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Abstract

With the increased availability of 3D scanning technol-

ogy, point clouds are moving into the focus of computer vi-

sion as a rich representation of everyday scenes. However,

they are hard to handle for machine learning algorithms

due to their unordered structure. One common approach

is to apply occupancy grid mapping, which dramatically

increases the amount of data stored and at the same time

loses details through discretization. Recently, deep learn-

ing models were proposed to handle point clouds directly

and achieve input permutation invariance. However, these

architectures often use an increased number of parameters

and are computationally inefficient. In this work we pro-

pose basis point sets (BPS) as a highly efficient and fully

general way to process point clouds with machine learning

algorithms. The basis point set representation is a residual

representation that can be computed efficiently and can be

used with standard neural network architectures and other

machine learning algorithms. Using the proposed repre-

sentation as the input to a simple fully connected network

allows us to match the performance of PointNet on a shape

classification task, while using three orders of magnitude

less floating point operations. In a second experiment, we

show how the proposed representation can be used for reg-

istering high resolution meshes to noisy 3D scans. Here,

we present the first method for single-pass high-resolution

mesh registration, avoiding time-consuming per-scan opti-

mization and allowing real-time execution.

1. Introduction

Point cloud data is becoming more ubiquitous than ever:

anyone can create a point cloud from a set of photos with

easy to use photogrammetry software or capture a point

cloud directly with one of many consumer-grade depth sen-

sors available worldwide. These sensors will soon be used
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Figure 1. Basis point set encoding for point clouds. The encod-

ing of a point cloud X = {x1, . . . ,xn} is a fixed-length feature

vector, computed as the minimal distances to a fixed set of points

B = [b1, ...,bk]
T . This representation can be used as input to

arbitrary machine learning methods, in particular it can be used

as input for off-the-shelf neural networks. This leads to substan-

tial performance gains as compared to occupancy grid encoding

or specialized neural network architectures without sacrificing the

accuracy of predictions.

in most aspects of our daily lives, with autonomous cars

recording streets and city environments and VR and AR

devices recording our home environment on a regular ba-

sis. The resulting data represents a great opportunity for

computer vision research: it complements image data with

depth information and opens up new fields of research.

However, point cloud data itself is unstructured. This

leads to a variety of problems: (a) point clouds have no fixed

cardinality, varying their size depending on the recorded

scene. They are also not ‘registered’ in the sense that it

is not trivial to find correspondences between points across

recordings of the same or of a similar scene. (b) Point



Figure 2. Overview of our proposed model for the task of mesh registration to a noisy scan. The computed minimal distances to the selected

basis point set are provided as input to a simple dense network with two blocks of two fully connected layers. The model directly predicts

mesh vertex positions, with a forward pass taking less than 1ms. We also propose a model for shape classification; see Sec. 5 for details.

clouds have no notion of neighborhood. This means that it

is not clear how convolutions, one of the critical operations

in deep learning, should be performed.

In this paper, we present a novel solution to the afore-

mentioned problems, in particular the varying cloud cardi-

nality. For an illustration, see Fig. 1. We propose to en-

code point clouds as minimal distances to a fixed set of

points, which we refer to as basis point set. This repre-

sentation is vastly more efficient than classic extensive oc-

cupancy grids: it reduces every point cloud to a relatively

small fixed-length vector. The vector length can be adjusted

to meet computational constraints for specific applications

and represents a trade-off between fidelity of the encoding

and computational efficiency. Compared to other encodings

of point clouds, the proposed representation also has an ad-

vantage in being more efficient with the number of values

needed to preserve high frequency information of surfaces.

Given its fixed length, the presented encoding can be

used with most of the standard machine learning techniques.

In this paper we apply mostly artificial neural networks to

build models with it, due to their popularity and accuracy.

In particular, we analyze the performance of the encoding in

two applications: point cloud classification and mesh regis-

tration over noisy 3D scans (c.f ., Fig. 2).

For point cloud classification, we achieve the same ac-

curacy on the ModelNet40 [46] shape classification bench-

mark as PointNet [34], while using an order of magnitude

less parameters and three orders of magnitudes less floating

point operations.To demonstrate the versatility of the en-

coding, we show how it can be used for the task of mesh

registration. We use the encoded vectors as input to a neu-

ral network that directly predicts mesh vertex positions.

While showing competitive performance to the state-of-the-

art methods on the FAUST dataset [2], the main advantage

of our method is the ability to produce an aligned high reso-

lution mesh from a noisy scan in a single feed-forward pass.

This can be executed in real time even on a non-GPU lap-

top computer, requiring no additional post-processing steps.

We make our code for both presented tasks available, as

well as a library for usage in other projects1.

2. Related Work

In this section, we describe existing 3D data representa-

tions and models and put them in relation to the presented

method. We focus on representations that are compatible

with deep learning models, due to their high performance

on a variety of 3D shape analysis tasks.

Point clouds. Numerous methods [34, 36, 41, 47,

25] were proposed that process 3D point clouds directly,

amongst which the PointNet family of models gained the

most popularity. This approach processes each point sepa-

rately with a small neural network followed by an aggrega-

tion step with a pooling operation to reason about the whole

point cloud. Similar pooling-based approaches for achiev-

ing feature invariance on general unordered sets were pro-

posed in other works as well [47]. Other methods working

directly on point clouds organize the data in kd-trees and

other graphs [23, 12, 24]. These structures define a neigh-

borhood and thus convolution operations can be applied.

Vice versa, specific convolutional filters can be designed for

sparse 3d data [44, 41].

1https://github.com/sergeyprokudin/bps



We borrow several ideas from these works, such as using

kNN-methods for searching efficiently through local neigh-

borhoods or achieving order invariance through the use of

pooling operations over computed distances to basis points.

However, we believe that the proposed encoding and model

architectures offer two main advantages over existing point

cloud networks: (a) higher computational efficiency and (b)

conceptually simpler, easy-to-implement algorithms that do

not rely on a specific network architecture or require custom

neural network layers.

Occupancy grids. Similar to pixels for 2D images, oc-

cupancy grid is a natural way of encoding 3D information.

Numerous deep models were proposed that work with oc-

cupancy grids as inputs [29, 35, 30]. However, the main dis-

advantage of this encoding is their cubic complexity. This

results in a high amount of data needed to accurately rep-

resent the surface. Even relatively large grids by our cur-

rent memory standards (1283, 2563) are not sufficient for

an accurate representation of high frequency surfaces like

human bodies. At the same time, this type of voxelization

results in very sparse volumes when used to represent 3D

surfaces: most of the volume measurements are zeros. This

makes this representation an inefficient surface descriptor

in multiple ways. A number of methods was proposed to

overcome this problem [45, 37]. However, the problem of

representing high frequency details remains, together with

a large memory footprint and low computational efficiency

for running convolutions.

Signed distance fields. Truncated signed distance fields

(TSDFs) [8, 31, 38, 42, 48, 9, 33] can be viewed as a natural

extension of occupancy grids: they store distance-to-surface

information in grid cells instead of a simple occupancy flag.

While this partially resolves the problem of representing

surface information, the cubic requirement for memory and

the low computational efficiency for convolutions remains.

In comparison, our method can be viewed as one that uses

an arbitrary subset of points from the distance field. The

crucial difference is that the distance field we sample from

is unsigned and non-truncated, and the number of samples is

proportional to the number of points in the original cloud.

We further investigate the connection between occupancy

grids, TSDFs and BPS in Sec. 4.1.

2D projections. Another common strategy is to project

3D shapes to 2D surfaces and then apply standard frame-

works for 2D input processing. This includes depth

maps [46], height maps [40], as well as a variety of multi-

view models [43, 22, 11]. Closely related are approaches

that project 3D shapes into spheres and apply spherical con-

volutions to achieve rotational invariance [10, 6]. While

projection-based approaches show high accuracy in dis-

criminative tasks (classification, shape retrieval), they are

fundamentally limited in representing shapes that have mul-

tiple ‘folds’, invisible from external views. In comparison,

our encoding scheme can accurately preserve surface infor-

mation of objects with arbitrary topology as we show in our

experiments in Sec. 4.

We now describe the algorithm for constructing the pro-

posed basis point representation from a given point cloud.

3. Method

Normalization. The presented encoding algorithm takes

a set of point clouds as input X = {Xi, i = 1, . . . , p}.

Every point cloud can have a different number of points ni:

Xi = {xi1, . . . ,xini
},xij ∈ R

d, (1)

where d = 3 for the case of 3D point clouds. In first step,

we normalize all point clouds to a fit a unit ball:

xij =
xij − Exij∼Xi

xij

maxxij∈Xi
‖xij − Exij∼Xi

xij‖
, ∀i, j. (2)

BPS construction. Next, we form a basis point set. For

this task, we sample k random points from a ball of a given

radius r:

B = [b1, ...,bk]
T ,bj∈R

d, ‖bj‖ <= r. (3)

It is important to mention that this set is arbitrary but

fixed for all point clouds in the dataset. r and k are hyper-

parameters of the method, and k can be used to determine

the trade-off between computational complexity and the fi-

delity of the representation.

Feature calculation. Next, we form a feature vector for

every point cloud in a dataset by computing the minimal

distance from every basis point to the nearest point in the

point cloud under consideration:

x
B

i = [ min
xij∈Xi

d (b1,xij), . . . , min
xij∈Xi

d (bk,xij)]
T ,

x
B

i ∈ R
k. (4)

Alternatively, it is possible to store the full directional in-

formation in the form of delta vectors from each basis point

to the nearest point in the original point cloud:

X
B

i =
{(

argmin
xij∈Xi

d (bq,xij)− bq

)}

∈ R
k×d, (5)

Other information about nearest points (e.g., RGB val-

ues, surface normals) can be saved as part of this fixed rep-

resentation. The feature computation is illustrated in Fig. 1.

The formulas (4) and (5) give us fixed-length representa-

tions of the point clouds that can be readily used as input

for learning algorithms.



BPS selection strategies. We investigate a number of ba-

sis point selection strategies and provide details of these ex-

periments in Sec. 4.2. Overall, random sampling from a

uniform distribution in the unit ball provides a good trade-

off between efficiency, universality of the generation pro-

cess and surface reconstruction results, and we apply it

throughout the experiments in this paper. Alternatively, an

extensive 3D grid of basis points could be used in tandem

with any existing 3D convolutional neural network in order

to achieve maximum performance at the cost of increased

computational complexity.

Complexity. In this work, we use Euclidean distances be-

tween points for creating our encoding, but other metrics

could be used in principle. Since we are working with 3D

point clouds (which corresponds to having a small value

for d), the nearest neighbor search can be made efficient

by using data structures like ball trees [32]. Asymptoti-

cally, O(n log n) operations are needed for constructing a

ball tree from the point cloud Xi and O(k log n) opera-

tions are needed to run nearest neighbor queries for k ba-

sis points. This leads to an overall encoding complexity of

O(n log n+ k log n) per point cloud. The kNN search step

can be also efficiently implemented as part of an end-to-end

deep learning pipeline [21]. Practically, we benchmark our

encoding scheme for different values of n and k and show

real-time encoding performance for values interesting for

current real world applications. Please refer to the supple-

mentary materials for further details.

4. Analysis

4.1. Comparison to occupancy grids, TSDFs and
plain point clouds

Informal intuition. Compared to occupancy grids and

TSDFs, the efficiency and superiority of the proposed BPS

encoding is based on two key observations. First, it is bene-

ficial for both surface reconstruction and learning to store

some continuous global information (e.g., Euclidean dis-

tance to the nearest point) in every cell of the grid instead

of simple binary flags or local distances. In the latter case,

most of the voxels remain empty and, moreover, the feature

vector will change dramatically when slight translations or

rotations are applied to an object. In comparison, every BPS

cell always stores some information about the encoded ob-

ject and the feature vector changes smoothly with respect

to affine transformations. From this also stems the second

important observation: when every cell stores some global

information, we can use a much smaller number of them

in order to represent the shape accurately, thus avoiding

the cubical complexity of the extensive grid representation.

This can be seen in Fig. 1 and bottom right Fig. 3, where

k ≈ n basis points are able to capture the outline of the

Figure 3. Surface encoding with occupancy grids (left) and basis

point sets (right). With the same length of encoding N our method

can capture surface details more accurately. Even when using only

k ≈ 103 basis points, our method can capture details of a surface

(bottom right).

original cloud.

We will now validate this intuition by comparing the

aforementioned representations in terms of surface recon-

struction and actual learning capabilities.

Surface reconstruction experiments. Independent of a

certain point cloud at hand, how well does the encoding

capture the details from the object? To answer this ques-

tion, we take 103 random CAD models from the Model-

Net40 [46] dataset and construct synthetic point clouds by

sampling 104 points from each surface. We compare three

approaches of encoding the resulting point clouds: storing

them as is (raw point cloud), occupancy grid and the pro-

posed encoding via basis point sets as suggested in Eq. 5.

For all methods we define a fixed allowed description

length N (as N floating point values) and compare the nor-

malized bidirectional Chamfer distance between the origi-

nal point cloud X and the reconstructed point cloud Xr for

the different encodings:

dCD(X,Xr) =
1

|X|
∑

xi∈X

min
xr

i∈Xr
||xi − x

r
i||2

+
1

|Xr|
∑

xr

i∈Xr

min
xi∈X

||xi − x
r
i||2. (6)



Figure 4. Surface reconstruction quality vs. encoding length for

different 3D data encoding methods. We measured the Chamfer

distance on 103 encoded and reconstructed random shapes from

the ModelNe40 dataset. The suggested representation is more

accurate in representing surface details than standard occupancy

grid. The performance of our best basis selection methods is close

to encoding the surface with subsampled unordered point clouds

while being a fixed-length representation that can be directly used

with a wide range of machine learning algorithms. See Sec. 4 for

further details.

With the same length of the description N we can ei-

ther store N/3 points from the original point cloud,
3
√
N ×

3
√
N× 3

√
N binary occupancy flags or N/3 basis points with

the matrix X
B

i defined in Eq. 5. From this matrix, a subset

of original points can be reconstructed by simply adding

corresponding basis point coordinates to every delta vec-

tor. For the occupancy grid encoding, we use the centers

of occupied grid cells; please note that though a full float-

ing point representation is not necessary to store the binary

flag, in reality the majority of machine learning methods

will work with floating point encoded occupancy grids and

we assume this representation.

Fig. 4 shows the encoding length and the reconstruction

quality measured as Chamfer distance (c.f ., Eq. 6). The

proposed encoding produces less than half of the encoding

error compared to occupancy grids for point clouds up to

roughly 104 points (see Fig. 3 for a qualitative compari-

son). This is an indicator for its superiority for preserving

shape information. The error curve for the basis point sets is

close to the one of the subsampled point cloud representa-

tion. The basis point set representation is less accurate than

the raw point cloud since the resulting extracted points are

not necessarily unique. However, the basis point set is an

ordered, fixed-length vector encoding well-suited to apply

machine learning methods.

Figure 5. Different basis point selection strategies. See Sec. 4.2

for details. In this work, we mainly use random uniform ball sam-

pling for its simplicity and efficiency, as well as rectangular grid

basis that allows us to apply 3D convolutions in a straightforward

manner. Different BPS arrangements allow the usage of different

types of convolutions.

4.2. Basis point selection strategies

We investigate four different variants of selecting basis

points visualized in Fig. 5.

Rectangular grid basis. A basic approach to basis set

construction is to simply arrange points on a rectangular

[−1, 1]3 grid. In that case, the basis point set representation

resembles the truncated signed distance field [8] represen-

tation. However, one important difference is that we do not

truncate the distances for far-away basis points, allowing

every point in the set to store some information about the

object surface. We will show in Sec. 5.1 that this small con-

ceptual difference has an important effect on performance.

We are also allowing the full directional information to be

stored in the cell as defined in Eq. 5. Finally, BPS does

not require the point clouds to be converted into watertight

surfaces since unsigned distances are used.

Ball grid basis. Since all point clouds are normalized to

fit in the unit ball by the transformation defined in Eq. 2, the

basis points at the corners of the rectangular grid are located

far away from the point cloud. These corner points in fact

constitute 47.6% of all the samples (this can be derived by

comparing the volume ratio of a unit ball to a unit cube).



id Method acc. FLOPs params

1 VoxNet [29] 83.0% > 108 9.0× 105

2 Occ-MLP (323 grid) 79.9%± 0.3 3.4× 107 1.7× 107

3 Occ-MLP (83 grid) 74.5%± 0.2 1.1× 106 5.5× 105

4 TDF-MLP (323 grid) 80.0%± 0.3 3.4× 107 1.7× 107

5 TDF-MLP (83 grid) 75.9%± 0.3 1.1× 106 5.5× 105

6 BPS-MLP (323 grid) 88.3%± 0.2 3.4× 107 1.7× 107

7 BPS-MLP (83 grid) 87.6%± 0.3 1.1× 106 5.5× 105

8 BPS-MLP (83 ball) 87.7%± 0.3 1.1× 106 5.5× 105

9 BPS-MLP (83 rand) 88.0%± 0.3 1.1× 106 5.5× 105

10 BPS-MLP (83 HCP) 88.1%± 0.3 1.1× 106 5.5× 105

11 BPS-Conv3D (323 grid) 89.8%± 0.2 3.5× 108 1.7× 107

12 9 → direct. vect. 86.2%± 0.3 2.2× 106 1.1× 106

13 11 → direct. vect. 90.8%± 0.3 3.8× 108 1.7× 107

14 BPS-ERT [13] (163 g.) 85.4%± 0.2 N/A N/A

15 BPS-XGBoost (323 g.) 86.1%± 0.1 N/A N/A

Table 1. Comparison between occupancy grids, truncated distance

fields (TDF) and BPS as input features for 3D shape classification

on the ModelNet40 [46] challenge. We keep the model architec-

ture fixed across experiments. Global BPS encoding significantly

outperforms its local counterparts. See Sec. 5.1 for further details.

Hence we can improve our sampling efficiency by simply

trimming the corners of the grid and using more sampling

locations within the unit ball.

Random uniform ball sampling. One generic simple

strategy to select points lying inside a d−dimensional ball

is uniform sampling. This can be done by either rejec-

tion sampling from a d−dimensional cube or other efficient

methods that are summarized in [17].

Hexagonal close packing (HCP). We also experiment

with hexagonal close packing [7] of basis points. Infor-

mal intuition behind this point selection strategy is that it

will optimally cover the unit ball with equally sized balls

centered at the basis points [16].

We show a comparison of reconstruction errors of 103

ModelNet objects using the different sampling strategies in

Fig. 4. Overall, the random uniform and HCP selection

strategies provide the best reconstruction results. Using reg-

ular grids opens up possibilities for applying convolution

operations and adds the possibility to learn translation and

rotation invariant features.

We now evaluate the different encodings and basis point

selection strategies with respect to their applicability with

machine learning algorithms.

5. Learning with Basis Point Sets

5.1. 3D Shape Classification

One of the classic tasks to perform on point clouds is

classification. We present results for this task on the Mod-

elNet40 [46] dataset. We benchmark several deep learning

architectures that use the proposed point cloud representa-

tion and compare them to existing methods that use alter-

native encodings. The dataset consists of 12 · 103 CAD

models from 40 different categories, of which 9.8 · 103 are

used for training. We use the same procedure for obtaining

point clouds from CAD models as in [34], i.e., we sample

n = 2048 points from mesh faces, followed by the normal-

ization process defined in Eq. (2).

Comparison to occupancy grids and VoxNet. To show

the superiority of BPS features and to disambiguate con-

tributions (i.e., the BPS encoding itself and the proposed

network architectures), we fix a simple generic MLP archi-

tecture with 2 blocks of [fully-connected, relu, batchnorm,

dropout] layers and perform training with 323 rectangular

grids of occupancy maps, truncated distance fields (TDFs)

and BPS as inputs.

Results are summarized in Tab. 1, rows 1-7. Using global

distances as features instead of occupancy flags with the

same network clearly improves accuracy, outperforming an

architecture that was specifically designed for processing

this type of input: VoxNet [29] (row 1). TDFs store only

local distances within the grid cell and suffer from the same

locality problem as voxels (r. 4). It is also important to note

that reducing the grid size affects these methods dramati-

cally (rows 3 and 5, 5% drop in accuracy), while the effect

on the BPS is marginal (r. 6, −0.7%).

We also compare different BPS selection strategies in the

rows 7-10 of Tab. 1. In the absence of network operators

exploiting the point ordering (e.g. 3D convolutions), ran-

dom and HCP strategies give a slight boost in performance.

When the point order in a rectangular BPS grid is exploited

with 3D convolutional deep learning models like VoxNet,

performance improves at the cost of increased computa-

tional complexity (approximately two orders of magnitude

more flops, Tab. 1, r. 11).

Substituting Euclidean distances with full directional in-

formation defined by Eq. 5 negatively affects the perfor-

mance of a plain fully-connected network (Tab. 1, r.12)

whereas it improves the performance of a 3D convolutional

model (Tab. 1, r. 13).

To show the versatility of the proposed representation,

we also use the same BPS features as input to an ensemble

of extremely randomized trees (ERT [13]) and XGBoost [5]

frameworks.

Comparison to other methods. Finally, we combine

these findings with other enhancements (e.g., augment-

ing the data with few fixed rotations, improving learning

schedule and regularization - please refer to the supplemen-

tary material and corresponding repository for further de-

tails) and compare our two best-performing models to other

methods in Tab. 2.



Method acc. FLOPs params

RotationNet 20x [22] 97.37% >109 5.8× 107

MVCNN 80x [43] 90.1% 6.2× 1010 9.9× 107

VoxNet [29] 83.0% >108 9.0× 105

Spherical CNNs [10] 88.9% 2.9× 107 5.0× 105

point cloud based methods:

KD-networks [23] 91.8% >109 >107

KCNet [41] 91.0% >108 9.0× 105

SO-Net [25] 90.9% >108 >106

DeepSets [47] 90.0% 1.5× 109 2.1× 105

PointNet++ [36] 90.7% 1.6× 109 1.7× 106

PointNet [34] 89.3% 4.4× 108 3.5× 106

PointNet(vanilla) [34] 87.2% 1.4× 108 8.0× 105

DeepSets (micro) [47] 82.0% 3.8× 107 2.1× 105

Ours (BPS-MLP) 89.0% 7.6× 10
5 3.8× 105

Ours (BPS-Conv3D) 90.8% 3.5× 108 4.4× 106

Ours (BPS-Conv3D, 10x) 91.6% 3.5× 109 4.4× 107

Table 2. Results on the ModelNet40 [46] 3D shape classification

challenge. Simple fully connected network can be trained on BPS

features in several minutes on a single GPU to reach the perfor-

mance of PointNet.

In summary, simple fully connected network, trained

on BPS features in several minutes on a single GPU, is

reaching the performance of PointNet [34], one of the

most widely used networks for point cloud analysis. 3D-

convolutional model trained on BPS rectangular grid is

matching the performance of the PointNet++[36], while

still being computationally more efficient. Finally, crude

ensembling of 10 such models allows us to match state-of-

the-art performance [23] among methods working only on

point clouds as inputs (e.g., without using surface normals

that are available in CAD models but rarely in real-world

scenarios).

5.2. Single-Pass Mesh Registration from 3D Scans

We showcase a second experiment with a different, gen-

erative task to demonstrate the versatility and performance

of the encoding. For this, we pick the challenging problem

of human point cloud registration. In this problem, corre-

spondences are found between an observed, unstructured

point cloud and a deformable body template. Traditionally,

human point cloud registration has been approached with it-

erative methods [18, 49]. However, they are typically com-

putationally expensive and require the use of a deformable

model at application time. Machine learning based meth-

ods [15] remove this dependency by replacing them with

a sufficiently large training corpus. However, current solu-

tions like [15] rely on multistage models with complex in-

ternal representations, which makes them slow to train and

test. We encourage the reader interested in human mesh reg-

istration to review the excellent summary of previous work

provided in [15].

Method Intra (mms) Inter (mms)

Stitched puppets [49] 1.568 3.126

3D-CODED [15] 1.985 2.878

Ours 2.327 4.529

Deep functional maps [26] 2.436 4.826

FARM [28] 2.81 4.123

Convex-Opt [4] 4.86 8.304

Table 3. Results for all published methods in the intra and inter

challenge for the FAUST dataset, sorted by error in the intra chal-

lenge. Our BPS-based network has a performance comparable to

other methods while allowing single pass, real-time mesh registra-

tion, with no per-scan optimizations.

We use a simple DenseNet-like [20] architecture with

two blocks (see Figure 2), where the input is a BPS en-

coding of a point cloud and the output is the location of

each vertex in the common template. Note that there is no

deformable model in our system and that we do not esti-

mate deformable model parameters or displacements; the

networks learns to reproduce coherent bodies just based on

its training data.

To generate this training data, we use the SMPL body

model [27]. SMPL is a reshapeable, reposable model that

takes as input pose parameters related to posture, and shape

parameters related to the intrinsic characteristics of the un-

derlying body (e.g., height, weights, arm length). We sam-

ple shape parameters from the CAESAR [39] dataset, which

contains a wide variety of ages, body constitution and eth-

nicities. For sampling poses we use two sources: the CMU

dataset [1] and a small set of poses inferred from a 3D

scanner . Since the CMU dataset is heavily populated with

walking and running sequences, we perform weighted sam-

pling of poses with the inverse Mahalanobis distance from

the sample to the CMU distribution as weight. We roughly

align the CMU poses to be frontal. To increase the varia-

tion of the training data, we introduce noise sampled from

the covariance of all the considered poses to half of the data

points. From these meshes, a set of 104 points is sampled

uniformly from the surface of the posed and shaped SMPL

template. These point clouds are then used to compute the

BPS encoding. We train the alignment network for 1000

epochs in only 4 hours and its inference time is less than

1ms on a non-GPU laptop.

To evaluate our method, we process the test set from the

FAUST [2] dataset. It is used to compare mesh correspon-

dence algorithms by using a list of scan points in correspon-

dence. To find correspondences between two point clouds,

we process each of them with our network, obtaining as a

result two registered mesh templates. The templates then

define the dense correspondences between the point clouds.



Figure 6. Point clouds of the FAUST dataset and the predicted meshes. Blue: point cloud from a 3D scanner. Skin color: predicted

mesh by our model through processing of its BPS representation. Note that the network produces the position of each output vertex; their

coherent structure is learned solely from the training data.

We obtain an average performance of 2.327mm in the

intra-subject challenge and 4.529mm in the inter-subject

challenge (see Tab. 3). These numbers are comparable, but

higher than state-of-the-art methods like [15] or [49]. How-

ever, we note that the two methods outperforming BPS in

the FAUST intra challenge are orders of magnitude slower

than our system. The two-stage procedure in [15] takes

multiple minutes and the particle optimization in [49] takes

hours, while our system produces alignments in 1ms (for

qualitative results, see Fig. 6). This enables real-time pro-

cessing of 3D scans, which was previously impossible, or

can be used as a first step for faster multistage systems that

refine the accuracy of this single stage method. We also

provide a qualitative evaluation on the Dynamic FAUST[3]

dataset in the supplementary video 2.

2https://youtu.be/kc9wRoI5JbY

6. Conclusion and Future Work

In this paper, we introduced basis point sets for obtaining

a compact fixed-length represenation of point clouds. BPS

computation can be used as a pre-processing step for a va-

riety of machine learning models. In our experiments, we

demonstrated in two applications and with different mod-

els the computational superiority of our approach with or-

ders of magnitudes advantage in processing time compared

to existing methods, remaining competitive accuracy-wise.

We have shown the advantage of using rectangular BPS grid

in combination with standard 3D-convolutional networks.

However, in future work it would be interesting to consider

other types of BPS arrangements and corresponding convo-

lutions [19, 6, 10, 14] for improved efficiency and learning

rotation-invariant representations.
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