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Abstract

Support vector machines (SVMs) have been successful

in solving many computer vision tasks including image

and video category recognition especially for small and

mid-scale training problems. The principle of these non-

parametric models is to learn hyperplanes that separate

data belonging to different classes while maximizing their

margins. However, SVMs constrain the learned hyperplanes

to lie in the span of support vectors, fixed/taken from training

data, and this reduces their representational power and may

lead to limited generalization performances.

In this paper, we relax this constraint and allow the sup-

port vectors to be learned (instead of being fixed/taken from

training data) in order to better fit a given classification task.

Our approach, referred to as deep total variation support

vector machines, is parametric and relies on a novel deep

architecture that learns not only the SVM and the kernel pa-

rameters but also the support vectors, resulting into highly

effective classifiers. We also show (under a particular setting

of the activation functions in this deep architecture) that a

large class of kernels and their combinations can be learned.

Experiments conducted on the challenging task of skeleton-

based action recognition show the outperformance of our

deep total variation SVMs w.r.t different baselines as well as

the related work.

1. Introduction

Support vector machine (SVM) — also known as support

vector network — has been a mainstream standard in

machine learning for a while [19, 21, 2, 9] before deep

learning has been re-popularized by the seminal work

of [18] and [25, 26, 27, 28, 30, 32, 29, 6]. The general

idea of SVMs [12] is to learn hyperplanes that separate

populations of training data belonging to different classes

while maximizing their margin. These models have

been successfully applied to different pattern recognition

tasks including image category recognition especially for

small or mid-scale training problems (see for instance

[24, 33, 46, 14, 62, 52, 23]). However, the success of

SVMs is highly dependent on the appropriate choice

of kernels. The latter, defined as symmetric positive

semi-definite functions, should reserve large values to

highly similar content and vice-versa [67]. Existing

kernels are either handcrafted (such as gaussian, histogram

intersection, etc. [4, 47, 76, 22, 70]) or trained using

multiple kernels [41, 42, 43, 44, 45] and explicit kernel

maps [34, 35, 36, 38, 39, 40] as well as their deep variants1

[48, 49, 50, 51, 53, 54, 55, 37, 17].

SVMs are basically non-parametric models; their training

consists in solving a constrained quadratic programming

(QP) problem [19] whose parameter set grows as the size

of training data increases2. The solution of a given QP

(the separating hyperplane) is defined in the span of a

subset of training data known as the support vectors, i.e.,

as a linear combination of training data whose Lagrange

multipliers are strictly positive. Constraining the SVM

solution in the span of fixed support vectors3 contributes

in making the QP convex and always convergent to a

global solution regardless of its initialization; however, this

reduces the representational power of the learned SVMs

as only a subclass of possible functions is explored during

optimization (i.e., only those defined in the span of fixed

support vectors), and this makes the estimation risk of SVMs

structurally high compared to other models (including deep

learning ones [57]), especially when the support vectors are

not sufficiently representative of the actual distribution of

training and test data.

In this paper, we introduce an alternative learning

1In relation to kernel (or similarity) design, siamese networks also aim

to learn functions between pairs of data [31], but these similarities are not

guaranteed to be positive semi-definite and hence cannot always be plugged

into kernel-based SVMs for classification.
2Each parameter corresponds to a Lagrange multiplier associated to a

given training sample.
3In this paper, fixed support vectors do not mean independent from the

training samples, but taken from a finite collection of these samples for

which the parameters (denoted {αi}i) are non zeros (see later Eq 2).



algorithm referred to as total variation support vector

machine (TV SVM) where the support vectors, kernels

and their combinations are all allowed to vary (together

with the original SVM parameters) resulting into more

flexible and highly discriminant classifiers. Our model is

parametric and based on a novel deep network architecture

that includes three major steps: (i) support vector learning

as a part of individual kernel design, (ii) kernel combination

and (iii) SVM parameter learning. We will show, for a

particular setting of the activation functions in this deep

architecture, that a large class of kernels (including distance

and inner product-based as well as their combinations) can

be modeled. The non-convexity of the underlying deep

learning problem makes the class of possible solutions

larger compared to the ones obtained using standard (convex

and non-parametric) SVMs. In contrast to the latter, the

VC-dimension [13] of our parametric TV SVMs is finite4;

according to Vapnik’s VC-theory [15], the finiteness of the

VC-dimension avoids loose generalization bounds, reduces

the risk of over-fitting and guarantees better performances

as also shown in our experiments.

In this proposed framework, the learned support vectors act

as kernel parameters and make it possible to map input data

to multiple kernel features prior to their classification (as

also achieved in [34, 35, 36, 38, 39, 40]). Nevertheless, the

proposed framework is conceptually different from these

related methods; the latter consider the support vectors

fixed/taken from training data in order to design explicit

kernel maps prior to learn parametric SVMs while in our

method, the support vectors are optimized to better fit

the task at hand. Our method is also different from the

reduced set technique [20] and the deep kernel nets (for

instance [50, 51, 54, 55, 37, 17]). Indeed, the latter operate

on precomputed kernel inputs (gram matrices) while the

former aims at reducing the complexity of pre-trained

nonlinear SVM classifiers using a reduced set of virtual

support vectors obtained by minimizing a least squares

criterion between the initial and newly generated hyperplane

classifiers. Furthermore, the reduced set technique assumes

that the initial SVMs are already pre-trained (which could

be intractable for large scale problems); besides, the newly

generated classifiers could be biased especially when

the original pre-trained SVMs are highly complex and

nonlinear. Finally, resulting from the parametric setting of

our approach, its training and testing complexity is a priori

controllable.

The rest of this paper is organized as follows; section 2

reminds the general formulation of SVMs and their deep

extensions using kernel networks. Section 3 introduces our

4The VC-dimension is the maximum number of data samples, that can

be shattered, whatever their labels.

main contribution; a total variation SVM that makes it possi-

ble to learn not only kernels and SVMs but also the support

vectors. Section 4 shows the validity of our method through

extensive experiments on the challenging task of skeleton-

based action recognition. Section 5 concludes the paper

while providing possible extensions for a future work.

2. Deep SVM networks

Define X ⊆ R
p as an input space corresponding to

all the possible data (e.g., images or videos) and let S =
{x1, . . . ,xn, . . . ,xn+m} be a finite subset of X with an ar-

bitrary order. This order is defined so only the first n labels of

S , denoted {y1, . . . ,yn}, are known (with yi ∈ {−1,+1}).

2.1. Hinge loss max-margin inference at a glance

Max margin inference aims at building a decision function

f that predicts a label y for any given input data x; this

function is trained on L = {x1, . . . ,xn} and used in order

to infer labels on U = S\L. In the max-margin classification

[13], we consider φ as a mapping of the input data (in X ) into

a high dimensional space H. The dimension of H is usually

sufficiently large (possibly infinite) in order to guarantee

linear separability of data.

Assuming data linearly separable in H, the hinge loss

max-margin learning finds a hyperplane f (with a normal w

and shift b) that separates n training samples {(xi,yi)}ni=1

while maximizing their margin. The margin is defined as

twice the distance between the closest training samples w.r.t

f and the optimal (ŵ, b̂) corresponds to

argmin
w,b

1

2
‖w‖22 + C

n
∑

i=1

ℓ(yi, f(xi)), (1)

which is the primal form of the max-margin support vector

machine, ‖.‖22 is the ℓ2-norm, C > 0 and ℓ(yi, f(xi)) is

the hinge loss function defined as max(0, 1 − yif(xi)); a

differentiable (and also convex) surrogate of this loss is used

in practice and defined as log(1+exp(.)). Given xi ∈ U , the

class of xi in {−1,+1} is decided by the sign of f(xi) =
w

′φ(xi) + b with w
′ being the transpose of w. Following

the kernel trick and the representer theorem [13], one may

write the solution w of the above problem as

w =
n
∑

j=1

αjyjφ(xj), (2)

hence f(xi) can also be expressed as
∑n

j=1 αjyjκ(xi,xj)+
b, where α = (α1 . . . αn)

′ is a vector of positive real-valued

training parameters found as the solution of the following



dual problem

min
α≥0,b

1

2

n
∑

i,j=1

αiαjyiyjκ(xi,xj)

+C
n
∑

i=1

ℓ(yi,
n
∑

j=1

αjyjκ(xi,xj) + b),

(3)

here κ(., .) = 〈φ(.), φ(.)〉 is a symmetric and positive (semi-

definite) kernel function [11, 12]. The closed form of κ
is defined among a collection of existing elementary (a.k.a

individual) kernels including linear, gaussian and histogram

intersection and the underlying mapping φ(x) ∈ H is usually

implicit, i.e., it does exist but it is not necessarily known and

may be infinite dimensional. We consider in the remainder of

this paper an approach that learns better kernels; the latter are

deep and designed in order to i) guarantee linear separability

of data in L, ii) to ensure better generalization performance

using deep networks and iii) to ensure positive definiteness

by construction (see subsequent sections and also appendix).

2.2. Deep multiple kernels

We aim to learn an implicit mapping function that re-

cursively characterizes a nonlinear and deep combination

of multiple elementary kernels [56, 37]. For each layer

l ∈ {2, . . . , L} and its associated unit p, a kernel domain
{

κ
(l)
p (·, ·)

}

is recursively defined as

κl
p(·, ·) = g

(

∑

q

βl−1
q,p κl−1

q (·, ·)
)

, (4)

where g is a nonlinear activation function chosen in order to

guarantee the positive semi-definiteness of the learned deep

kernels (see more details in appendix). In the above equa-

tion, q ∈ {1, . . . , nl−1}, nl−1 is the number of units in layer

(l − 1) and {βl−1
q,p }q are the (learned) weights associated

to kernel κl
p. In particular, {κ1

p}p are the input elementary

kernels including linear and histogram intersection kernels,

etc. When L = 2, the architecture is shallow, and it is equiv-

alent to the 2-layer MKL of Zhuang et al. [16]. For larger

values of L, the network becomes deep. We notice that the

deep kernel network in essence is a multi-layer perceptron

(MLP), with nonlinear activation functions (see Fig. 1). The

difference is that the last layer is not designed for classifi-

cation, rather than to deliver a similarity value. However,

we can use standard back-propagation algorithm specific for

MLP to optimize the weights in the deep kernel network.

Considering the output kernel κL
1 (and its parameters β), a

slight variant (denoted as J(α, β)) of the objective function

Figure 1. The deep kernel learning architecture with two inter-

mediate layers and an output layer. The input of this network

corresponds to different elementary kernels evaluated on a given

pair of data.

in Eq. 3 is defined as

min
α≥0,b,β

1

2

n
∑

i,j=1

αiαjyiyjκ
L
1 (xi,xj)

+C
n
∑

i=1

ℓ(yi,

n
∑

j=1

αjyjκ
L
1 (xi,xj) + b)

s.t.

nl−1
∑

q=1

βl−1
q,p = 1, βl−1

q,p ≥ 0,

l ∈ {2, . . . , L}, p ∈ {1, . . . , nl}.
(5)

Note that this objective function is now optimized w.r.t

both α and β (the parameters of the deep multiple kernels).

Assuming that the computation of gradients of the objec-

tive function J w.r.t the output kernel κ
(L)
1 (i.e. ∂J

∂κL
1
(.,.)

) is

tractable; according to the chain rule, the corresponding gra-

dients w.r.t coefficients β are computed, and then used to

update these weights using gradient descent (see also extra

details in section 3.2). Note also that the above problem is

not convex anymore (w.r.t α, β when taken jointly), however,

releasing convexity makes it possible to explore a larger set

of possible solutions resulting into a better estimator as also

discussed subsequently and also in experiments.

3. Deep total variation SVM networks

Considering the primal form in Eq. 1 (and Eq. 2); for a

given N (targeted number of support vectors), we define a

more general class of solutions as

w =
N
∑

j=1

αjφ(zj). (6)

In the above form, w is not written in the span of the

fixed training set L but in the span of a more general set

Z = {zj}Nj=1 ⊂ R
p, referred to as virtual support vectors,

which varies together with {αj}j . As the labels of Z are

unknown, these labels are implicitly embedded into {αj}j ,
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Figure 2. This figure shows the architecture of our deep net including individual and deep kernel evaluations as well as SVM classification.

The first layer is fed with the input vector x (whose dimension is D) which is transferred to different branches; each one corresponds to one

individual kernel (linear, polynomial, histogram intersection, etc.). In the second layer, the σ1 activation is first applied to all the dimensions

of x, then each dimension of the resulting activated signal σ1(x) is multiplied, in the third layer, by the N (re-parameterized) weights

{σ4(Z)} (as shown in Eq 9) prior to apply the σ2 activation; here N corresponds to the number of virtual support vectors in Z and these

weights (or virtual support vectors) are shared through different branches (i.e., individual kernels). In the fourth layer, the results of the

previous one are pooled across dimensions resulting into N kernel values. Note that these N kernel values are activated by σ3() and fed to

the deep multiple kernel MLP, in the fifth layer, resulting into N deep multiple kernel values which are linearly combined in the last layer for

classification (as shown in Eq. 8).

so the latter are not constrained to be positive anymore.

With this more general setting of w (i.e., {αj}j and {zj}j),

one may define a larger set of possible solutions, and thereby

obtain a better universal estimator; at least because the set

of solutions defined by Eq. 2 is included in Eq. 6 (while the

converse is not true).

Considering this variant of w, the objective function (5)

can be rewritten as

min
α,b,Z,β

1

2

N
∑

i,j=1

αiαjκ
L
1 (zi, zj)

+C
n
∑

i=1

ℓ(yi,

N
∑

j=1

αjκ
L
1 (xi, zj) + b)

s.t.

nl−1
∑

q=1

βl−1
q,p = 1, βl−1

q,p ≥ 0,

l ∈ {2, . . . , L}, p ∈ {1, . . . , nl},

(7)

and the decision function becomes

f(xi) =

N
∑

j=1

αjκ
L
1 (xi, zj) + b. (8)

The left-hand side term of the objective function (7) acts

as a regularizer (which is now totally independent from the

training set L) while the right-hand side term still corre-

sponds to the hinge loss. With this new constrained min-

imization problem all the parameters are allowed to vary

including the virtual support vectors Z , together with α and

b as well as the mixing parameters (in β) of the deep multiple

kernels. In contrast to standard non-parametric SVMs (as

well as their multiple kernel variants), this formulation is

totally parametric, which means, that the decision function

(once trained on a given L) is defined using a fixed-length

set of trained parameters Z , β, α and b. Note that the com-

plexity of evaluating (8) scales linearly w.r.t the size of S
while for standard (non-parametric) SVM this complexity

is quadratic. As shown in the following section, one may

consider a deep net architecture in order to effectively and

efficiently train and evaluate the model in Eq. 8. In the re-

mainder of this paper, this model will be referred to as total

variation SVM; as shown later in experiments, this model is

highly flexible and shows superior performances compared

to individual and multi-kernel SVMs as well as their deep

variants.

3.1. Neural consistency and architecture design

In contrast to decision functions defined with the primal

parameters w, the one in Eq. 8 cannot be straightforwardly



k(x, z) σ1(t) σ2(t) σ3(t) σ4(t)

In
ne

r pr
od

uc
t b

as
ed Linear 〈x, z〉 t t t t

Polynomial 〈x, z〉p t t tp t
Sigmoid 1

1+exp(−β〈x,z〉) t t 1
1+exp(−βt) t

tanh tanh(a〈x, z〉+ b) t t tanh(at+ b) t

D
is
ta

nc
e
ba

se
d

Gaussian exp(−β‖x− z‖2) exp(t) log(t)2 exp(−βt) exp(−t)

Laplacian exp(−β‖x− z‖) exp(t) log(t)2 exp(−β
√
t) exp(−t)

Power −‖x− z‖p exp(t) log(t)2 −tp/2 exp(−t)

Multi-quadratic
√

‖x− z‖2 + b2 exp(t) log(t)2
√
t+ b2 exp(−t)

Inverse Multi-quadratic 1√
‖x−z‖2+b2

exp(t) log(t)2 1√
t+b2

exp(−t)

Log − log(‖x− z‖p + 1) exp(t) log(t)2 − log(tp/2 + 1) exp(−t)
Cauchy 1

1+
‖x−z‖2

σ2

exp(t) log(t)2 1
1+ t

σ2

exp(−t)

Histogram intersection
∑

d min(x.,d, z.,d) exp(exp(−β(1− t))) 1
β log(log(t)) + 1 t σ1(t)

Table 1. This table shows the setting of σ1, σ2, σ3, σ4 for different kernel functions. Note that the best parameters of these individual kernels

are set using cross validation.

evaluated using standard neural units5 as input kernels {κ1
q}

in Eq. 4 may have general forms. Hence, modeling Eq. 8

requires a careful design; our goal in this paper, is not to

change the definition of neural units, but instead to adapt

Eq. 8 in order to make it consistent with the usual definition

of neural units. In what follows, we introduce the overall

architecture associated to the decision function f(.) (and

also κL
1 ) for different input kernels {κ1

q}q including linear,

polynomial, gaussian and histogram intersection as well as a

more general class of kernels (see for instance [3, 8]).

Definition 1 (Neural consistency) Let x.,d (resp. z.,d) de-

note the dth dimension of a vector x (resp. z). For a given

(fixed or learned) z, a kernel κ is referred to as “neural-

consistent” if

κ(x, z) = σ3

(

∑

d

σ2(σ1(x.,d).ωd)
)

, (9)

with ωd = σ4(z.,d) and being σ1, σ2, σ3, σ4 any arbitrary

real-valued activation functions.

Considering the above definition, it is easy to see that

deep kernels defined in Eq. 4 are neural consistent pro-

vided that their input kernels are also neural consistent;

the latter include (i) the linear 〈x, z〉, (ii) the polyno-

mial 〈x, z〉p, (iii) the hyperbolic tangent tanh〈x, z〉, (iv)

the gaussian exp(−β‖x − z‖2) and (v) the histogram

intersection
∑

d min(x.,d, z.,d). Neural consistency is

straightforward for inner product-based kernels (namely

linear, polynomial and tanh) while for shift invariant ker-

nels such as the gaussian, one may write exp(−β‖x −
z‖22) = σ3

(
∑

d σ2(σ1(x.,d).ωd)
)

with σ1(.) = exp(.),
σ2(.) = log(.)2, σ3(.) = exp(−β(.)) and ωd =
exp(−z.,d). For histogram intersection, it is easy to see

5i.e., those based on standard perceptron (inner product operators) fol-

lowed by nonlinear activations.

that
∑

d min(x.,d, z.,d) =
∑

d 1 −max(1 − x.,d, 1 − z.,d)
and one may obtain (for a sufficiently large β)

∑

d 1 −
max(1− x.,d, 1− z.,d) ≈ σ3

(
∑

d σ2(σ1(x.,d).ωd)
)

using

σ1(.) = exp(exp(−β(1− (.)))), σ2(.) =
1
β log(log(.))+1,

σ3(.) = (.) and ωd = σ1(z.,d).
Following the above example, neural consistent kernels (in-

cluding linear, polynomial, gaussian, histogram intersection)

can be expressed using the deep net architecture shown in

Fig. 2. Neural consistency can be extended to other shift

invariant kernels including: multi-quadratic, inverse multi-

quadratic, power, log, Cauchy, Laplacian, etc. (see for in-

stance [4] for a taxonomy of the widely used functions in

kernel machines; see also table 1 for the setting of σ1, σ2,

σ3, σ4 for different kernels).

3.2. Optimization

All the parameters of the network (including the virtual

support vectors, the mixing parameters of the multiple ker-

nels and the weights of the SVMs) are learned end-to-end us-

ing back-propagation and stochastic gradient descent. How-

ever, as the mixing parameters β are constrained, we consider

a slight variant in order to implement these constraints.

From proposition 2 (see appendix), provided that i) the in-

put kernels are conditionally positive definite (c.p.d), ii) the

activation function g preserves the c.p.d (as leaky-ReLU6)

and iii) the weights {βl−1
q,p } (written for short as {βl

q,p} in

the remainder of this section) are positive, all the resulting

multiple kernels in Eq. 4 will also be c.p.d and admit equiv-

alent positive definite kernels (following proposition 1 in

appendix), and thereby max-margin SVM can be achieved.

Note that conditions (i) and (ii) are satisfied by construction

while condition (iii) requires adding equality and inequality

constraints to Eq. 4, i.e., βl
q,p ∈ [0, 1] and

∑

q β
l
q,p = 1.

6This function is used in practice as it preserves negative kernel values

(in contrast to ReLU).
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Figure 3. This figure shows the whole keypoint tracking and description process on the motion stream.

Figure 4. This figure shows a sample of videos and skeletons asso-

ciated to different action categories taken from the SBU dataset;

see https://www3.cs.stonybrook.edu/∼kyun/research/kinect interaction/index.html.

In order to implement these constraints, we consider a re-

parametrization in Eq. 4 as βl
q,p = h(β̂l

q,p)/
∑

q h(β̂
l
q,p) for

some {β̂l
q,p} with h being strictly monotonic real-valued

(positive) function and this allows free settings of the pa-

rameters {β̂l
q,p} during optimization while guaranteeing

βl
q,p ∈ [0, 1] and

∑

q β
l
q,p = 1. During back-propagation,

the gradient of the loss J (now w.r.t β̂’s) is updated using

the chain rule as

∂J

∂β̂l
q,p

=
∂J

∂βl
q,p

.
∂βl

q,p

∂β̂l
q,p

with
∂βl

q,p

∂β̂l
q,p

=
h′(β̂l

q,p)h(
∑

r 	=q β̂
l
r,p)

(h(β̂l
q,p) + h(

∑

r 	=q β̂
l
r,p))

2
,

(10)

in practice h(.) = exp(.) and ∂J
∂βl

q,p

is obtained from lay-

erwise gradient backpropagation (as already integrated in

standard deep learning tools including PyTorch and Tensor-

Flow). Hence, ∂J
∂β̂l

q,p

is obtained by multiplying the original

gradient ∂J
∂βl

q,p

by
exp(

∑
r
β̂l
r,p)

(exp(β̂l
q,p)+exp(

∑
r �=q

β̂l
r,p))

2
.

4. Experiments

We evaluate the performance of our total variation SVM

on the challenging task of action recognition, using the SBU

kinect dataset [58]. The latter is an interaction dataset ac-

quired using the Microsoft kinect sensor; it includes in total

282 video sequences belonging to 8 categories: “approach-

ing”, “departing”, “pushing”, “kicking”, “punching”, “ex-

changing objects”, “hugging”, and “hand shaking” with vari-

able duration, viewpoint changes and interacting individuals

(see examples in Fig. 4). In all these experiments, we use

the same evaluation protocol as the one suggested in [58]

(i.e., train-test split) and we report the average accuracy over

all the classes of actions.

4.1. Video skeleton description

Given a video V in SBU as a sequence of skeletons,

each keypoint in these skeletons defines a labeled trajec-

tory through successive frames (see Fig. 3). Considering a

finite collection of trajectories {vi}i in V , we process each

trajectory using temporal chunking: first we split the total



❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

kernels

classifiers
Standard parametric SVM with SVs Total variation SVM w.r.t different # of learned SVs

fixed/taken from the training set 10 50 100 150 200 250

Linear 81.5385 90.7692 92.3077 92.3077 93.8462 89.2308 92.3077

Polynomial 84.6154 89.2308 92.3077 92.3077 90.7692 90.7692 90.7692

Sigmoid 83.0769 92.3077 90.7692 92.3077 92.3077 92.3077 92.3077

tanh 83.0769 92.3077 93.8462 90.7692 92.3077 93.8462 93.8462

Gaussian 86.1538 90.7692 92.3077 92.3077 92.3077 92.3077 92.3077

Laplacian 84.6154 83.0769 80.0000 81.5385 87.6923 92.3077 86.1538

Power 86.1538 81.5385 92.3077 93.8462 95.3846 95.3846 95.3846

Multi-quadratic 86.1538 81.5385 90.7692 93.8462 95.3846 93.8462 95.3846

Inverse Multi-quadratic 83.0769 90.7692 93.8462 93.8462 93.8462 93.8462 93.8462

Log 87.6923 78.4615 89.2308 92.3077 93.8462 95.3846 95.3846

Cauchy 86.1538 92.3077 93.8462 93.8462 93.8462 93.8462 93.8462

Histogram Intersection 86.1538 92.3077 92.3077 93.8462 93.8462 93.8462 95.3846

MKL (one layer) 89.2308 80.0000 95.3846 93.8462 95.3846 93.8462 93.8462

MKL (two layers) 87.6923 90.7692 95.3846 93.8462 96.9231 95.3846 95.3846

MKL (three layers) 89.2308 93.8462 95.3846 95.3846 93.8462 95.3846 95.3846

Table 2. This table shows a comparison of our TV SVM against standard non-parametric SVM with different individual and multiple kernels.

duration of a video into M equally-sized temporal chunks

(M = 4 in practice), then we assign the keypoint coordi-

nates of a given trajectory vi to the M chunks (depending

on their time stamps) prior to concatenate the averages of

these chunks and this produces the description of vi de-

noted as ψ(vi) and the final description of a given video

V is (ψ(v1) ψ(v2) . . . ) following the same order through

trajectories. Hence, two trajectories vi and vj , with similar

keypoint coordinates but arranged differently in time, will be

considered as very different. Note that beside being compact

and discriminant, this temporal chunking gathers advantages

– while discarding drawbacks – of two widely used families

of techniques mainly global averaging techniques (invari-

ant but less discriminant) and frame resampling techniques

(discriminant but less invariant). Put differently, temporal

chunking produces discriminant descriptions that preserve

the temporal structure of trajectories while being frame-rate

and duration agnostic.

4.2. Performances and comparison

We trained our TV SVM for 1000 epochs with a batch

size equal to 50 and we set the learning rate (denoted ν)

iteratively inversely proportional to the speed of change of

the objective function in Eq. 7; when this speed increases

(resp. decreases), ν decreases as ν ← ν × 0.99 (resp.

increases as ν ← ν/0.99). All these experiments are run

on a GeForce GTX 1070 GPU device (with 8 GB memory)

and no data augmentation is achieved. Table 2 shows a

comparison of action recognition performances, using TV

SVM against different baselines involving individual kernels

with support vectors (SVs) fixed/taken from the training set.

We also show the results using deep multiple kernel learning

(MKL).

From all these results, we observe a clear and a consistent

gain of TV SVM w.r.t all the individual kernel settings

and their MKL combinations; this gain is further amplified

when using deep MKL with only two layers. However,

these performances stabilize as the depth of MKL increases

since the size of the training set is limited compared to the

large number of training parameters in its underlying MLP.

These performances also improve quickly as the number

of learned (virtual) support vectors N increases, and this

results from the flexibility of TV SVM which learns — with

few virtual support vectors — relevant representatives of

training and test data. These performances consistently

improve for all the individual kernels (as well as their

MKL combinations) and this is again explained by the

modeling capacity of TV SVM. Indeed, the latter captures

better the actual decision boundary while standard SVM

(even when combined with MKL) is clearly limited when

the fixed support vectors are biased (i.e., not sufficiently

representative of the actual distribution of the data especially

on small or mid-scale problems); hence, learning the

MKL+SVM parameters (with fixed SVs) is not enough

in order to recover from this bias. In sum, the gain

of TV SVM results from the complementary aspects

of the used individual kernels and also the modeling ca-

pacity of SVMs when the support vectors are allowed to vary.

Finally, we compare the classification performances of our

TV SVM against other related methods in action recognition

(on SBU) ranging from sequence based such as LSTM and

GRU [65, 66, 63] to deep graph (no-vectorial) methods based

on spatial and spectral convolution [61, 60, 59]. From the

results in table 3, TV SVM brings a substantial gain w.r.t



state of the art methods, and provides comparable results

with the best vectorial methods on SBU.

Perfs

90.00

96.00

94.00

96.00

49.7

80.3

86.9

83.9

80.35

90.41

93.3

90.5

91.51

94.9

97.2

95.7

93.7

96.92

Methods

GCNConv [61]

ArmaConv [69]

SGCConv [60]

ChebyNet [59]

Raw coordinates [58]

Joint features [58]

Interact Pose [71]

CHARM [72]

HBRNN-L [73]

Co-occurence LSTM [74]

ST-LSTM [75]

Topological pose ordering[77]

STA-LSTM [63]

GCA-LSTM [66]

VA-LSTM [68]

DeepGRU [65]

Riemannian manifold trajectory[64]

Our best TV SVM

Table 3. Comparison against state of the art methods.

5. Conclusion

We introduced in this paper a novel deep total variation

support vector machine that learns highly effective classifiers.

The strength of our method resides in its ability to models

different kernels and to learn their support vectors resulting

into better classification performances. Experiments con-

ducted on the challenging action recognition task show the

outperformance of this parametric SVM formulation against

different baselines including non-parametric SVMs as well

as the related work. As a future work, we are currently in-

vestigating the application of our method to other computer

vision and pattern recognition tasks in order to further study

the impact of this highly flexible model.

Appendix

We consider, as g in Eq. (4), the leaky ReLU [5, 7] acti-

vation function: leaky ReLU allows learning conditionally

positive definite (c.p.d) kernels. In what follows, we discuss

the sufficient conditions about the choices of the input ker-

nels, the parameters {βl−1
q,p } and the activation function that

guarantee this c.p.d property.

Definition 2 (c.p.d kernels) A kernel κ is c.p.d, iff

∀x1, . . . ,xn ∈ R
p, ∀c1, . . . , cn ∈ R (with

∑n
i=1 ci = 0),

we have
∑

i,j cicjκ(xi,xj) ≥ 0.

From the above definition, it is clear that any p.d kernel

is also c.p.d, but the converse is not true; this property is

a weaker (but sufficient) condition in order to learn max

margin SVMs (see for instance [12]; see also the following

proposition).

Proposition 1 (Berg et al.[1]) Consider κ and define κ̂
with

κ̂(xi,xj) = κ(xi,xj)− κ(xi,xn+1)

−κ(xn+1,xj) + κ(xn+1,xn+1)

Then, κ̂ is positive definite if and only if κ is c.p.d.

Proof 1 See Berg et al.[1]. Now we derive our main result

Proposition 2 Provided that the input kernels {κ(1)
q }q

are c.p.d, and {βl−1
q,p }p,q,l belong to the positive orthant

of the parameter space; any combination defined as

g(
∑

q β
l−1
q,p κl−1

q ) with g equal to leaky ReLU is also c.p.d.

Proof 2 Details of the first part of the proof, based on re-

cursion, are omitted and result from the application of def-

inition (2) to κ =
∑

q β
l−1
q,p κl−1

q (for different values of l)

while considering {κ1
q}q c.p.d. Now we show the second

part of the proof (i.e., if κ is c.p.d, then g(κ) is also c.p.d for

leaky ReLU).

For leaky ReLU, one may write g(κ) = log(exp(aκ) +
exp(κ)) with 0 < a ≪ 1. Considering κ c.p.d, and follow-

ing proposition (1), one may define a positive definite κ̂ and

obtain ∀{ci}i, ∀{xi}i,
∑n

i,j=1 cicj exp(κ(xi,xj)) = (∗)
with

(∗) = exp(κ(xn+1,xn+1))

.
n
∑

i,j=1

(ci exp(κ(xi,xn+1))).(cj exp(κ(xn+1,xj)))

. exp(κ̂(xi,xj))

≥ 0,

so exp(κ) is also positive definite. One may also rewrite g
as

g(κ) = a κ+ log(1 + exp((1− a) κ)). (11)

Since exp(κ) is positive definite, it follows that (1+exp((1−
a) κ))α is also positive definite for any arbitrary α > 0 and

0 < a ≪ 1 so from [10], log(1 + exp((1 − a) κ)) is c.p.d

and so is g(κ); the latter results from the closure of the c.p.d

with respect to the sum.

�
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