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Abstract

Recent binary representation learning models usually re-

quire sophisticated binary optimization, similarity measure

or even generative models as auxiliaries. However, one may

wonder whether these non-trivial components are needed to

formulate practical and effective hashing models.

In this paper, we answer the above question by propos-

ing an embarrassingly simple approach to binary repre-

sentation learning. With a simple classification objec-

tive, our model only incorporates two additional fully-

connected layers onto the top of an arbitrary backbone net-

work,whilst complying with the binary constraints during

training. The proposed model lower-bounds the Informa-

tion Bottleneck (IB) between data samples and their se-

mantics, and can be related to many recent ‘learning to

hash’ paradigms. We show that, when properly designed,

even such a simple network can generate effective binary

codes, by fully exploring data semantics without any held-

out alternating updating steps or auxiliary models. Exper-

iments are conducted on conventional large-scale bench-

marks, i.e., CIFAR-10, NUS-WIDE, and ImageNet, where

the proposed simple model outperforms the state-of-the-art

methods. Our codes are available at https://github.

com/ymcidence/JMLH .

1. Introduction

Approximate nearest neighbour search with binary rep-

resentations has been regarded as an effective and efficient

solution to large-scale multimedia data retrieval. Conven-

tionally termed as learning to hash, this family of tech-

niques aims at (a) shrinking the embedding size of data and

(b) producing binary features to speedup the computation

of distance-based pair-wise data relevance. Similar to many

other machine learning tasks, learning to hash can be ei-

ther unsupervised or supervised. The former requires less

labeling efforts for training, while the later obtains better

performance in retrieval. We focus on supervised hashing

to fully leverage the semantic information of data.

Recent research in this field largely boosts the perfor-

mance of the produced hash codes by introducing deep

learning techniques. Deep hashing models typically em-

ploy an indifferentiable sign activation to the top of the

encoding network. Various methods have been proposed to

empower the encoder with the ability to properly locate data

in the Hamming space.

A typical approach is to employ a held-out code learner

as the network training complementary [13, 34, 45]. The

code learner performs discrete optimization and alternately

updates the semantic-based target codes to govern the be-

havior of the encoding network. This approach generally

requires longer training time since the held-out discrete op-

timization step cannot be effectively paralleled, and con-

sumes additional memory to cache the target codes dur-

ing each round of update. Alternatively, some propose

to decouple unrelated data representations by introducing

similarity-based penalties to the encoders [7, 47, 48, 49].

To train an encoder with these regularizers, one may resort

to continuous relaxation on the codes, which arguably de-

grades the training quality. One recent fashion in deep hash-

ing is to employ generative adversarial models [5, 15, 29,

39, 50]. By distinguishing synthesized data from real ones,

the encoder implicitly acknowledges the respective data dis-

tribution.

However, the above precisely-proposed approaches raise

another question: How to build an effective supervised

hashing model with minimum auxiliary components?

We attempt to find the answer by carefully considering

the following main challenges of learning to hash:

• Keeping the discrete nature of binary codes. The bi-

nary constraints usually lead to an NP-hard optimiza-

tion problem in parameterized models, and cannot be

directly solved by gradient-based methods. This is

usually addressed by conventional methods using held-

out discrete optimization or relaxation techniques.

• Enriching the information carried by the codes. It



is always essential to make the encoder aware of the

semantic information (e.g., lables or tags) of data.

As a result, in this paper, we propose a simple but pow-

erful deep hashing network. In our model, the above prob-

lems are tackled by relating data and their semantics with a

binary representation bottleneck, which is thereafter used as

the final hash codes. A single recognition penalty is applied

for training. With a reasonable regularization term, the fi-

nal learning objective forms a variational lower bound of

the Information Bottleneck (IB) [2, 41] between observed

data and their semantics. Importantly, one can impose

stochasticity on the binary bottleneck to keep the binary

constraints and apply gradient estimation methods during

training. Therefore, the whole framework can be optimized

end-to-end with Stochastic Gradient Descent (SGD). To this

end, we find our design leads to an embarrassingly simple

solution,which basically shapes a single classification neu-

ral network .

Regardless of the regularization, the proposed model just

maximizes the label likelihood of data. Thus, we name our

model Just-Maximizing-Likelihood Hashing (JMLH). The

contributions of this paper are summarized as follows:

• We propose a simple and novel deep hashing model,

i.e., JMLH, and theoretically base it on the Variational

Information Bottleneck (VIB) [2] method. To the best

of our knowledge, JMLH is the first attempt in deep

hashing to employ the IB methods.

• We show that, when properly designed and trained,

a classification neural network with a discrete bottle-

neck already produces effective binary representations.

Therefore, the proposed model requires no auxiliary

components and can be optimized directly.

• Relations between JMLH and many existing hashing

models are discussed in detail.

• JMLH successfully outperforms state-of-the-art hash-

ing techniques on several benchmark datasets, i.e.,

CIFAR-10 [22], NUS-WIDE [11] and ImageNet [33].

In the rest of this paper, we first describe our model in

detail in Section 2. Subsequently, the relationships between

JMLH and existing works are elaborated in Section 3. Sec-

tion 4 presents the implementation details and experimental

findings, with a brief conclusion given in Section 5.

2. Model

The goal of learning to hash is to find an optimal en-

coding function f : X → {0, 1}m to represent data. Here

X is the variable space of data observation and m refers to

the length of the hash code space B. In the context of su-

pervised hashing, training is usually supported by the data
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Figure 1. The directed graphical model of JMLH. We treat the hash

code b as the latent bottleneck between data x and their labels

y. The dotted lines define the stochastic encoding procedure of

q(B|X), and the solid lines denote the approximated likelihood

q(Y |B). n is the total number of observed data points. Note that

the respective parameters θ and φ are jointly learned, forming an

extremely simple training model.

labels Y . We intendedly use capitalized notations, i.e., X ,

Y and B, for the (random) variable spaces, and denote each

respective variable instances with lower-cased letters, i.e.,

x, y and b.

2.1. JMLH at a Glance

JMLH involves a stochastic encoder q(B|X) and a clas-

sifier q(Y |B). An additional deterministic distribution

p(B) is used as the prior of B.1 This model is illustrated

in Figure 1 as a directed graphical model. Particularly, each

datum x ∈ X is firstly associated with a latent binary code

b ∈ B according to q(B|X), and then the respective label

y ∈ Y can be predicted by feeding q(Y |B) with b. There-

fore, B can be regarded as the bottleneck between X and

Y . Successively applying q(B|X) and q(Y |B) according

to the above procedure specifies a single-task neural net-

work with a binary layer in between, which makes JMLH

extremely simple.

We firstly describe the above-mentioned probabilistic

models and then discuss how they are combined as a whole

for efficient end-to-end training.

2.1.1 Parameterizing the Probability Models

Given a training pair of (x, y), the corresponding probabil-

ities models of q(b|x) and q(y|b) in JMLH are defined as

q(b|x) = P(b|κ(x; θ)),

q(y|b) = Cat(y|π(b;φ)) or P(y|π(b;φ)),

p(b) = B(b|m, 0.5).

(1)

Here P(b|κ(x; θ)) indicates the Poisson binomial distribu-

tion, parameterized by a neural network κ(x; θ) as follows:

P(b|κ(x; θ)) =
m∏

i=1

κbi

i (1− κi)
1−bi . (2)

1Here we use q (·) to denote an approximated posterior when one can-

not directly model the corresponding true distribution, e.g., q(B|X). On

the other hand, p(·) is used when the distribution can be deterministically

defined or computed, e.g., the pre-defined prior p(B).



Table 1. Network settings of JMLH. All layers are sequentially

applied.

Notation Specification Variable

Input
Arbitrary data,

X
256× 256 images in our experiments

κ(x; θ)

Arbitrary network backbone,

Alexnet [23] before fc 7

in our experiments

Fully-connected, size of m
B

Binary stochastic activation

π(b;φ)
Fully-connected, size of label length

Ysoftmax (single-label datasets)

sigmoid (multi-label datasets)

On the other hand, p(y|b) can be either categorical for

single-label classification, i.e., Cat(y|π(b;φ)), or Poisson

binomial for multi-label classification, i.e., P(y|π(b;φ)),
implemented by another network π(b;φ). We additionally

introduce p(b) of a binomial distribution B(b|m, 0.5) as the

code prior for regularization purpose.

Note that we choose discrete probability models for B
to avoid the use of continuous relaxation. That is to say,

the input to the classifier π(·) is already binarized. Continu-

ous relaxation, e.g., activating the neurons with a sigmoid

non-linearity, is not considered here as it skews the obser-

vation of the classifier, propagating biased semantic infor-

mation measurement back to the encoder.

2.1.2 Shaping a Single Network

Sequentially stacking κ(x; θ) and π(b;φ) empirically

forms a classification neural network with a binary bottle-

neck B, of which the briefed structure is illustrated in Ta-

ble 1. It can be seen that JMLH only introduces two addi-

tional layers on the top of an arbitrary network backbone,

which makes it easy to be adopted to different pre-trained

models and is convenient for implementation.

Then we define the learning objective with n given train-

ing pairs {(x, y)}n of this single network as

L =
1

n

∑

(x,y)

Eq(b|x)[− log q(y|b)]
︸ ︷︷ ︸

classification objective

+λKL (q(b|x)||p(b))︸ ︷︷ ︸
regularization

,

(3)

where λ is a hyper-parameter. All the probability models

are defined in Eq. (1). We first elaborate each component of

it in this subsection and later show that this learning objec-

tive is supported by VIB [2] in Section 2.2.1.

The first Right-Hand-Side (RHS) term of Eq. (3), i.e.

− log q(y|b), is actually a negative log-likelihood classifi-

cation penalty since q(y|b) is categorical. This loss con-

veys semantic label information of data to their codes dur-

ing training.

Algorithm 1: The Training Procedure of JMLH

Input: Data observations X , the corresponding labels Y

and the maxinum number of iterations T .

Output: Network parameters θ.

repeat
Randomly pick a batch of {(x, y)} from training data

Sample ǫ ∼ U (0, 1)m for each datum

L ← Eq. (3)

(θ, φ) ←
(

θ − Γ (∇θL) , φ− Γ (∇φL)
)

according

to Eq.. (6)

until convergence or reaching the maximum iteration T ;

The second RHS term of Eq. (3) acts as a regularizer. By

minimizing the Kullback-Leibler (KL) divergence between

the posterior q(b|x) and the prior p(b), the entropy carried

by B is reserved. As the prior and the posterior are basi-

cally binomial,the KL divergence can be deterministically

computed by two entropy terms H(·):

KL (q(b|x)||p(b)) = H
(
q(b|x), p(b)

)
−H

(
p(b), p(b)

)
.

(4)

The whole network of JMLH is trained only using

Eq. (3). This makes the optimization extremely simple,

requiring no auxiliary module or additional complex loss

function. The only problem comes from the gradient com-

putation of the intractable expected negative log-likelihood

w.r.t. θ, which is discussed in Section 2.1.3.

2.1.3 On the Tractability of JMLH

Computing the gradients of the negative log-likelihood ex-

pectation term ∇θEq(b|x) [− log q(y|b)] of Eq. (3) is in-

tractable. One needs to traverse the latent space of B
for each sample x to accurately obtain the loss and corre-

sponding gradients. Inspired by [12], we use the following

reparametrization of B:2

b̃i =

{
1 κi(x; θ) � ǫi,

0 κi(x; θ) < ǫi,
for i = 1 ... m, (5)

where each ǫi ∼ U (0, 1) is a small random signal. Eq. (5)

is conventionally termed as the stochastic binary neural ac-

tivation. With this reparametrization, the gradient of L w.r.t.

the encoder parameters θ can be estimated by the distribu-

tional derivative estimator [12]:

∇θL =
1

n

∑

(x,y)

(
Eǫ[−∇θ log q(y|b̃)]

+ λ∇θ KL (q(b|x)||p(b))
) (6)

2Although the reparametrization trick [21] is initially designed for con-

tinuous variables, we keep using this terminology here, because the trick

proposed in [12] leads to a similar gradient estimator to the one of [21].
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Figure 2. An analogy of the JMLH computation graphs for (a)

training and (b) test.

With this estimator, the network of JMLH can be trained

with SGD end-to-end. Note that ∇φL can be determinis-

tically obtained and does not require approximation since

π(b;φ) does not involve stochasticity.

The whole training process is illustrated in Algorithm 1,

and the respective variable feed path is illustrated in Fig-

ure 2 (a). Here we use Γ(·) to denote the gradient scaler,

which is the Adam optimizer [20] in this work. It can be

seen that, during training, JMLH performs identically to a

normal neural classifier. The only additional step is just to

sample the random signals ǫ.

2.1.4 Out-of-Sample Extension

Given a query datum x(q), the corresponding hash code is

produced by the encoder, i.e.,

b(q) =
(
sign(κ(x(q); θ)− 0.5) + 1

)
/2, (7)

which is shown in Figure 2 (b).

2.2. Theoretical Analysis

2.2.1 Exploring the Information Bottleneck

In this subsection, we show that JMLH defines a special dis-

crete extension of VIB [2] to learn information-rich codes.

By empirically assigning the joint probability of X and

Y with the Dirac delta function p(x, y) = 1
n

∑
i δ(x −

xi)δ(y − yi) = p(y|x)p(x), i.e., data samples are inde-

pendent, the negative learning objective of JMLH can be

rewritten as

−L =
1

n

∑

(x,y)

∑

b

(
p(x)p(y|x)q(b|x) log q(y|b)

−λp(x)q(b|x) log
q(b|x)

p(b)

)
,

(8)

where the first RHS term is the variational lower bound

of the mutual information I(B, Y ) with the second RHS

term the lower bound of the negative mutual information

−λI(B,X) according to [2]. Consequently, −L literally

lower-bounds the IB [41] objective RIB(X,Y,B):

RIB(X,Y,B) = I(B, Y )− λI(B,X) ≥ −L. (9)

We refer to the related articles [2, 41] for more detailed def-

initions.

Intuitively, our learning objective allows B to maximally

represent the semantic meaning of the label space Y by as-

cending I(B, Y ). Note that, though −λI(B,X) acts as a

penalty in Eq. (9), we are not expecting zero mutual infor-

mation between X and B, otherwise the produced codes

would be data-independent. The purpose of introducing

−λI(B,X) is to filter redundant information not related to

the semantic meanings of data during encoding, and simul-

taneously preserve the essential part to support I(B, Y ). In

this way, the learned codes can be compressed and discrim-

inative.

2.2.2 Nearest Neighbour Search with Recognition

In the context of large-scale data retrieval, relevant data

pairs are usually and conveniently defined by sharing the

labels/tags, which is generally reasonable. It is trivial and

inefficient to traverse all data points in a dataset and explic-

itly assign pair-wise similarity marks to each of them, while

the labels/tags can be regarded as the similarity ‘anchors’ to

ease this process.

JMLH favors this setting as it is literally a special clas-

sifier during training. The bottleneck latents B are directly

linked to the data labels. When the model is well-trained,

the codes of relevant data are naturally located with short

Hamming distances. This idea has also been proved in

many label-based hashing approaches [19, 34].

3. Related Work

Our work is related to various hashing techniques, of

which the most popular and related ones are selectively dis-

cussed according to our motivation and design.

3.1. Solving the Discrete Constraints

Traditional solutions. We firstly look at the problem of dis-

crete optimization. A typical example is SDH [34], which

also sequentially behaves encoding and classification. How-

ever, as SDH [34] resorts to Discrete Cyclic Coordinate

descent (DCC) for alternating code updating, a held-out

optimization step is involved. Practically, this is hard for

parallelization and batch-wise optimization. Additionally,

training errors of the classification step cannot be efficiently

propagated back to the encoder. A similar paradigm can be

found in [44], while its objective is based on pair-wise data

similarity. In both single-modal hashing [45, 13, 32, 31, 10]



and cross-modal hashing [25, 36, 9], alternating code updat-

ing is widely adopted. For those methods that have held-out

code-learners, the network is regularized by the produced

target code. The disadvantage of this disarticulated pro-

cess is the low training quality. On the other hand, reg-

ularizing the network by quantization is also widely con-

sidered [6, 14, 19, 35]. However, these approaches ignore

a severe problem of the different presence of codes. The

network observes continuous codes during training, which

may represent different meanings from their discrete coun-

terparts for test. This problem is explicitly solved in JMLH

as our code bottleneck is exactly binary.

Gradient estimation solutions. Some existing hashing

models solve the discrete constraints for SGD by gradi-

ent estimation techniques so that the hashing model can be

conveniently trained. In SGH [12], a distributional deriva-

tive estimator is proposed based on the Taylor expansion of

the gradient, and the discreteness is kept by the stochas-

tic neuron. This approach has a similar presence to the

reparametrization trick [21], and is unbiased and stable dur-

ing training. This is also adopted in [37], and JMLH fol-

lows the same idea. An alternative simple choice here is

the Straight-Through (ST) estimator [3], which is used in

GreedyHash [40]. The REINFORCE algorithm [43] is also

employed for the same purpose in [46], while it undergoes

high variance during training.

3.2. Enriching the Semantic Information

JMLH is not the first model that trains the hash-

ing network with classification objectives. For instance,

SUBIC [19] also employs a classification loss as its learn-

ing objective. Specifically, SUBIC [19] separates the hash

code into l blocks and ground each code block on a ∆
m

l
−1

simplex in order to favor the discreteness. This approach

considerably limits the maximal information carried by the

codes. Besides, the supervised version of GreedyHash [40]

is similar to JMLH both in terms of classification objec-

tive and keeping the discrete constraints. However, Greedy-

Hash [40] only uses the quantization loss on the code bottle-

neck, ignoring the entropy of the codes, while we consider

minimizing KL (q(b|x)||B(b|m, 0.5)) to preserve the en-

tropy. Moreover, GreedyHash [40] provides no theoretical

clue of how the trained codes are related to data semantics.

MIHash [4] borrows the concept of mutual information

as with JMLH, ending up with different designs. Our model

reflects the mutual information between codes and data se-

mantics as a part of VIB [2], while MIHash [4] consid-

ers relevant-irrelevant code distribution discrepancy and re-

quires complex histogram binning [42] during training.

Recently, a popular idea in deep representation learning

is to employ Generative Adversarial Networks (GANs) [18]

during training, which has been attempted in [5, 15, 39, 50].

The discriminators or the encoders in GANs are aware of

the data distribution p(X) without explicitly parameteriz-

ing p(X). The problem is that the auxiliary generator sig-

nificantly increases the training complexity as more param-

eters are introduced.

We experimentally show that the above sophisticated de-

signs are not always necessarily needed as the simple net-

work of JMLH can already achieve the state-of-the-art re-

trieval performance.

4. Experiments

Extensive image retrieval experiments are conducted in

this section, mainly according to the following themes:

• Comparison with existing methods. We show that,

simple as JMLH is, it still outperforms state-of-the-art

hashing models.

• Ablation study. The importance of each part of JMLH

is evaluated and discussed.

• Intuitive results. Some illustrative results are pro-

vided to implicitly justify the effectiveness of JMLH.

4.1. Experimental Settings

4.1.1 Implementation Details

JMLH is implemented with the popular deep learning tool-

box Tensorflow [1]. The network specifics are provided in

Table 1. For our image retrieval task, AlexNet [23] be-

fore the fc 7 layer is adopted as the network backbone,

where parameters are initialized with the ImageNet [33]

pre-trained results and is jointly updated during training.

For multi-labeled datasets, i.e., NUS-WIDE [11], we ac-

tivates the last layer of π(y|b) with the sigmoid non-

linearity, while the softmax activation is used when train-

ing JMLH on CIFAR-10 [22] and ImageNet [33]. JMLH

involves one hyper-parameter, i.e., the regularization fac-

tor λ. We empirically set λ = 0.1. The learning rate of

the Adam optimizer Γ (·) [20] is set to 1 × 10−4. We fix

the training batch size to 256. The codes can be found at

https://github.com/ymcidence/JMLH.

4.1.2 Datasets

CIFAR-10 [22] consists of 60,000 images from 10 classes.

We follow the common setting [15, 24, 40] and select 1,000

images (100 per class) as the query set. The remaining

59,000 images are regarded as the database. The train-

ing set contains 5000 images, uniformly selected from the

database.

NUS-WIDE [11] is a collection of nearly 270,000 Web im-

ages of 81 categories downloaded from Flickr. Following

the settings in [28, 44, 24], we adopt the subset of images



Table 2. Performance comparison (w.r.t. mAP@k) of JMLH and the state-of-the-art hashing methods. The respective retrieval sequence

length k is adopted according to the most popular settings [15, 40, 46]. All baselines are reported according to the identical setting.

Method
Super- CIFAR-10 (mAP@all) NUS-WIDE (mAP@5000) ImageNet (mAP@1000)

vision 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

ITQ [16] ✗ 0.201 0.207 0.235 0.627 0.645 0.664 0.217 0.317 0.391

AGH [28] ✗ 0.217 0.205 0.182 0.592 0.615 0.616 0.241 0.327 0.379

DGH [26] ✗ 0.199 0.200 0.212 0.572 0.607 0.627 0.270 0.341 0.373

KSH [27] � 0.451 0.473 0.507 0.448 0.520 0.566 0.216 0.257 0.394

ITQ-CCA [17] � 0.463 0.498 0.505 0.555 0.512 0.460 0.235 0.377 0.576

SDH [34] � 0.499 0.525 0.546 0.595 0.595 0.617 0.298 0.431 0.504

CNNH [44] � 0.453 0.509 0.537 0.570 0.583 0.600 0.281 0.450 0.554

DNNH [24] � 0.556 0.558 0.599 0.598 0.616 0.639 0.290 0.461 0.565

DHN [48] � 0.564 0.603 0.626 0.637 0.664 0.671 0.311 0.472 0.573

HashNet [8] � 0.643 0.675 0.687 0.662 0.699 0.716 0.506 0.631 0.684

MIHash [4] � 0.760 0.776 0.761 0.722 0.759 0.779 0.569 0.661 0.694

HashGAN [5] � 0.668 0.731 0.749 0.715 0.737 0.748 - - -

PGDH [46] � 0.741 0.747 0.762 0.780 0.786 0.792 0.653 0.707 0.716

GreedyHash [40] � 0.786 0.810 0.833 - - - 0.625 0.662 0.688

JMLH (Ours) � 0.805 0.841 0.837 0.795 0.818 0.820 0.668 0.714 0.727

from the 21 most frequent categories. 100 images of each

class are utilized as a query set and the remaining images

form the database. For training, we employ 10,500 images

uniformly selected from the 21 classes.

ImageNet [33] is originally released for large-scale image

classification purpose, and is recently used in deep hashing

evaluation. Following [8, 46], we randomly select 100 cate-

gories to perform our retrieval task. All the original training

images are used as the database, and all the validation im-

ages form the query set. For each category, 130 images are

used for training.

4.2. Comparison with Existing Methods

We compare JMLH with existing methods using conven-

tional evaluation metrics, including top-k mean-Average

Precision (mAP@k), Precision of top-k retrieved sam-

ples (Precision@k), Precision within Hamming radius of 2

(P@H≤2) and Precision-Recall (P-R) curves.

Note that, for mAP@k, we adopt the most popular set-

tings of k = all, 5000, 1000 for CIFAR-10, NUS-WIDE,

and ImageNet respectively according to [15, 40, 46].

4.2.1 Baselines

JMLH is compared with various widely recognized hash-

ing baselines, including ITQ [16], AGH [28], DGH [26],

KSH [27], ITQ-CCA [17], SDH [34], CNNH [44],

DNNH [24], DHN [48], HashNet [8], HashGAN [5]

PGDH [46] and the supervised version of GreedyHash [40].

Note that the term of HashGAN is used both in [15] and [5].

Here we refer to the later one as it is a supervised approach

and thus is more related to our work.

For feature-based models, e.g., shallow hashing mod-

els, we use the AlexNet [23] fc 7 pre-trained features to

represent data for training and test. As for the end-to-end

baseline frameworks, we directly adopt the original training

settings described in their original papers and pre-trained

weights are also applied for fine-tuning when possible.

4.2.2 Results and Analysis

The retrieval mAP@k results are reported in Table 2. The

respective P-R curves, Precision@k and P@H≤2 scores are

illustrated in Figure 3.

It can be observed that JMLH consistently outperforms

the compared baselines, though many of them consist of

more trainable parameters, e.g., HashGAN [5]. This result

aligns with our motivation, and shows the clue that, with

the current evaluation metrics, one may not require an ex-

tremely complex model to obtain the best-performing deep

hashing function.

The performance margin between JMLH and Greedy-

Hash [40] is not significant on CIFAR-10 [22], but this gap

gets larger when it comes to a relatively more difficult situa-

tion, i.e., ImageNet [33]. This raises the concern of a proper

regularization term for training. Both GreedyHash [40] and

JMLH are trained with classification-oriented objectives.

The former literally involves a quantization penalty while

JMLH considers equally distributed {0, 1} bits to maximize

the expected code entropy. This factor becomes essential

when the data label space is large and the training samples

are limited as the codes need to be expressive enough to be

successfully classified. We find our design has better gener-

alization ability in this case.
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4.3. Ablation Study

In this subsection, we evaluate different components in

terms of formulating a simple deep hashing model, and em-

pirically show which one is of importance for good perfor-

mance.

4.3.1 Baselines

JMLH-Cont. We firstly look at the influence of quanti-

zation. By dropping the binary stochastic neuron and em-

ploying the sigmoid activation on the code bottleneck B,

a regular deep neural classifier is built. The regularization

term is kept, and is subsequently analyzed by other base-

lines.

JMLH-QR. The KL term of Eq. (3) is replaced by

the quantization regularizer between the activated bi-

nary codes B and their real-valued counterparts before the

stochastic neurons.

JMLH-NR. The regularizer is deprecated in this baseline,

and the whole learning objective is formulated by the clas-

sification cross-entropy.

JMLH-VAE. We replace the classifier π(·) with a decoder,

and use the L2 reconstruction error instead of classification

loss during training. Therefore, the model collapses to an

unsupervised Variational Auto-Encoder (VAE) [21], with a

negative Evidence Lower-BOund (ELBO) of

1

n

∑

x

Eq(b|x)[− log q(x|b)] + KL (q(b|x)||p(b)) . (10)

For the simplicity of training, the encoder and decoder for

this baseline are both implemented with a two-layer neural

networks and are fed by AlexNet [23] fc 7 features.

4.3.2 Results and Analysis

The mAP results of the above-mentioned baselines are

shown in Table 3. Since JMLH-VAE is an unsupervised

model, its performance is relatively lower than the others.

Table 3. mAP@all results by using different variants of the pro-

posed JMLH on CIFAR-10.

Baseline 16 bits 32 bits 64 bits

1 JMLH-Cont 0.616 0.628 0.659

2 JMLH-QR 0.778 0.827 0.835

3 JMLH-NR 0.729 0.725 0.736

4 JMLH-VAE 0.423 0.435 0.441

5 JMLH (full model) 0.805 0.841 0.837

We experience a 20% performance drop when using the

continuous relaxation during training, i.e., JMLH-Cont. As

discussed in Section 3, the binary constraints are essential

for models like JMLH as it directly influences the classi-

fier’s observation. Without regularization, JMLH-NR strug-

gles in the training-test generalization. Though not com-

peting our full model, JMLH-QR still performs closely to

GreedyHash [40], as the learning objectives are similar. The

difference between JMLH-QR and GreedyHash [40] lies in

the stochasticity of gradient estimation. Both ST [3] and

distributional derivative [12] work for this case as long as

the binary constraints are not violated. Hence, a proper

learning objective becomes more important.

4.4. More Results

4.4.1 Hyper-Parameter

The regularization penalty of JMLH is scaled by a hyper-

parameter λ. By default, it is set to λ = 0.1 for the overall

best performance. The impact of λ is illustrated in Figure 4

(a). The performance drops quickly when λ goes larger,

which actually reflects the penalty of the mutual informa-

tion between data X and codes B, i.e., I(X,B). A large

value of λ over-regularizes the model by decorrelating X
with B, making the produced codes less-informative.

4.4.2 Towards Model Simplicity

One key claim of this paper is to build a simple deep

hashing model. Training JMLH is non-trivial and effi-
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Figure 4. (a) mAP@all results of 32-bit JMLH on CIFAR-10 [22]

with different values of λ. (b) Training efficiency of JMLH and

MIHash [4] on CIFAR-10 [22]. (c) Encoding performance com-

parison with extremely short code length on CIFAR-10 [22].

cient. Our classification likelihood learning objective pro-

vides a straightforward way to convey data semantics to

the encoder. We show training efficiency comparison be-

tween JMLH and MIHash [4] in Figure 4 (b). It can

be observed that JMLH converges more quickly to the

best performance than MIHash [4] with a margin of ∼10

epochs. Although MIHash [4] requires no auxiliary net-

works, its histogram-based learning objective introduces

complex positive-negative data pairing and histogram bin-

ning. All these factors make the training of MIHash [4] in-

direct, resulting in relatively slower convergence rate than

JMLH. Note that the performance of MIHash is slightly

lower than the one reported in [4], as it was previously

trained with VGG [38] features and we reproduce the re-

sults with the AlexNet [23] backbone for fair comparison.

The whole parameter size of JMLH for all experi-

ments conducted in this section is slightly smaller than

AlexNet [23], as we have a relatively narrow fully-

connecting bottleneck in the middle. Compared with the

models that involve end-to-end generative networks [15, 5],

this is believed to be a light one.

4.4.3 Extremely Short Codes

Following [40], we also explore the minimal size of codes

to represent data semantics. The experiments are conducted

by setting the code length to m = 4, 5, ..., 11, 12, and the

corresponding results are shown in Figure 4 (c). We can

see that, compared with GreedyHash [40] and DHN [48],
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Figure 5. (a) 32-bit JMLH t-SNE [30] visualization on CIFAR-

10 [22]. (b) Examples of top-10 retrieved candidates of 32-bit

JMLH on CIFAR-10 [22].

JMLH obtains better performance even when the encoding

length is very short. The entropy-preserving regularization

term plays the key role here since the maximum number of

concepts that the code space can cover is limited.

4.4.4 Visualization Results

The t-SNE [30] visualization of 32-bit JMLH on CIFAR-

10 [22] is shown in Figure 5 (a). Even though the pro-

posed model is simple both in terms of network structure

and learning objective, the resulting binary codes are still

clearly scattered in the feature space according to their se-

mantic meanings. We further provide several image re-

trieval examples where the top-10 retrieved candidates are

shown together with the query image in Figure 5 (b). Ob-

viously, JMLH successfully finds related images in the top

of the retrieval list. Here we only show the 32-bit results to

keep the content concise.

5. Conclusion

In this paper, we proposed a simple but effective deep

hashing model called JMLH. Our model shaped a conven-

tional deep neural network with a single likelihood max-

imization learning objective. A differentiable binary bot-

tleneck was plugged in, making the whole network end-to-

end trainable using SGD. JMLH was linked to the infor-

mation bottleneck methods, which aimed at learning max-

imally representative features for a given task. We showed

that, when applying proper binary-preserving gradient es-

timators and suitable regularization terms, a single classi-

fication model could generate high-quality hash codes for

similarity search, outperforming state-of-the-art models.
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