantees that the generator net-

work is injective and model collapse is avoided. Moreover

by training this auto-encoder scheme on real images, we

achieve the second goal.

The balance of this paper is organized as follows: In Sec-

tion 2, we provide an overview to the state of-the-art works

relevant to this paper. In Section 3, we briefly recall the

mathematical basis of GANs, as well as some background

information of relevance to this paper. We formulate and

propose our new approach in Section 4. Substantiating ex-

perimental results are presented in Section 5. Finally, we

provide some concluding remarks in Section 6.

2. Related Studies

There have been plenty of different studies on GANs

since their advent in [9]. We summarize these works into

three main groups and briefly overview them.

Stable training of GANs: Due to the non-convex nature

of the underlying optimization problems in GANs, they are

notoriously difficult to train. In particular, they are gener-

ally prone to non-convergence, diminishing gradient and

mode collapse, the latter happening when the generator fre-

quently outputs a narrow set of highly similar samples. Sev-

eral efforts were devoted to alleviating these problems. An

autoencoder-based regularization was proposed in [3] by

penalizing missing modes. To further mitigate the mode col-

lapse problem, an unrolled optimization of the discriminator

is proposed in [22]. This technique results in a more power-

balanced generator and discriminator and is successful in

preventing mode collapse, but the computational cost is high.

In WGAN [1], the Earth-Mover (Wasserstein-1) distance is

adopted as the objective for the generator. This objective is

approximated by restricting the discriminator to 1-Lipschitz

function through weight clipping. An enhancement over

WGAN is proposed in [11]. In this work, a different method

for bounding the gradients is proposed by adding a gradient

penalty term to the objective. Furthermore, in a recent effort

[23], the Lipschitz constant of the discriminator function is

controlled by limiting the spectral norm of the weights in the

discriminator.

Architectures of GANs: The Deep Convolutional Gen-

erative Adversarial Network, DCGAN, architecture is pro-

posed in [25]. This architecture is usually a set of (four)

fractionally-strided convolutional layers with no pooling

and fully connected layers. Stacked Generative Adversarial

Networks, StackGAN [34], aims to generate 256 × 256 re-

alistic images from text descriptions in two steps. Initially,

lower resolution images are generated from text descriptions,

and then, higher-resolution images are generated from low-

resolution images. In [15], the authors proposed to progres-

sively develop the generator and discriminator as training

continues. This method helps to speed up the training and

improve image quality.

Applications of GANs: GANs have been utilized in differ-

ent areas of machine learning, including Natural language

processing (NLP) and computer vision. In [35] an LSTM

network and a CNN have been trained in an adversarial

way to generate realistic text. The LSTM network takes

the random input vector and generates text while the CNN

discriminates between real text and generated one. An un-



supervised word translation method has been proposed in

[4], which translates words without any cross-lingual super-

vision. In this work, a generator network has been used to

map word embeddings from one domain to another, while

the discriminator aims to detect the origin of the embedding.

A variation of GANs with class label information, known

as Conditional GANs, have been utilized in image-to-image

translation [14] and demonstrated successful performance

in reconstructing objects from edge maps and colorizing

tasks. The generator network is used in [16, 26] to produce

super-resolution images from low resolution images. The

discriminator networks in these works are trained to discrimi-

nate between super-resolved images and real high-resolution

images. GANs are also used in transforming person im-

ages to arbitrary poses and synthesizing clothing images and

styles from an image [31, 20].

From architectural point of view, our proposed approach

is similar to DCGAN [25] with an additional provision for

a layer to generate sparse coefficients. We use the WGAN

technique in [11] to stabilize the training of GANs. Further-

more, we propose a third player to GANs (reconstructor)

which assists the generator network in regularizing and gen-

erating more realistic images. The reconstructor network in

GANs, to the best of our knowledge, is a novel idea without

precedent.

3. Mathematical Basis of GANs

The initial formulation of GANs in [9] is as follows,

min
G

max
D

Ex∼px
[log D(x)]+ Ez∼pz

[log(1−D(G(z)))],

(1)

where x and z are the real data and the noise input vectors

respectively and D and G are the discriminator and the

generator networks. px and pz are the distributions of the

real data and noise vector respectively.

The above optimization problem is solved by an alternat-

ing optimization scheme. At each step, the generator or the

discriminator variables are fixed and the problem is solved

for the other player. Defining pg as the distribution of the

generated images (G(z) ∼ pg), Eqn. (1) is equivalent to

minimizing the Jensen-Shannon divergence between px and

pg [9].

The Jensen-Shannon divergence between px and pg is not

always continuous with respect to the variables in the gen-

erator [1] and this leads to an instability in training GANs.

Therefore, in [1], the Jensen-Shannon divergence is replaced

by the earth-mover’s distance W (px, pg) which is contin-

uous everywhere and leads to the following optimization

problem,

min
G

max
D∈D

Ex∼px
[D(x)]− Ez∼pz

[D(G(z))], (2)

where D is the set of 1-Lipschitz functions. Considering

an optimal discriminator function, the solution of the above

optimization problem minimizes the earth-mover’s distance

between px and pg .

In order to impose the Lipschitz constraint on the discrim-

inator (D ∈ D), in [1], the weights of the discriminator are

simply clipped within a compact interval [c, c]. Alternatively,

the following gradient penalty term is minimized in [11] to

impose the Lipschitz constraint.

Ex̂∼px̂
[(||∇x̂D(x̂)||2 − 1)2], (3)

where x̂ ∼ px̂ is a random sample, uniformly randomly

chosen on the straight line segment connecting x and G(z).
The gradient penalty in Eqn. (3) is motivated from the fact

that a function is 1-Lipschtiz if and only if its gradient norm

is upper bounded by 1. Authors in [11] showed that the

gradient penalty in Eqn. (3) is more effective in stabilizing

training of GANs than the weight clipping technique.

4. The Proposed Method

In contrast to Eqn. (1), our proposed formulation of GAN

is composed of three players: a discriminator function which

decides whether an input is a real or a generated sample, a

generator which synthesizes images by initially generating

sparse representations of image patches, and a reconstructor

which ensures that the generator is capable of generating all

the real samples from some associated noise signals. We

formulate our proposed method by defining the following

optimization problem,

min
G

max
D∈D

Ex∼px
[D(x)]−Ez∼pz

[D(G(z))]

+Ex∼px
[||x−G(E∗(x))||2

2
]

s.t : E∗ ∈ argmin
E

Ez∼pz
[‖z − E(G(z))‖2

2
],

where D,G and E are the discriminator, the sparse generator

and the encoder networks, respectively. Moreover, E∗ is

an optimal encoder network for G, which serves as a left

inverse of G, according to the constraint. The discriminator

belongs to the set D of 1-Lipschitz functions and we explain

the details of the Sparse Generator Network (SPGAN) in

Section 4.1. x and z are the real data and the noise input

vectors, respectively sampled from the real data distribution

px and a fixed noise distribution pz . The last term in Eqn.

(4), minimizes the error between the input real image x and

the generated image by G from the corresponding noise

zx = E∗(x) to the data point x. This term will be more

thoroughly discussed in Section 4.2.

In order to solve the above optimization problem, we

define the following three loss functions,

LD = Ez∼pz
[D(G(z))]− Ex∼px

[D(x)]+

λEx̂∼px̂
[(||∇x̂D(x̂)||2 − 1)2],

LG = −Ez∼pz
[D(G(z))],

LR = Ex∼px
[||x−G(E∗(x))||2

2
],

(4)



where LD, LG and LR are respectively the loss functions for

the discriminator, the generator and the reconstructor. We

explain the details of the reconstructor loss LR in Section

4.2. The formulation of LD is similar to the one in [11]

with the last term being the gradient penalty to enforce the

Lipschitz constraint. x̂ ∼ px̂ is a random sample, randomly

uniform chosen on the straight line segment connecting x

and G(z). In the following, we explain the sparse generator

network and the reconstructor loss in detail.

4.1. Sparse Generator Network

As we elaborated in Section 1, our generator network

consists of a deep neural network that generates a vector of

sparse coefficients S(z) from a random input noise vector z

as an input. These coefficients are used as a representation

of the image patches in a linear model. Hence, the image

patches can be simply computed by multiplying the coef-

ficients to a pre-trained dictionary Ω. Later, the generated

patches are connected to form a full-size image. One can

uniformly extract image patches from the training images.

These image patches are generally in small sizes (3 × 3)

and may overlap with each other. Given vectorized image

patches, gi ∈ Rm i ∈ {1, .., s}, as columns of a matrix G,

the dictionary Ω
∗ ∈ Rm×k is trained by minimizing the

following reconstruction loss,

{Ω∗, R } = argmin
Ω, R

1

2
||G−ΩR||2F + λ||R||1,Ω ∈ C,

(5)

where the columns ri ∈ Rk of the matrix R are the sparse

representations of the image patches and C is a convex set of

matrices with unit L2-norm columns.

In Fig. 1, we show the sequence of computational steps

of generating an image from a random input noise vector

and their associated specifications. The random noise vector

z is transformed to the tensor A(z) of shape w × h × k.

This transformation is by reshaping the input noise vector

and applying transposed convolutions [25]. The soft thresh-

olding function Sλ(.) [6] is applied to each depth-vector aT

to create a sparse vector. The sparse vector Sλ(a
T ) multi-

plicatively scales a pre-trained dictionary Ω
∗ to generate an

image patch g. The image patches are aligned next to each

other (in overlapping areas we average the pixel values) to

produce the full image G(z).

In our method, the image patches are produced by generat-

ing the sparse vectors and multiplying them to the dictionary

Ω
∗. The generated image patches are therefore, limited to a

linear combination of a small subset of the dictionary atoms.

This constraint helps to ensure that besides generating new

samples, the generator network can generate images that

resemble the training samples. Note that the image patches

have smaller sizes and are less complicated in structure.

4.2. Reconstructor Loss

In this section, we explain the details of the reconstructor

loss LR in Eqn. (4). Considering the noise vectors as sam-

ples from a latent space, G(z) can be interpreted as a map

(decoder) from the latent space to the space of generated

images (blue arrows in Fig. 2). The role of the genera-

tor network is to produce an image for any sample from

the latent space. We also ensure that the map G(z) can

generate a wide variety of real-world images by verifying

that it is injective and hence mode-collapse is hard. To this

end, we require an ”encoder” function, E, to exist such that

E(G(z)) = z approximately holds true for every z. Figure

2 explains why this requirement guarantees injectivity: If

two realizations z1, z2 are mapped to the same image x,

then it is impossible for E to map x back to the latent space.

We obtain the encoder E by employing a neural network Eφ

and performing the optimization in the constraint of Eq. (4)

by solving the following optimization problem with respect

to the parameters of the encoder network, φ,

φ∗ = argmin
φ

Ez∼pz
||Eφ(G(z))− z||2. (6)

Algorithm 1

Initialization:

1: Initialize the discriminator, the generator and the en-

coder parameters (w, θ, and φ) randomly.

2: Train the dictionary Ω by solving Eqn. (5)

Training:

3: while θ has not converged do:

4: for t in {1, ndiscr.} do:

5: for i in {1, b} do:

6: Sample xi, zi, and εi from px, pz , and the uni-

form distr. U [0, 1] respectively,

7: x̂i ← εixi + (1− εi)Gθ(zi)
8: Li

D ← Dw(Gθ(zi)) − Dw(xi) +
λ(||∇x̂Dw(x̂i)||2 − 1)2,

9: w ← w −∇w(
1

b

∑b

i=1
Li
D),

10: for i in {1, b} do:

11: Sample latent variable zi, from pz ,

12: Li
G ← −Dw(Gθ(zi)),

13: θ ← θ −∇θ(
1

b

∑b

i=1
Li
G),

14: for t in {1, nreconst.} do:

15: Train the encoder network Eqn. (6),

16: for i in {1, b} do:

17: Sample real data xi from px. Encode the real

image to latent variable zxi
= E∗(xi) ,

18: Li
R ← ||xi −G(zxi

)||2,

19: θ ← θ −∇θ(
1

b

∑b

i=1
Li
R),
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Figure 1: Sequential steps of a sparse generator network.
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Figure 2: Generating and encoding images. Blue/red

squares and circles represent generated/real images

and their associated latent vectors respectively.

In our experiments, a ResNet [13] architecture with 50 layers

is used to approximate E. In conclusion, the reconstructor,

as a third player in GANs, guides the generator network to

avoid mode-collapse and generate a wide variety of realistic

images.

4.3. Algorithm

The optimization problem in Eqn. (4) is not jointly convex

in variables of G and D. Therefore, we adopt an alternat-

ing stochastic gradient descent approach to minimize the

loss functions in Eqn. (4), and a block coordinate descent

strategy for satisfying its constraint (updating E∗). This

procedure leads to Algorithm 1, where the details of the

updating procedure are discussed below:

Lines 1-2: We randomly initialize the generator and the

discriminator parameters. The dictionary Ω is trained using

the online dictionary learning approach [21].

Lines 4-9: We randomly select a subset of images and

noise vectors. We uniformly sample a real number ε. The

random noise vector zi is fed to the generator network and

we calculate the discriminator loss in (line 8) and update the

discriminator parameters (line 9).

Lines 10-13: We randomly select noise vectors and calcu-

late the generator loss in (line 11). We update the generator

parameters in (line 13).

Lines 14-19: We train the encoder network (line 15) by

generating samples and solving Eqn. (6) through a standard

back propagation scheme. We skip some details due to lack

of space. Then, we randomly select noise vectors associated

with the real images, and we calculate the reconstructor loss

in (line 18). We update the generator parameters in (line 19).

5. Experiments

We evaluate our proposed methodology on CelebA

dataset [19], and CIFAR10 object images. The performance

of our proposed method is compared to the state-of-the-art

methods. In all the following experiments, the reconstructor

network E is a 50-layer ResNet [13] network trained on

50,000 randomly generated samples.

5.1. CIFAR 10 dataset

There are 60,000 color images in CIFAR-10 dataset which

are divided into 50,000 training images and 10,000 test im-

ages. The size of images in this dataset is 32×32 and there

are in total 10 classes in this dataset. In order to generate

a 32×32 image from the 128 dimensional noise vector, a

fully connected layer first expands the input dimension to a

4×4×1024 tensor (reshaped as tensor) and subsequently a

series of three fractionally-strided convolutions transform the

spatial dimension to 32×32 (doubling the spatial dimension

in each layer). The number of channels has changed from

1024 to 512 and 100. The size of the pre-trained dictionary,

Ω, in this experiment is 27× 100.

Fig. 3 presents the images generated in this experiment

and compares them with the images generated by WGAN [1]

and Improved WGAN [11]. As seen, the images generated

by the proposed method have higher quality and variance

compared to the images generated by the other methods. It

is worth mentioning that the experiments in this section are

conducted in an unsupervised setting. Fig. 4 presents the

images generated in this experiment using residual blocks in

each layer of the generator network and compares them with

the images generated by Improved WGAN [11]. We observe

that our method leads to a higher quality and diversity.

Table 1 and Table 2 compare the inception score of dif-

ferent methods in case of a simple DCGAN generator and a

generator with residual blocks respectively. Our proposed

method increases the inception of WGAN and Improved

WGAN in both cases. In case of a simple DCGAN generator,

the inception score increased of Improved WGAN increased

dramatically by 0.78 point and in case of a generator with

residual blocks, the score increased by 0.09 point.

5.2. CelebA dataset

There are 200,000 color images of celebrity faces in

CelebA dataset [19]. The size of images in this dataset



(a) SPGAN (using Improved WGAN)

(b) WGAN

(c) Improved WGAN

Figure 3: Generated images using CIFAR10 dataset

Table 1: Inception score on CIFAR10 images without resid-

ual blocks in generator

Method score SPGAN
SPGAN

recon.

ALI [7] 5.36 - -

BEGAN [2] 5.62 - -

WGAN [1] 5.76 6.1 6.6

Im-WGAN [11] 5.92 6.2 6.7

Table 2: Inception score on CIFAR10 images with residual

blocks in generator

Method score SPGAN
SPGAN

recon.

ALI [7] 5.36 - -

BEGAN [2] 5.62 - -

WGAN [1] 7.73 7.85 7.88

Im-WGAN [11] 7.86 7.93 7.95

is 64×64. In order to generate a 64×64 image from the

256 dimensional noise vector, at the first layer, a fully con-

nected layer expands the input dimension to a 4×4×2048

tensor (reshaped as tensor) and subsequently a series of four

fractionally-strided convolutions transform the spatial di-

mension to 64× 64 (doubling the spatial dimension in each

layer). The number of channels has changed from 2048,

to1024 at the third layer, 512 at the fourth layer and to 100

at the fifth layer. The size of the pre-trained dictionary Ω in

this experiment is 27× 100.



(a) SPGAN (using Improved WGAN) (b) Improved WGAN

Figure 4: Generated images using CIFAR10 dataset using Resnet blocks

(a) SPGAN (using Improved WGAN)

(b) Improved WGAN

Figure 5: Generated images using celebraty face dataset

Fig. 5 shows the generated images in this experiment and

compares them with the generated images by WGAN [1] and

Improved WGAN [11]. As one can see the images generated

by the proposed method have higher quality and variance

compared to the images generated by the other methods.

6. Conclusions

In this paper, we developed an enhanced GAN architec-

ture, which generates images from patches, obtained through

a UoS model. We also proposed a third player, called recon-

structor to ensure high variability of the output images. We

used two image datasets to evaluate the performance of the

proposed generative adversarial method and demonstrated

the remarkable advantage of regularizing the generative net-



work by a reconstructor network and learning image charac-

teristics at multiple scales. The evaluation results show the

merit of the proposed method for generating images. The

idea can be generalized to an arbitrary number of layers in

different datasets.
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